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We review Raman scattering, Mössbauer spectroscopy and T-modulated Differential Scanning 
Calorimetry experiments on several families of chalcogenide glasses. Mean-field constraint 
theory, and numerical simulations of the vibrational density of state (floppy modes) in random 
and self-organized networks are used to analyze the measurements.  Our results provide 
evidence for three distinct phases of network glasses: floppy, intermediate and rigid, as a 
function of progressive cross-linking or mean coordination number ( r ). These phases are 
characterized by distinct elastic power-laws. The intermediate phase is characterized by a 
vanishing non-reversing heat-flow, ∆Hnr ( r ) → 0, suggesting that glass compositions in this 
phase are configurationally close to their liquid counterparts, i.e. self-organized. The 
compositional width (and centroid) of the intermediate phase is found to be determined by 
glass structure.  In random networks, the width of the intermediate phase almost vanishes, and 
a solitary floppy to rigid phase transition is observed, in excellent accord with extended 
constraint theory. In the chalcogenides, some degree of self-organization invariably occurs 
and opens an intermediate phase between the floppy and rigid phases, signaling the 
breakdown of mean-field constraint theory, but in harmony with recent numerical results on 
self-organized networks.  
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1. Introduction 

 
The microscopic origin of glass formation has been debated for over 50 years.  It is generally 

believed that glass formation is a kinetic phenomenon [1], although the aspects of liquid structure that 
lead to a glass rather than a crystal upon cooling are not obvious at present. Even basic issues on 
liquid dynamics, such as the propensity of a non-Arrhenius T-variation of viscosity (η), with only a 
select few liquids displaying an exception to that behavior, remains largely a mystery. The challenges 
to understand glass structures and liquid structures by diffraction methods [2] alone are enormous and 
have met with limited success. In spite of these challenges, important new ground has been broken 
particularly in understanding glass structures by using local probes [3] of structures and thermal 
analysis methods [4]. The latter developments are now beginning to impact our views on liquid 
structures and dynamics, as we shall see in the present review. 
 In this review we highlight the elastic (Raman mode frequencies) and thermal response of 
chalcogenide glasses examined as a function of cross-linking or mean-coordination number, r . We 
describe how these experimental results lead in a natural fashion to the existence of three distinct 
glass phases: floppy, intermediate and rigid that are characterized by distinct elastic power-laws as a 
function of r . An important result to emerge from the thermal measurements (Temperature 
Modulated DSC) is the existence of compositional windows [3] across which the non-reversing heat 
flow, ∆Hnr, nearly vanishes. These windows are characteristic of glasses in the intermediate phase and 
are associated with the absence of network stress [5]. Glass transitions become almost completely 
thermally reversing for glass compositions in the intermediate phase. The intermediate phase thus 
becomes synonymous with existence of "thermally reversing glass compositional windows", 
henceforth denoted simply as windows. Experiments also reveal that the thresholds in thermal and 
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elastic behavior coincide [6] and that both are manifestations of glass structure changes as the global 
connectivity of a network is progressively increased.   
 For a glass system in which the evolution of network structure with global connectivity is 
random, the window width is found [7] to nearly vanish and, correspondingly, an abrupt floppy to 
rigid transition manifests. The more usual circumstance encountered in glasses is one in where the 
evolution of cross-linked atomic-scale structures displays some "self-organization", leading to the 
opening of the window.  We shall illustrate this with specific examples.   
 The discovery of thermally reversing windows has fundamental implications in understanding 
soft matter. The absence of network stress in the intermediate phase is associated with facile 
photomelting of that phase under optical illumination. This could relate to the observation of 
photomelting [8] in As2S3 glass and the giant photocollapse [9] of obliquely deposited porous GeSe2 
films [9].  Both glass systems are intrinsically phase separated on a molecular scale.  In both cases the 
chalcogen-rich phase is thought to undergo a photomelt.   
 There are also early indications that glass compositions in the intermediate phase heated past 
Tg, display an Arrhenius T-variation of viscosity. Such a variation is characteristic of strong liquids, in 
the strong-fragile classification [10]. 
 In section 2, we comment on overview of the theoretical tools employed to analyze the elastic 
response of glasses. In section 3, we provide experimental results on four families of chalcogenide 
glasses where intermediate phases are documented, in some cases by both Raman scattering and 
MDSC measurements. The special case of the chalcohalide Ge-S-I with dangling-bond structure is 
discussed in section 4.  In section 5, we provide evidence of photomelting in the intermediate phase of 
the GexSe1-x binary glass system.  We conclude in section 6 with a summary of the principal results. 
 
 

2. Rigidity transition in random networks – theory 
 

2.1 Basic ideas 
 
 An important step to understand glasses at a basic structural level emerged in 1979 when J. C. 
Phillips introduced ideas based on mechanical-constraint counting [11] algorithms to explain glass 
forming tendencies in network forming systems. He reasoned that for a liquid to form a glass 
composed of a network possessing well-defined local structures, interatomic forces must form a 
hierarchical order. The strongest covalent forces between nearest neighbors serve as Lagrangian 
(mechanical) constraints defining the elements of local structure (building blocks). Constraints 
associated with the weaker forces of more distant neighbors must be intrinsically broken leading to 
the absence of long-range order.  He speculated that the glass forming tendency is optimized when the 
number of Lagrangian local-bonding constraints per atom, nc, just equals the number of degrees of 
freedom. For a 3d network, 
 

   nc = 3          (1) 
 
In covalent solids, there are two types of near-neighbor bonding forces; bond-stretching (α-forces) 
and bond-bending (β-forces). The number of Lagrangian bond-stretching constraints per atom is         
nα = r/2, and of bond-bending constraints is nβ = 2r-3. For the case when all α- and β-constraints are 
intact and no dangling ends (one-fold coordinated atoms, n1/N = 0) exist in the network, equation (1) 
implies that the optimum mean coordination number is r  = 2.40. Highly overcoordinated or 
undercoordinated structures are not conducive to glass formation and, upon cooling, lead to crystalline 
solids. Phillips' speculation is in excellent accord with the general experience on glass formation in 
inorganic solids. 
 In 1983, M. F. Thorpe pointed [12] out that undercoordinated networks would possess, in the 
absence of the weaker longer range forces, a finite fraction of zero-frequency normal vibrational 
modes, the floppy modes.  In fact, he found from simulations on random networks that the number of 
floppy modes per atom, f, is rather accurately described by the mean-field constraint count according 
to the relation, 
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   f = 3 – nc             (2) 
 
This led to the realization that a glass network will become spontaneously rigid when f → 0, defining 
a floppy to rigid phase transition. Fig. 1 shows a plot of f against r  for the cases of two random 
networks, one generated by scission of an amorphous Si network and the other by scission of an 
amorphous (C) diamond network. In both instances, the second derivative of f with r  shows [13] a 
fairly sharp cusp at cr (C) = 2.375(3) and cr (Si) = 2.385(3), respectively, quite close to the mean-field 

value of cr  = 2.40. The numerical simulations also reveal an exponential tail to f( r ) at r  > cr . In 

contrast the mean-field calculations give a linear variation of f( r ) till zero at cr = 2.40, and f = 0 for 

r  > cr .   

Fig. 1. The number of floppy modes per degree of freedom, f, for two bond-diluted models, 
based on the diamond lattice and on amorphous Si. The inset shows the second derivative of f 
with respect to <r> for the same models  (Ref. 13). The  broken  line gives the predicted linear  
                          variation for mean-field constraint counting (Maxwell).  

 
 A significant result of these numerical simulations on random networks is the prediction of a 
rather robust power-law variation of elastic constants [14, 15] C (longitudinal, transverse and shear) 
as a function of r , 
 

   C = A( r  - cr )p               (2) 
 
in the rigid regime with p = 1.4 -1.50.  We shall return to this prediction later. 
 
 

2.2 Broken bond-bending (ββββ) constraints 
 
 In glasses one rarely observes [4] the solitary rigidity transition cr  = 2.40 as discussed above.  
In part, this is because glasses soften at a finite temperature Tg, in contrast to the constraint and 
harmonic elasticity theory predictions which are based on T = 0 K calculations. Since α-forces exceed 
β-forces by a factor of 3 or more, in glass systems possessing a high Tg and/or weak β-forces, 
constraints associated with β-forces may be intrinsically broken [16, 17]. For a network with a finite 
fraction (mr/N) of r-fold (r ≥2) coordinated atoms that have their β-constraints broken, the mean-field 
rigidity transition will be upshifted [4] in r  according to 
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SiO2 glass is a celebrated example of a network where the β-constraint associated with the bridging O 
atoms is intrinsically broken. This is due to the rather high Tg = 1200°C, of SiO2 which leads thermal 
energies at Tg to completely overwhelm the strain energy barrier associated with a sharply defined O-
bridging angle. The result is a wide distribution of the bridging O-bonding angle as inferred from 
diffraction experiments [18]. In this case, m2/N = 2/3, the fraction of oxygen atoms per formula unit 
and according to Eq. (3), the condition nc = 3 now occurs at r  = 2.67 since m3/N = m4/N = 0.  The 
propensity toward glass formation in this prototypical oxide derives from the fact that the 
stoichiometric SiO2 glass composition is optimally constrained [17] even though r  = 2.67!   
 A second example is the case of the Ge1-xSnxSe2 ternary in which the β-forces associated with 
the lighter Ge group IV atom are much stronger than those associated with the heavier and more 
metallic group IV atom Sn. The result is that the β-constraints associated with all Sn-atoms at Tg ~  

200°C are broken, and a rigidity transition is predicted by (3) to be at 
 

1/3[4(1-x) + 4(x) + 4] = 2.40 + 2x/3 
 

   or xc = 2/5      (4) 
 
Here m2/N = m3/N = 0 and m4/N = x. The predicted threshold [19] is quite close to the observed 
threshold (xc = 0.35) in 119Sn Mössbauer spectroscopy measurements [20] on these ternary glasses.   
 
 

2.3 Networks with dangling ends 
 
 Halogens in covalently bonded systems and hydrogen in Si are some familiar examples of 
networks with dangling ends, i.e., atoms that are one-fold coordinated (OFC). The mean-field 
constraint counting is modified as follows: for an atom with r > 1 
 

   nα = r/2            (5a) 
   nβ = 2r – 3           (5b) 

 
For an OFC atom there is no β constraint and the rigidity transition condition (nc = 3) now occurs 
when 
 

  cr  = 2.40 – 0.4(n1/N)             (6) 
 
leading in general to a downshift [21] of the threshold from the magic value of 2.40.  In general, OFC-
atoms play no role if the base glass network (without one-fold coordinated atoms) is optimally 
coordinated [22].  On the other hand, these atoms will soften [23] an overconstrained base network 
and conversely stiffen [22] an underconstrained base glass network.   
 
 

2.4 Rigidity transitions in self-organized networks 
 
 In our discussion so far, we have not distinguished between onset of rigidity from onset of 
stress. A network can be isostatically rigid, that is, with no stress present. Stresses are said to exist 
when already present bond lengths and/or angles must change on the addition of more atoms to the 
structure. Thus, the imposition of additional cross links or constraints can lead to redundant 
constraints and to the accumulation of stress. An example can serve to illustrate the idea. Consider 4 
elastic bars hinged at their ends to form a square. A square is not a rigid structure because it can be 
sheared into a rhombus. A crossbar attached to opposite vertices of the square will result in an 
isostatically (barely) rigid structure. A second crossbar attached across the remaining two vertices 
provides a redundant constraint and will result in accumulation of stress in the structure. Isostatically 
rigid and stressed rigid random structures are expected to be physically different in behavior, as we 
now discuss. 
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 Let us consider a cross-linked random network with r  = 2.2 so that it consists of floppy 
regions and sparsely populated isostatically rigid inclusions. Next we insert additional cross-links in a 
selective fashion; we allow a cross-link in the floppy segment of the network, but not in an 
isostatically rigid region to avoid redundant constraints and stress. The process is a form of self-
organized growth. The question remains, how far can we proceed before stressed rigidity manifests 
itself. The issue was recently addressed in a numerical simulation of self-organized growth by M.F. 
Thorpe et al. who found [23] that, in a scissoned amorphous Si Network, isostatic rigidity manifests at 
r  = )1(cr  = 2.375(15) while stressed rigidity onsets at )2(r  c=r = 2.392(15) as shown in Fig. 2. In a 
real system, self-organization process may be driven by free energy of a glassy melt. These 
simulations [23] suggest that there are two transitions, a floppy to an isostatically rigid state followed 
by an isostatically rigid to a stressed rigid state. Glass compositions residing between the floppy and 
stressed rigid phase define the intermediate phase. These simulations are in sharp contrast to those on 
random networks that predict [13] the stress and rigidity transition to coincide and occur at a unique 
value of r .   

Fig. 2. The fractions of floppy modes per degree of freedom for the diluted diamond lattice for 
the random case (broken line) and the self-organized case (solid line).  For the self-organized 
case  the  rigidity  transition (o) and  the  stress  transition (D)  rise  to  the  intermediate phase  
                                shown as the shaded region.  Fig. taken from Ref. 13.  

 
 Raman and MDSC experiments on chalcogenide glasses provide evidence of two rigidity 
transitions, as we shall describe next in section 3. There is at present a significant difference with 
respect to the values of rc(1) and rc(2) between the numerical model and experiments. Still these new 
numerical simulations represent a significant advance and provide a physical basis for characterizing 
the nature of the two transitions and some insights into the self-organized intermediate state. 
 
 

3.   Experimental probes of rigidity transitions 
 
 Different types of experimental methods have given evidence on the nature of rigidity 
transitions in glasses. These include T-modulated Differential Scanning Calorimetry [4], Raman [4, 
24] and Brillouin scattering [25], Neutron scattering [29], and Mössbauer spectroscopy [26], viscosity 
[27], thermal expansion [28], and Molar volume measurements. Anomalies in compositional trends of 
electronic behavior of glasses near the rigidity transition have also been observed, such as the 
semiconductor to metal transition pressures [30] and electric fields for electronic switching [31]. The 
connection between electronic behavior and glass structure remains to be understood in this context, 
however.   
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3.1 Ther mally reversing windows and the intermediate phase 
 
 Differential Scanning Calorimetry (DSC) has been used to establish glass transition 
temperatures, Tg, for the past 50 years. Although the glass transition itself is quite wide (> 20°C), one 
can usually localize the inflexion point of the heat flow endotherm to within ±2°C, and thus define Tg.  
However, it is well known that not only does the shape of the heat flow endotherm depend on the 
baseline of the instrument, but also on the thermal history of the sample and the scan rate employed.  
Several of these limitations have been overcome in a recent variant of DSC known as MDSC.  In the 
latter, the programmed heating rate [32] includes a sinusoidal T-modulation superimposed on a linear 
T ramp used to scan through the glass transition. Because of increased sensitivity, an order of 
magnitude reduction in scan rates (1-3°C/min) can be used in MDSC in relation to those (10-
20°C/min) used in DSC. Furthermore, in MDSC it is possible to deconvolute the total heat-flow rate 
into a part that tracks the T-modulation and is known as the reversing heat flow rate, leaving a part 
that does not track the T-modulation, which is known as the non-reversing heat-flow rate.   

Experience on a wide variety of glass systems shows that the non-reversing heat-flow rate 
displays a Gaussian-like peak as a precursor [2] to the glass transition. The latter is observed as a 
smooth step-like shift of the reversing heat-flow rate as illustrated in Fig. 3. 

 

 

Fig. 3. MDSC scan of As45Se55 glass showing deconvolution of the total heat flow Ht into  
         reversing, Hr, and non-reversing, Hnr,, components. Fig. is taken from Ref. 34.  
 
The area under the non-reversing heat flow rate will be denoted henceforth as ∆Hnr, the non-

reversing heat-flow. ∆Hnr is thermal history sensitive. It is found to saturate in time typically after 100 
hours to a fully relaxed glass. In this work, ∆Hnr is used to denote the saturated value, and it measures 
the latent heat between the relaxed solid glass and its melt. The sigmoidal jump in the reversing heat 
flow observed in these experiments is independent of the baseline of the instrument. It establishes the 
thermodynamic jump ∆Cp in the specific heat between the glass and its melt and its inflection point 
can be taken to define Tg. Furthermore, by scanning up and then down in T across Tg, one can correct 
for the small but finite scan-rate-dependent shift of Tg and thus obtain scan-rate independent Tg and 
∆Hnr. Such Tg's, independent of scan rates and sample thermal history, are closely correlated with 
glass compositions [5, 33, 34]. Compositional trends in Tg provide a measure of global connectivity of 
the network, an idea that has been made quantitative in the past few years by stochastic agglomeration 
theory [35]. The ∆Hnr term provides a measure of how different a glass is from the liquid in a 
configurational sense. For glass compositions in the intermediate phase, ∆Hnr term is found to nearly 
vanish. This unequivocally suggests that glass- and liquid-structures in the window compositions are 
closely similar to each other and that both are stress free in a global sense.   

In Fig. 4, we provide examples of thermally reversing windows observed in chalcogenide 
glasses. In the GexSe1-x binary, the ∆Hnr term is found [16] to decrease by almost an order of 
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magnitude in the 0.20 < x < 0.26 (or 2.40 < r  < 2.52) composition region (indicated by a pair of 
arrows). This composition range serves to define the thermally reversing window in this binary. We 
will revisit these results in conjunction with Raman results later. 

Fig. 4. Non-reversing heat, DHnr,as a function of mean coordination number <r> for four 
different glass systems.  The Ge-As-Se ternary  shows  the  widest  window (Ref. 5) while the  
                                                       Ge-S-I the narrowest (Ref. 7). 

 
In the AsxSe1-x binary the window centroid is somewhat shifted [34] to lower r , 2.29 < r  < 

2.37. This is a surprising result, given the fact that the stoichiometric glass As2Se3 corresponds to        
r  = 2.40 and is widely viewed to be an optimally coordinated, chemically ordered, and continuous 
random network of As(Se1/2)3 pyramids. This, along with the non-Arrhenius T-variation [1] of 
viscosity of liquid As2Se3, suggests that the traditional view cannot be the complete picture and that 
the stoichiometric glass is neither completely chemically ordered nor is it optimally coordinated. The 
difference appears to be associated with an intrinsic nanoscale phase separation into As-rich and Se-
rich clusters, as is suggested by local-probe results and by the Tg maximum near x = 2/5. The fact 
(Fig. 4) that AsxSe1-x glasses in the 0.29 < x < 0.37 composition range appear to be optimally 
coordinated is incompatible with presence of pyramidal As(Se1/2)3 units being the only As-centered 
local units in the Se-rich glasses (x < 0.40). The shift of the window to x < 0.40 suggests that quasi-
tetrahedral units of the type Se = As(Se1/2)3 in which the valence of As is formally 5+, are probably 
also present. The attractive feature of these quasi-tetrahedral units is that the number of constraints per 
atom for such a unit is exactly 3, even though the unit is undercoordinated ( r  = 2.285). This special 
circumstance arises because of the terminal (non-bridging) Se atom. In the PxSe1-x binary, one also 
observes a thermally reversing window [33] in the same cation concentration range.  In this binary, 
there is evidence for 4-fold coordinated P from NMR measurements [36].   

The thermally reversing window in the GexAsxSe1-2x ternary is widest [5] of the four 
chalcogenide glass systems presented in Fig. 4. Here one can expect the ternary to be made up of 
several types of optimally coordinated building (nc = 3) blocks, As(Se1/2)3 pyramids, Se = (As)(Se1/2)3 
quasi-tetrahedra, Sen chain segments with corner-sharing Ge(Se1/2)4 tetrahedra.  The increased number 
of optimally coordinated units in this ternary opens new possibilities to form the elements of medium-
range structure in a self-organized backbone. It is for this reason, we believe, that the window is rather 
wide in the ternary. 

The spectacularly narrow window found [7] in the Ge0.25S0.75-yIy ternary puts in perspective 
the large width of windows seen in the binary and ternary chalcogenides. We shall discuss the special 
case of this chalcohalide in section 5. It appears to be a model example of a random network and the 
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collapse of the thermally reversing window is due to absence of self-organization in this "random" 
network. 

In summary, thermally reversing windows deduced from MDSC measurements serve to 
define the extent of the intermediate phase present in ternary As-Ge-Se glasses as sketched in the 
phase diagram of Fig. 5. The intermediate phase opens up in between the floppy and rigid phases and 
near glass compositions corresponding to r  = 2.40. The results of Fig. 5 showcase the central new 
result of this work. These thermal thresholds are found to coincide with elastic thresholds deduced 
from Raman optical elasticities on these glasses, as we shall discuss next.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
Fig. 5. The glass-forming region in the Ge-As-Se ternary glass system. The broken line 
corresponds to <r> = 2.40.  The shaded  region  gives  the  opening of  the intermediate phase  
              between the floppy and the rigid phases, and it straddles the <r> = 2.40 line.  
 
3.2 Raman scatter ing, elastic thresholds and the intermediate phase 

 
Although Raman scattering has been widely used as a probe [37-40] of glass structure for the 

past three decades, its application as a probe of the rigidity transitions in network glasses is a recent 
[4, 6, 16] development. In many cases, when vibrational bands associated with a specific network 
building block can be resolved in the Raman lineshapes, it is possible to quantitatively follow mode 
frequency changes with glass composition. And although the scale of mode frequencies are set by the 
strength of α- and β-forces, shifts in mode frequencies with glass compositions result from inter-
building-block couplings. Raman scattering experiments on several IV-VI glass systems have now 
been performed [6, 16]. These comprehensive results provide supporting evidence for two rigidity 
(rc(1), rc(2)) transitions in these chalcogenide glasses, in that elastic thresholds correlate well with 
thermal thresholds deduced from MDSC measurements.   

A plot of the CS mode frequency (νCS) in GexSe1-x glasses as a function of Ge concentration 
yields kinks [41] near xc(1) = 0.20 and xc(2) = 0.26 as shown in Fig. 6. For glass compositions at x > 

xc(2) = 0.26, we have fit to an underlying elastic power-law by plotting 2
CSν  against r  – cr (2) on a 

Se 

As 

Ge 

rigid 

floppy 

3 

1 

intermediat
e GFR 

2 

GexAsxSe1-2x 



Discovery of the intermediate phase in chalcogenide glasses 

 
711 

loglog plot, and obtain a power-law of p = 1.54(10) as shown in Fig. 7. The result is reminiscent of 
the numerical simulations [23] of elastic constants in random networks constrained by α- and β-forces 
for which p in the rigid regime is predicted to be 1.40 - 1.50. These results provide unambiguous 
evidence for the onset of a new rigidity at xc > 0.26. 

 

Fig. 6a). Raman mode frequency variation of corner-sharing (nCS) tetrahedra in GexSe1-x 

plotted as a function of x;  b) Non-reversing heat variation, DHnr(x), in GexSe1-x glasses. Fig.  
                                                       is taken from Ref. 41. 

Fig. 7. Plots of log10 (n
2 - n2

C(x)) against log10(x - xC) for the CS mode frequency in GexSe1-x 
glasses.  The plots give respective power  laws  for CS - mode - based optical elasticity  in  the  
                    rigid region, pCS, and in the transition region, pt. Fig. taken from Ref. 41.   
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 In the 0.20 < x < 0.26 composition range, a similar fit of the CS mode frequency squared 
against r  – cr (1) on a loglog plot, yields a much lower value of p = 0.75(15). Such a sub-linear 
power-law may be compared to the finite scaling result [42] which is 2/d = 2/3 for d = 3 (3d network).  
To obtain a power-law p < 1, one must invoke large-scale or long-range fluctuations as are discussed 
in equilibrium-scaling theory.   
 A distinctly different elastic behavior is suggested in the 0.10 < x < 0.20 composition range 
from the Raman measurements, namely a linear νCS(x) variation. Furthermore, at x < 0.07, Raman 
measurements show νCS(x) to become independent of x, a regime in which the Tg(x) variation is found 
to be linear [41, 43] with a slope (dTg/dx = To/ln2). In the lowest x (< 0.07) regime, the Tg(x) trends, 
νCS(x) trends, and Mössbauer site-intensity ratios in 129I spectroscopy [44], all point to a stochastic 
regime of agglomeration in which CS Ge(Se1/2)4 units randomly cross-link Sen-chain segments to 
define a floppy phase of these binary glasses.  In the 0.10 < x < 0.20, ES tetrahedral units may appear 
in addition to CS ones and precipitate nuclei of isostatically rigid inclusions in which more extended-
range structural correlations evolve. In this particular regime the challenges are more formidable and 
our current understanding of Tg(x) trends, ν(x) trends continues to be qualitative. More work is 
needed to understand the underlying behavior.   

The compositional trends in νCS(x) and ∆Hnr(x) as seen in Raman and MDSC measurements 
are shown in Fig. 6. There are clear correlations between these trends, which are driven by aspects of 
glass structure.  In particular, the νCS(x) variation of Fig. 6 shows that the rigidity transition near       
xc(1) = 0.20 appears to be continuous, i.e., second order, while the stress transition near xc(2) = 0.26 
discontinuous or first order. Thorpe et al. [45] have suggested that the network rigidity nucleates at 
small rings, n < 6. Numerical simulations in networks that possess no rings, such as random bond 
networks [45] and Bethe lattices, [46] show a first order transition to a stressed backbone structure.  
Stressed rigidity is believed to nucleate in n-membered rings with n < 6 in general. These results 
suggest that in the binary GexSe1-x glasses the concentration of small rings, n = 5, 4, must be quite 
small at x < 0.26 for the transition to be first order. 

 

Fig. 8a). Raman mode frequency variation of corner-sharing (nCS) tetrahedra in SixSe1-x plotted 
as a function of x; b) Non-reversing heat variation, DHnr(x), in SixSe1-x glasses. Both 
observables show the opening of the intermediate phase in the xc(1) < x < xc(2) region.  Fig. is  
                                                                taken from Ref. 6. 
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Fig. 8 shows parallel Raman and MDSC results to Fig. 6 for the SixSe1-x binary glass system 
taken from ref. 6. The correlation between the elastic and the thermal-thresholds is rather compelling 
in this system, probably because the glass structure is dominated by chains of ES tetrahedra. The 
intermediate phase extends from xc(1) = 0.20 to xc(2) = 0.26, quite similar to the one seen [41] in the  
GexSe1-x binary.     
 

3.3 Lamb-Mössbauer factors and r igidity transition in glasses 
 

 Mössbauer spectroscopy has served as a powerful, local probe [47] of glass structure. The 
Mössbauer hyperfine structure observed in glasses provides means to probe the local environment of 
the resonant nucleus/atom. Furthermore, the T-dependence of the integrated area under a nuclear 
resonance through measurements of the Lamb-Mössbauer factor, has proved to be a useful probe [26] 
of low-frequency vibrational excitations in glasses. Thus, both the static and dynamic structures about 
a resonant atom in a network glass can be elegantly probed. This subject has been reviewed 
elsewhere, the interested reader is referred to those publications [47]. 
 

3.4 T-dependence of viscosity and the intermediate phase 
 

 The T-dependence of viscosity of glass forming liquids has been studied [48] for the past 30 
years. Liquids are classified as strong [49] if an Arrhenius T-dependence of viscosity is observed, and 
are fragile if a strongly non-Arrhenius T-dependence of viscosity is observed. An elegant means of 
presenting these results is on a plot of log η against 1/T normalized to Tg, as illustrated in Fig. 9a for 
melts of the As-Se binary glass system. These results are taken from the work of Nemilov and 

Petrovckii [50]. In Fig. 9b, the dark circles are the activation energy for viscosity, (x)AEη  at Tg. In this 

figure we have also superposed (open circles) the compositional trend in ∆Hnr(x) taken from our work.   

 Fig. 9 demonstrates that compositional trends in (x)AEη track those in ∆Hnr(x), a pattern 

observed in two other glass systems where the results are available. Glass compositions in the 
intermediate phase, upon melting, display an Arrhenius T-variation of viscosity, i.e., give rise to 
strong liquids. On the other hand, both floppy and rigid glasses give rise to fragile liquids with a 
strongly non-Arrhenius T-variation of viscosity. 

Fig. 9a). Plot of log η against 1/T normalized at Tg taken from ref. 50.  (b) Non -reversing 
heat, DHnr, and the activation energy for viscosity d(log(h))/dT at Tg ,in AsxSe1-x glasses as a 
function  of  As content.  Note  both  observable  track each  other  suggesting  that  the  glass  
                           softening behavior carries the memory of liquid dynamics.   
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 The central message underlying the correlation of Fig. 9 may be summarized.  The viscosity η 
of a liquid provides a measure of the shear relaxation time (τs) through the Maxwell relation, 
 

   η = τs G∞       (7) 
 

where G∞ is the high-frequency shear modulus. Since G∞ is known to be largely T-independent, AEη  

thus also serves as an activation energy for shear relaxation time in a liquid. The correlation observed 
in Fig. 9 shows a connection between the glass structure and liquid dynamics. It is becoming 
increasingly clear that concepts of global connectivity developed to describe glass networks extend 
well into the liquid state, conversely, that the underlying dynamics of structural arrest of a liquid on 
solidification is related to the global connectivity of the liquid structure. The discovery of the 
intermediate phase thus allows us for the first time to correlate the strong-fragile classification [49] of 
liquids with the floppy-intermediate-rigid classification of glasses. Glasses in the intermediate phase 
give rise to strong liquids. Glasses in both the floppy and rigid phases give rise to fragile liquids.  
Fragility is thus a multivalued concept and needs to be refined. Since both floppy and rigid glasses 
give rise to fragile liquids, it remains to be understood in what manner does the T-dependence of 
viscosity of floppy liquids differ from that of rigid liquids.   
 We conclude this section with two remarks. First, As2Se3 glass is often regarded as an 

optimally coordinated ( r  = 2.40,  cn = 3) glass network. Surprisingly, neither the T-dependence of 

melt viscosity nor the measured ∆Hnr puts this composition in the thermally reversing window, 
although it is not far away (Fig. 9b). The small deviation of this glass composition away from the 
edge of the thermally reversing window suggests that the glass is slightly overconstrained relative to 
its putative composition. Such a result can arise if the glass network is intrinsically phase separated 
into Se-rich and As-rich regions with the latter phase comprising the rigid backbone. 
 Second, systematic studies of the T-dependence of viscosities of chalcogenide liquids as a 
function of composition are likely to provide important insights into aspects of nanoscale phase 
separation in the liquid state that apparently not only control the dynamics in the liquid state but also 
the nature of the structurally arrested state in the glass. 
 
 

4. A very narrow thermally reversing window in Ge0.25S0.75-yIy glasses 
 
 Additional insights into the molecular origin of thermally reversing windows in network 
glasses have recently emerged from studies on the chalcohalides [51] Ge-S(or Se)-I. Here we start 
with a marginally rigid base glass of Ge0.25S0.75 composition and systematically replace S by I, to get 
ternary Ge0.25S0.75-yIy glasses in the 0 < y < 0.30 concentration range. The global glass forming 
tendency in this ternary was recognized by Dembovsky [52], and the present compositions reside in 
that part of the phase diagram where the glass forming tendency is actually rather high [21]. One 
expects I to chemically bond with Ge because of Pauling charge transfer effects and to replace 
bridging S with terminal I in the backbone. The replacement converts tetrahedrally coordinated CS 
Ge(S1/2)4 units (m = 0 units) into mixed tetrahedral units of the type Ge(S1/2)4-mIm with m = 1, 2, 3 and 
eventually 4, as y is systematically increased. The m = 4 units form monomers, GeI4 molecules, that 
are decoupled from the backbone. 
 MDSC experiments on this system show Tg(y) to systematically decrease with y at first 
slowly in the 0 < y < 0.15 range and then sharply in the 0.15 < y < 0.17 range as shown in Fig. 10.  In 
the 0 < y < 0.15 concentration range stochastic agglomeration theory permits a quantitative analysis of 
the Tg(y) trends through the ways in which the various m-units combine or agglomerate to form the 
backbone. But the central result to emerge from these MDSC measurements is the compositional 
dependence of ∆Hnr(y) which has a sharply defined global minimum centered at y = yc = 0.162(4) 
(corresponding to r  = 2.34 of the ternary).  In the estimate of r , we take the r of Ge, S, and I to be 4, 
2 and 1, respectively.   
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Fig. 10. Variation of the non-reversing heat flow, DHnr, as a function of <r> in the ternary 
Ge0.25S0.75-yIy and in the binary GexSe1-x.  The inset shows the Tg(y) variation in the ternary and  
       the smooth line is the prediction of the agglomeration theory.  Fig is taken from Ref. 7. 

 
 According to equation 6, mean-field constraint counting for the Ge0.25S0.75-yIy ternary is 
 

   cr  = 2.40 – 0.4yc     (8a) 
   or 

           4(1/4) + 2(3/4-yc) + 1(yc) = 2.40 – 0.4yc 
yc = 1/6 = 16.6      (8b) 

 
in excellent accord with the value of yc = 0.162(4) observed for the minimum in ∆Hnr(y).   
 The physical picture emerging from these MDSC measurements is that iodine alloying in the 
marginally rigid base glass, Ge0.25S0.75 steadily de-polymerizes the backbone thereby leading to a 
reduction in Tg. Near yc = 0.162, there is a precipiteous reduction in Tg, and ∆Hnr shows a global 
minimum corresponding to a sharply defined rigid to floppy transition that is in excellent accord with 
extended mean-field constraint theory.   
 Obvious questions arise: why is the rigid to floppy transition so sharp in this chalcohalide 
glass system? Why is the threshold in perfect agreement with constraint theory? Raman scattering 
results on these glasses provide important clues [7] to address these issues. Through them one can 
quantitatively decode the concentrations Nm(y)/N of the various m-units from the relative strengths of 
the Raman peaks identified [53] with the symmetric stretching modes of the m = 0, 1, 2, 3 and 4 
quasi-tetrahedra. Fig. 11 provides a plot of trends in Nm/N(y) deduced from the Raman results. On this 
plot we have also included the predicted variation of the Nm/N concentrations (smooth lines) if the 
iodine alloying were to proceed randomly according to combinatorial calculations. Here one cannot 
overemphasize that the smooth lines are not a fit to the data but merely the prediction of the 
combinational calculations. The excellent agreement between theory and experiment up to y = 0.17 
carries a central message: evolution of the Ge-S backbone upon progressive alloying with I for S 
proceeds in a truly random fashion up to the phase transition.  In glass science it is popular to invoke 
continuous random networks. Our experiments here show that it is actually rare (Ge0.25S0.75-yIy being 
one of the exceptions) that glass networks are random and continuous. 

Returning back to the rigidity transition, one can now unambiguously relate the sharpness of 
the phase transition to the stochastic evolution of the backbone that precludes self-organization and 
formation of extended range structures composed of rings. In turn these results suggest that the large 
width of the intermediate phase encountered in the GexSe1-x binary (see Fig. 11) and other glasses 
(Fig. 4), is probably the result of substantial structural reorganization of the backbone when the latter 
is optimally constrained. Some of the structural reorganization taking place may consist of optimally 
constrained filamentary structures that pack well and globally lower molar volumes of these glass 
compositions [29]. The decoupling of these filamentary structures may intrinsically contribute to a 
lowering of the ∆Hnr term by avoiding cross-linking. And it remains to be seen if the pronounced 
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scattering at the first sharp diffraction peak reported by S. Hosokawa [54] in anomalous x-ray 
absorption studies on Ge-Se glasses in the thermally reversing window compositions is actually a 
manifestation of the filamentary structures.   

Fig. 11a). Concentration Nm(y)/N of the mixed tetrahedra, m = 0, 1, 2, 3 ,4, plotted as a 
function of y in the Ge0.25S0.75-yIy ternary.  The smooth curves are the prediction of simple 
combinatorial calculation (Ref. 7) and are not a fit to the data points. (b) Raman mode 
frequency variation n0(y) of m = 0 units and the Raman count of mean-field constraints per 
atom  nc(y)  (Ref. 7), plotted as  a  function of  I  content.  The  smooth  line  is  the  stochastic  
                                            agglomeration theory prediction for nc(y).    

 
  

5. Photomelting of the intermediate phase 
 
 Semiconducting glasses when illuminated by near band-gap radiation can alter the molecular 
structure of the intermediate phase.  We have carried forward detailed micro- as well as macro-Raman 
scattering measurements o the same batch of GexSe1-x glasses. In both sets of experiments [41], the 
back-scattering was excited with the weakly absorbing red light of 647.1 nm radiation from a Kr-ion 
laser, and the power levels kept in the 500µW range for the micro-Raman and 5 mW range for the 
macro-Raman measurements.  In the micro-Raman measurements the exciting light is brought to a 
sharp focus of less than 5µ spot size using a microscope with 80x objective in a model T64000 triple 
monochromater Raman scattering facility from Instruments, S.A., Inc. On the other hand, in the 
macro-Raman measurements, the exciting light is brought to a loose focus of about 1mm spot size 
using a macrochamber in the same scattering facility.  The spot-size reduction by at least two orders 
of magnitude translates into an approximately four orders of magnitude reduction in the photon flux 
(number of photons/cm2/sec) used to excite the Raman scattering in the macro-configuration (1018 
photons/cm2/s) in relation to the micro-configuration (1022 photons/cm2/sec).   
 Fig.s 12a (Fig. 6 repeated) and 12b show the compositional dependence νCS(x) of the CS 
Ge(Se1/2)4 mode frequency observed in GexSe1-x glasses obtained under low and high flux density 
radiation configurations, respectively, to excite the Raman scattering. The striking difference between 
Figs. 12a and 12b is the collapse of the intermediate phase which originally extended from                
xc(1) = 0.20 to xc(2) = x = 0.26 down to a single transition point at xc = 0.23. At both xc(2) and xc, 
νCS(x) shows an apparent jump or discontinuity, after which it increases as a power-law that is 
characteristic of increasing structural stress. Correspondingly, the floppy-phase region is extended 
from xc(1) up to xc.   
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Fig. 12. Corner-sharing mode frequency variation, nCS(x), in GexSe1-x glasses from low 
intensity (macro-) (a) and high intensity (micro-) Raman  (b) measurements.  In  the  latter  the  
                                 intermediate phase collapses to a single point. 

 
 The high-flux density illumination clearly has induced changes in chemical bonding, resulting 
in a photo-melt.  In either the floppy phase or the rigid phase in the photo-melted state, the overall 
variation of νCS is seen to differ little from the behavior in the original glass. We argue that this 
indicates that chemical bonding of fourfold coordinated Ge and twofold coordinated Se atoms is 
originally random enough in these phases so that further randomization by the exciting light only 
produces statistically similar structures. (It is also possible that melting does not occur at all in the 
floppy and rigid phases at the flux densities of our experiments because ∆Hnr is too large but occurs 
selectively in the intermediate phase where ∆Hnr is very small.     
 The intermediate-phase structure is destroyed presumably by randomization of the bond-
distribution. This is suggested by our earlier interpretation of the intermediate phase (following the 
calculations [23] of Thorpe et al.) as being an isostatic structure with no redundant bonding, i.e., no 
bonding over that required to produce rigidity. This means that an isostatic bond configuration is 
highly non-random, since bonds that would be redundant are "repelled". This repulsion can be 
maintained as we increase the bond density r  up to the point where the local chemistry can no longer 
be satisfied without any redundancy. Then a first order transition to a stressed backbone occurs.   
 In contrast, the randomly bonded structure in the photo-melted state will be floppy up to the 
concentration xc where the first rigid (and stressed) backbone develops – in accordance with the 
original floppy-to-rigid-transition picture proposed by Phillips and Thorpe in the early 1980's. (We 
note, however, that xc = 0.23 here corresponds to rc = 2.46, a value somewhat larger than the mean-
field constraint counting value, cr = 2.40 because some of the constraints are intrinsically broken 
[16]).   
 Let us engage the notion of isostacy to further understand the differences between Fig. 12a 
and Fig. 12b. Note first that, because of bond repulsion, isostatic structures are more efficiently 
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packed than randomly bonded structures in achieving a percolating backbone, that is, they require 
fewer Ge cross-linking atoms; so that xc(1), the lowest bond density to reach rigidity, will be less than 
xc, the lowest value for redundant structures. Under photo-melting, these more efficient structures 
disappear and rigidity only reappears at the higher value xc. Between xc and xc(2), the corner-sharing 
Ge(Se1/2)4 tetrahedra in the isostatic phase will reside mostly in unstressed local environments so that 
νCS(x) will remain constant. At this point we recall that the calculations of Thorpe et al. [23] show that 
a majority of the atoms are in the backbone as soon as it is formed and that only a small number of 
added redundant bonds are required for converting the backbone structure to a stressed phase. Thus 
the change in νCS at either xc or xc(2) is essentially discontinuous and, between these two 
concentrations, the photo-melted state will have redundant bonds with attendant stressed rigidity.   
 We conclude this section with two remarks. The present observations suggest that the 
microscopic origin of the giant photocontraction effects observed by K. L. Chopra et al. [9, 55] in 
thin-films of GeSe2 may actually represent photomelting of the columnar structure peculiar to the 
films deposited at high obliqueness angles. The films at high obliqueness angles are intrinsically 
phase separated on a molecular scale into Se-rich columns and Ge-rich intercolumnar material and the 
role of illumination is to cause an irreversible photomelting of the stress-free, optimally coordinated 
columns, as will be shown in a forthcoming publication [56]. 
 The observation of photomelting of As2S3 fibers by sub-bandgap (green) radiation reported by 
K. Tanaka appears to represent photomelting of the intermediate phase in As-S binary glasses.  
Compositional windows defining the intermediate phase in the group V chalcogenides shown that 
although the stoichiometric glass compositions As2Se3 and As2S3, are not part of the intermediate 
phase, these are not sufficiently far removed from that phase, not to show photomelting effects 
completely. 
 
 

6. Concluding remarks 
 
 The physical behavior of prototypical network glasses, examined systematically as a function 
of chemical composition, or mean coordination number r , shows the existence of two compositions 
( cr (1), cr (2)) across which the elastic, thermal, and structural behavior appears to display a threshold 

behavior.  Raman scattering measurements show existence of elastic thresholds at cr (1) and cr (2) 
with distinct power-laws, which when analyzed in terms of numerical simulations in random- and 
self-organized network, reveal that glasses at low r  ( r  < rc(1)), are floppy, in the intermediate 
composition interval ( cr (1) < r < cr (2)) are isostatically rigid, and at high r ( r  > rc(2)) stressed rigid.  

T-modulated DSC measurements of the non-reversing heat flow term, ∆Hnr ( r ), show a global 
minimum in the cr (1) < r  < cr (2) interval with the heat flow term increasing by almost an order of 

magnitude in the floppy-phase ( r  < cr (1)) and in the stressed rigid phase ( r  < cr (2)). The activation 

energy of viscosity )(rE A
η for corresponding liquids mimics compositional trends in ∆Hnr ( r ) and 

shows a global minimum in the intermediate phase.  Furthermore, T-dependence of viscosity for glass 
(liquid) compositions in the intermediate phase display an Arrhenius behavior, in sharp contrast to the 
non-Arrhenius behavior encountered in both the floppy- and stressed-rigid phases. Compositional 
trends in molar volumes, VM( r ) of glasses also reveal a global minimum [29] in the intermediate 
phase, suggesting that the underlying network structure are rather efficiently packed.   
 These experimental findings suggest that glasses in the intermediate phase consist of 
networks that are optimally constrained and self-organized, those in the floppy phase are 
underconstrained and entropically stressed while those in the stressed rigid-phase are mechanically 
overconstrained and enthalpically stressed. 
 The width (rc(2) – rc(1)) and centroid (rc(1) + rc(2))/2 of the intermediate phase in r  space, 
observed in several chalcogenide and chalcohalide glasses shows that these r  values are 
manifestations of  structure at a short-range and at a medium-range distances. For the case of the 
chalcohalide glass system, Ge0.25S0.75-yIy, where the evolution of glass structure as a function of iodine 
content is found to be truly stochastic, the width of the intermediate phase vanishes and a solitary 
rigid to floppy transition is documented at a composition (y = yc = 1/6). The result is in excellent 
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agreement with mean-field constraint counting algorithms extended to include networks with dangling 
ends. In the case of this chalcohalide glass system, the stochastic evolution of glass structure 
precludes self-organization and opening of an intermediate phase. In return, the existence of 
intermediate phases with significant width rc(2) – rc(1) in binary and ternary chalcogenide glasses 
shows that the optimally constrained backbone displays substantial self-organization. And it is 
possible that the latter may consist of filamentary structural elements that are qualitatively decoupled 
from each other.   
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