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It is shown that the charge carrier mobility in a positionally and energetically disordered 
hopping system can be evaluated by averaging either hopping rates or hopping times over the 
thermally equilibrium energy distribution of localized carriers. However, at variance with 
averaging hopping rates, averaging hopping times can be correct only if the energy 
dependence of the carrier energy relaxation time is also taken into consideration. The 
equilibrium carrier mobility was calculated by averaging hopping rates as a function of the 
temperature and concentration of localized sites. The obtained results prove that, in good 
quantitative agreement with both Monte Carlo simulations and experimental data, the 
temperature and concentration dependences of the mobility can be factorized, i.e. that the 
mobility can be represented as a product of two functions. The first function depends almost 
solely upon the temperature and reveals only a weak concentration dependence while the 
second one mainly governs the concentration dependence of the mobility and is almost 
independent of the temperature.  
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1. Introduction 
 

Basic characteristics of charge carrier transport in non-crystalline semiconducting materials 
are well known to be controlled by positional and energy disorder inherent in these materials [1-6]. 
Due to the disorder effects, most carriers are permanently localized in amorphous materials and the 
only feasible mode of charge transport is carrier jumps either directly between localized states or via a 
band of extended states if such states do occur in a given material. It is worth noting that the 
occurrence of the positional disorder will almost inevitably give rise to the energy disorder via the 
dependence of the potential energy of interaction upon the distance between interacting particles [7,8]. 
Nonetheless, charge carrier hopping can be simulated as r-hopping in a random system of localized 
states ignoring the energy disorder [9]. Trap-controlled transport implies a negligible contribution of 
direct tunneling jumps of carriers between localized states and, therefore, this transport mode can be 
considered as the energy-controlled hopping or ε-hopping. In most disordered materials both 
positional and energy disorder affect the carrier jump rate and this transport mode is described by 
models of rε-hopping.  

Most such models are based on the Miller-Abrahams [10] expression for the rate of carrier 
jumps, ν(r,Est,Et), over the distance r between a starting state of the energy Est and the target site of 
the energy Et . This expression can be written as,  
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where u is the hopping parameter, ν0 the attempt-to-jump frequency, γ the inverse localization radius, 
T the temperature, k the Boltzmann constant, and η the unity step-function. Although the distance and 
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the energy difference between the starting and target sites almost similarly affect the jump rate there is 
one important difference that makes very different r- and ε-hopping modes.  

The distance-dependent factor in Eq. (1) is completely symmetric, i.e. the distance between 
hopping sites similarly affects the rate of forth and back jumps. If a site, remote from any other site in 
a positionally random system of monoenergetic hopping sites, could be considered as a trap for 
carriers, the trapping time will be exactly equal to the release time. It means that it is equally difficult 
for a carrier to be released and to be trapped by such an isolated localized state. However, it is not the 
case for an energetically random system. While energetically upward jumps require thermal activation 
downward jumps imply dissipation of the excess energy via phonon emission. The former process is 
much slower than the latter and, therefore, the rates of forth and back jumps between two fixed states 
of different energies are normally very different. Consequently, a deep localized state can promptly 
capture a carrier and keep it localized over a long time. It is the strong asymmetry of trapping and 
release times that makes the energy disorder much more important as far as charge transport 
characteristics are concerned.  

In the present paper we concentrate on the role of energy disorder in ε- and rε-hopping. It 
will be shown that the carrier release time from deep localized states does control the effective carrier 
mobility in an energetically disordered system with a broad density-of-states (DOS) distribution under 
the non-equilibrium dispersive transport conditions. However, it is not the case for the equilibrium 
non-dispersive transport regime. Once the thermally equilibrium energy distribution of localized 
carriers is established the transport is controlled by both trapping and release of carriers whose 
energies are around the maximum of this distribution. Averaging the carrier hopping rates yields the 
equilibrium mobility which is in agreement with the exact analytic results obtained for ε-hopping [11] 
as well as with the results of Monte-Carlo simulations [12] and predictions of the effective medium 
theory [13-15] for rε-hopping.  
 

2. Equilibrium charge carrier mobility in an energetically disordered  
    system 

 
Mathematically, ε-hopping can be described as a set of multiple-trapping equations which 

relate the density of localized carriers to the density of carriers in extended states [11]. This is possible 
because the time carrier spends in extended states is typically by orders of magnitude shorter than the 
total jump time such that the sequence of carrier release, motion in the extended states, and trapping 
can be considered as a single jump. The ε-hopping equations for the localized carrier distribution, ρ, 
and the free carrier density, pc , then read, 
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where p is the total density of carriers which is practically equal to the density of localized carriers,  
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t the time, x the coordinate, g(E) the normalized DOS energy distribution, µc the mobility of carriers 
in extended states, F the electric field, ν0 the attempt-to-jump frequency, and τ0 the lifetime of carriers 
in extended states. Solving Eq. (2) under the thermal equilibrium conditions (∂ρ/∂t = 0) yields the 
equilibrium distribution ρeq as,  
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Substituting Eq. (5) into Eq. (4) leads to the following relation between the total density of 
carriers and the density of carriers in extended states: 
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This relation together with Eq. (3) allows to obtain a transport equation for the total density of 
carriers:  
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with the equilibrium carrier mobility in an energetically disordered system of localized states, µ, 
defined as [11],  
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In the following, we shall use this exact expression for the mobility as a reference for different 
approximate methods.  

Now we consider two possible approaches to estimating the equilibrium mobility. The carrier 
mobility appears in the expressions for the current, Fpj µ= , and for the carrier transit time, 

FLtT µ/= , where L is the distance crossed by carriers over the time tT . These two definitions are 
absolutely equivalent to each other once carriers are thermally equilibrated. Experimentally, it is 
rather difficult to evaluate the mobility from the current measurements because the density of drifting 
carriers is normally a poorly known value. Therefore, the mobility is usually determined from the 
time-of-flight measurements. However, theoretical evaluation of the mobility may be based on either 
of these two definitions and both must, of course, yield the same result.  

The trap-controlled current can be estimated as the total rate of carrier jumps, νt , multiplied 
by the average distance crossed by a carrier during a single jump. The former should be calculated as 
the jump rate averaged over the energy distribution of localized carriers, while the latter is the mean 
free path of carriers in extended states, 0τµ Fc . The normalized thermally equilibrium distribution 

function, feq , takes the form, 
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Averaging the hopping rate over this distribution leads to the following expression for the 
equilibrium current,  
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where σ is the surface carrier density. Equation (10) yields exactly the same formula for the 
equilibrium mobility as was obtained from the exact analytic solution of the multiple-trapping 
equations. For a Gaussian DOS distribution,  
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with the variance σ >>kT both Eq. (8) and Eq. (10) yield,  
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At first glance this result seems to be puzzling if one tries to rationalize it as a carrier packet 
drift mobility. According to Eq. (9) the equilibrium distribution of localized carriers is also described 
by a Gaussian distribution of the same variance σ with the maximum of the distribution located at the 
energy Emax = -σ2/(kT)2. The value of Emax is two times larger than the activation energy of the 
equilibrium drift mobility Ea = σ2/2(kT)2. The implication is that jumps of an absolute minority of 
carriers, which are localized in states with energies around –Ea , seem to be responsible for the drift of 
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a carrier packet as a whole while the majority of carriers, localized around Emax , do not apparently 
participate in this process.  

To resolve this puzzle one should consider the carrier release time together with following up 
equilibration. The average carrier release time, <tr>, is determined as, 
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For a Gaussian DOS distribution Eq. (13) yields, 
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The average distance, ∆x, which a carrier have crossed before it got trapped again must be 
proportional to the equilibration time, teq. The latter can be estimated as the carrier release time from a 
localized state of the energy Em as,  
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The average carrier velocity during the round trip, <v>, can be written as, 
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Equation (16) indicates that the average round-trip velocity is determined by the interplay of 
the carrier release and equilibration times. The result of this interplay strongly depends upon the DOS 
function. For an exponential DOS, ( ) ( ) ( )00 /exp/1 EEEEg =  the round-trip velocity monotonously 

decreases with increasing depth of the starting site. This implies that carriers are always accumulated 
in deep states and that the regime of thermally equilibrium transport can never be established. This 
proves that, under equilibrium transport conditions, the drift mobility is controlled not only by the 
time of thermally activated jumps of carriers but also by the time of carrier trapping by states that are 
equally deep or deeper than the starting site. The latter time increases with energy even steeper than 
an exponential function. This is in contrast with predictions of r-hopping models in which the 
mobility and the current are shown to be controlled by the most difficult single carrier jump. In 
models of ε- and εr-hopping in disordered systems, neglecting the trapping time (or, equivalently, the 
time of downward jumps) as compared to the release time (or the time of upward jumps) is possible 
only under the dispersive transport conditions. The use of this approximation for the analysis of 
equilibrium transport characteristics leads to exponentially incorrect results [16].  

It is worth noting that the integral in the right-hand side of Eq. (8) is formally equivalent to 
the carrier release time averaged over the DOS distribution rather than over the distribution of 
localized carriers. In the first place, it should be emphasized that such averaging has no physical 
meaning. The similarity is simply caused by the fact that the carrier release time is governed by the 
same Boltzmann exponential as the thermally equilibrium energy distribution of localized carriers. 
This similarity is specific for ε-hopping but is not valid in systems with both energy and positional 
disorder. For instance, an attempt to use such averaging in variable range hopping [16] is hardly 
justifiable. The results of this section prove that the equilibrium carrier mobility can be evaluated by 
averaging either hopping rates or hopping times. However, averaging hopping times should also 
account for the energy relaxation time while averaging hopping rates is not subject to this additional 
complication. In the following section we apply the latter approach for calculating the equilibrium 
carrier mobility in a positionally and energetically disordered hopping system.  
 

3. Equilibrium mobility in a positionally random and energetically 
disordered hopping system 

 
In a diluted random system of hopping sites most carriers will jump to nearest hopping 

neighbors i.e. to target sites characterized by minimum values of the hopping parameter u as counted 
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from starting sites. For a starting site of energy Est , the average number, n(Est,u), of hopping 
neighbors, whose hopping parameters are not larger than a given value u , is given by,  
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where Nt is the total density of hopping sites. The probability density, w(Est,u), of finding a nearest 
hopping neighbor of the hopping parameter u is determined by the Poisson distribution as,  
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Equation (18) forms a basis for calculating the average hopping parameter, <u>(Est), for 
carrier jumps from a starting site of energy Est. Using Eq. (18) as a distribution function for averaging 
the hopping parameter yields,  
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Evaluating the typical jump distance as <u>/2γ and averaging over Est under thermal 
equilibrium conditions leads to the following expression for the equilibrium mobility,  
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Temperature dependence of the mobility, calculated from Eq. (20) for a Gaussian DOS 
distribution, is shown in Fig. 1 for different values of the total density of localized states. All the 
curves feature almost perfect straight lines if plotted as log µ vs 1/T2. Although the absolute value of 
the mobility does strongly decrease with decreasing Nt the slopes of log µ vs 1/T2 curves increase by 
only less than 15 % when the density of hopping sites decreases by four orders of magnitude. This 
implies that the equilibrium mobility can be rather accurately represented in a factorized form as,  
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with the numeric parameter c changing from 0.59 at Nt = 1022 cm-3 to 0.68 at Nt = 1018 cm-3. Both the 
form of Eq. (21) and the value of the parameter c are in good quantitative agreement with the results 
of Monte Carlo simulations (c = 0.67) and predictions of the effective medium model (c = 0.64). It is 
worth noting that a simpler model, based on averaging hopping rates and employing configurational 
averaging, also yielded the mobility of the form given by Eq. (21) with c = 0.5. This value seems to be 
the lower limit of c that can be reached at high densities of localized states.  

The dependence of the equilibrium mobility upon the total density of hopping sites is 
illustrated in Fig. 2 parametric in the temperature. The curves plotted in this figure indicate that the 
concentration dependence of the mobility does obey typical for hopping transport an exponential law,  
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with the numeric parameter b being rather weakly dependent upon the temperature. The values of this 
parameter are indicated for each curve in Fig. 2.  
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The above consideration disregards repeated carrier jumps between two accidentally close 
hopping neighbors both of which are isolated from other localized states. Although such jumps are 
important as far as ac conductivity is concerned they do not contribute to the dc current and, 
concomitantly, to the equilibrium carrier mobility. Accounting for isolated pairs and, more general, 
for isolated clusters of hopping sites would result in decreasing effective density of states Nt and, 
therefore, to increasing values of the coefficients b and c.  
 

4. Effective transport energy 
 

The first term in the right-hand side of Eq. (17) gives the number of target states which are 
deeper than the starting site and the second one describes the number of shallower states. The former 
is important as far as downward carrier jumps are concerned while the latter governs the rate of 
upward jumps. In the present paper we consider the equilibrium transport conditions under which both 
drift and diffusion are controlled by upward hopping and, concomitantly, in the following we 
concentrate on consideration of this hopping mode. Making out the replacement of variables,  
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yields the following expression for the number of shallower hopping neighbours of a starting site of 
energy Est :  
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An upward carrier jump from a starting site is possible if there is at least one such hopping 
neighbour, i.e. from ( ) 1, =trst EEn  on. The use of this condition in Eq. (24) leads to the following 

transcendental equation for the energy of the most probable upward jumps:  
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 Fig. 1. Temperature dependence of the equilibrium 
drift mobility calculated from Eq. (20) for a hopping 
system  with  a  Gaussian  DOS  distribution  of 
                              localized states.  
 

Fig. 2. Concentration dependence of the equilibrium 
drift mobility calculated from Eq. (20) for a hopping 
system  with  a  Gaussian  DOS  distribution  of 
                               localized states.  
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If the DOS distribution decreases with energy faster than |E|-4 than (i) the value of the integral 
in the left-hand side of Eq. (25) is practically independent of the lower bound of integration for 
sufficiently deep starting sites and (ii) a major contribution to the integral comes from states with 
energies around Etr . Physically, it means that target sites for thermally assisted upward carrier jumps 
are located around the energy Etr independent of the energy of starting sites and, therefore, Eq. (5) 
reduces to:  
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In order to illustrate the efficiency of the transport energy concept we apply it to the 
calculation of the equilibrium carrier mobility, µ , in a positionally random hopping system with a 
Gaussian DOS distribution at weak external electric fields. Estimating the equilibrium diffusivity as a 
squared typical jump distance multiplied by the average jump frequency and using the Einstein 
relation yields,  
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Equation (27) is remarkably similar to the expression for the trap-controlled equilibrium 
carrier mobility. The only two differences are the occurrence of a temperature-dependent transport 
energy instead of a fixed mobility edge and a weakly temperature-dependent mean jump distance 
instead of a fixed mean free path of delocalized carriers. For a Gaussian DOS function Eq. (27) 
reduces to,  

( ) �
�

�
�
�

�−�
	



�
�



�
�

�
�
�

�+�
	



�
�



−=

kT

EE

kTkTN

e trtr

t

eq exp
2

Erf1
2

exp
2

3/1

2

2

3/23

0

σ
σνµ    ,                   (28) 

where Erf is the error function. Further simplification of this equation is possible at high T and/or low 
Nt . Substituting the high-temperature/low-concentration expression for Etr from Eq. (26) into Eq. (28) 
yields,  
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Equation (29) once again proves that the temperature and concentration dependencies of the 
mobility are factorized at high temperatures and/or in diluted hopping systems. This result does 
suggest that these dependencies will also be almost factorized at lower temperatures and in systems 
with higher concentrations of hopping sites.  
 
 

5. Conclusions 
 

Charge carrier mobility in disordered hopping systems can be evaluated by averaging either 
hopping rates or hopping times over the thermally equilibrium energy distribution of localized 
carriers. However, at variance with averaging hopping rates, averaging hopping times can be correct 
only if the energy dependence of the carrier energy relaxation time is also taken into consideration. 
Neglecting this relaxation would lead to exponentially incorrect expressions for the equilibrium 
mobility and diffusivity.  

The equilibrium carrier mobility was calculated by averaging hopping rates as a function of 
the temperature and concentration of localized sites in an energetically disordered and positionally 
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random hopping system. The obtained results prove that, in good quantitative agreement with both 
Monte Carlo simulations and experimental data, the temperature and concentration dependences of 
the mobility can be factorized, i.e. that the mobility can be represented as a product of two functions. 
 The first one depends almost solely upon the temperature and reveals only a weak 
concentration dependence while the second one mainly governs the concentration dependence of the 
mobility and is almost independent of the temperature. These results support the predictions of the 
simpler models based on the effective medium approximation and configurational averaging.  
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