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BILLET' SPLIT LENS IN A NEARLY UNKNOWN HYPOSTASIS
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The classical problem of the Billet split lens as interference device is revisited. We have in
view only the situation in which a central portion of a thin convergent lens is cut out
symmetrically and both remaining halves are tightly fitted against each other. We calculate
the width of an interference fringe and the number of interference bands in the field of
interference, for various positions of the light source (on the symmetry axis) and of the
observation screen. Thus, the paper presents the theoretical results required to design a Billet
interference device, in a "new” configuration. Billet lenses can be tailored in amorphous
chalcogenide materials to be used in optical elements at infrared vawelengths.
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1. Introduction

During the nineteenth century, the French physicist Félix Billet (1808-1882), professor at the
University of Dijon, imagined and achieved deeply detailed experimental research on "two light-
sources" interference device which to date now is called by his name [1]. The Billet split lens consists
of two halves of a thin convergent lens, cut along a diameter. The two halves are slightly separated
and this space is covered by an opaque screen (black paste). The whole arrangement is described and
analysed in many books on Optics [2-11] as one of the classical devices used to observe interference
by means of conventional (nonlaser) light sources. Of course, the principles used for studying
interference with the Billet split lens are similar to those of Young's two-slit arrangement, of the
Fresnel mirrors or biprism, or of the Lloyd mirror: to obtain coherent light waves, light from a single
classical point-like source is split into two systems of waves by dividing the incident wavefront.
Indeed, the two halves of the Billet split lens produce two noncoincident real images of the light
source (placed on the symmetry axis) and the interference of light from these coherent secondary
sources is observed on a screen.

This paper aims to illustrate the functioning of a "new" arrangement with the Billet split lens,
which is seldom mentioned in the usual literature on wave optics (this is the reason we placed "new"
in quotes) - see [12] - and, by this, we think, much more interesting. For various possible positions of
the light source and of the observation screen, the details of geometrical optics calculations required
to design such a Billet interference device are presented.

2. The “new” arrangement

Let us suppose that a central portion of width d is symmetrically cut out of a thin convergent
lens of diameter D(d << D), and focal length f (Fig. 1 a)), and both halves are tightly fitted against
each other. The "new lens" receives monochromatic light (wavelength X ) from a point-like source S,
at a distance SC =a from it. Interference of light is showing on a screen (E) lying on the opposite
side of the lens.

After the cutting operation the two semi-lenses are as large as (D —d)/2 each so that, in Fig.
1 b), C; are the curvature centres of the spherical surfaces denoted by the index j (=1,2,3 and 4). We
see that a ray of light emitted from the source S - situated on the symmetry axis (A) - would suffer
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deviation located below and above the principal axis (A) as if it was passing through prisms with
common basis. If the curvature radii R of the spherical surfaces i = (1,2) or (3,4), were considerable
and the semi-lenses could be seen as thin prisms with A as refringent angle, the deviations would be
accessible by approximated formula 8 ~ (n —1)A , where n would be the refractive index of glass (air

is assumed on the outside).

Fig. 1 A thin convergent lens (a) and bilens' manufacturing (b).
Essential geometric elements are shown.

To avoid penetration in the bilens of direct light ray SC (and of some other adjacent rays) and
in order to achieve a real division of the incident wavefront, this time too it is necessary to implant a
tiny opaque screen in front of C (of width h = g(n —1)d/2nR,, <d, where g is the thickness of the
lens and R;, is the curvature radius of the front entrance of the lens). Otherwise, after refraction in C at
the surface 3 or 4, the inner ray would go towards the surface 2 or 1, respectively, and after a new
refraction, the corresponding emergent ray would not propagate towards the points I'or I"
(see Fig. 2).
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Fig. 2 Interference with Billet's bilens in the case SC = a > f.
The coherent sources are the real images (I’ and I’’)
of the point-like source S in the two halves of the lens.
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3. Theory and computational details

We intend to study the functioning of this bilens as an interference device in two distinct
situations: 1).a >fand2). a<f.

3.1. The a =f case

To understand the construction of images in Fig. 2 we notice that C' and C'' are the optical
centres of the semi-lenses as large as D/2 (if removing not achieved!) and the lines SC' and SC'' are
secondary optical axes for the semi-lenses from the upper part and from the downside part of the
drawing. Of course, these axes are shown in order to ease locating, in the paraxial approximation, the
images I'and I'' of the source S through the respective semi-lenses. It is easy to see that the image of
8, given by the downward semi-lens is formed on the upper side (I'') and the image of S, given by the
upward semi-lens is formed down-side (I').

The region of interference is situated between the points C and K (harrowed in the drawing).
Therefore, we are due to place the screen on which we aim to observe the interference pattern,
between C and K. There is a point J on the line CK where the interference field is the largest and,
from this point of view, we have a resemblance to Meslin's bilens device [10].

A peculiar property of this arrangement is that the interference region is situated on the left
side of the "Young - sources" I' and 1", and not on their right side as in the other classical types of
interference arrangements, but this is not bothering for us. We know that the optical path from Sto I',
or from S to I', is the same for all rays converging in I' or in I''. By invocating the principle of
reversibility for the path of light rays, we could imagine that the light propagates from I' and 1" (as
Young-sources) to the left, i.e. to the interference region. By this "trick" the phase difference of the
light rays over lapping in the CN'KN'"'C -zone is altered only in sign (mathematically) and this is
irrelevant in interference term.

If we were to denote b=CI, by means of the lens equation in the Gaussian form
(1/a+1/b=1/f) we should obtain b=af/(a-f). Then, from the similarity of triangles SCC'" and SII"" it
should follow that the distance between I' and I'" is

2=2mr=2m'=3a+b)=29. 1)
a a—f
On the other hand, from the similarity of triangles CKV'' and IKI' we could deduce the
length of the interference region on the axis

b(D-d) _ af(D-d)

CK = = : 2
D-d+2/ D(a-f)+fd
From Fig. 2 we see that
I d
tgo=—=—, 3
8% T2t =

i.e. the angle o is the same for all positions of the source S.
Aiming to locate the inner point ] of the interference field, we write
y=CJ tga =JK - tgP = (CK - CJ) - tgP, where tgp = (D —d)/2CK , and finally we get to:

_ af(D-d)
" D(a-f)+da+f)

“

2a’fd

JI=CI-CI=b-CJ= ;
(a-f)[D(a-1f)+d(a+1f)]

)
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and the maximal width of the interference field, in the transversal direction, is

ad(D —d) ©)
D(a—f)+d(a+f)
Now, we remember the theory of Young's device [4], which demonstrates that the width of an
interference fringe is 1= A -[distance between the plane of the slits and the observation screen]
/[distance between the two slits].

If we were to suppose that the screen is a plane perpendicular in J to the axis (A), we could
write

2y =2CJ - tga =

_ H n 2aAif %)
2l D(a-f)+d@+f)’
Between N’ and N”°, the number of interference bands on the screen, is
N2 4D=d) ®)
i 20f

Of course, the number of interference rings (circles of maximum and minimum intensity) is
N/2. We notice that the numbers N and N/2 must be considered always as "integer parts", in the
mathematical meaning. The fact that the number N is not depending on the source position (when
a > f) is highly remarkable. We also notice that N is inversely proportional to the focal distance f of
the lens. When d=0 (absence of cutting), from (8) we have N=0, which means the absence of the
interference phenomenon.

In the general case, when d#0, we could particularize the above results to the limits a—+o0
(i.e. the incident beam of light is parallel), and a—+f.

In the first situation, namely a—+<o (Fig. 3), we getto b—> +f, 2/ —> d,
CK —>f(1-d/D), CI=>£f(D-d)/(D+d), JI »2fd/(D+d), 2y >d(D-d)/(D+d).

With the screen in J we obtain

M

: _d-d)

and N

®

D+d 2Af

i
Ty

N ——— =

Fig. 3 Interference with Billet split lens in the case
SC = a —»+c0 (the incident beam of light is parallel).

In the second situation when a— +f (Fig. 4), we obtain b— +w, 2 £ — +w0, CK—>f(D/d -1),
Cl=>1/2)CK=(f/2)(D/d-1), I —>+w, 2y > (D-d)/2 and, with the screen in J, we
have
Af _d(D-d)

i=— and N

10
d 2Af @9)
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Fig. 4 Interference with Billet's bilens in the case SC =a = +f
The coherent sources I’ and I'’ are infinitely moved in the right side of the figure.
3.1.1. The screen arranged between C and J (in the point H)

Letbe CH =L, sothat y'=L-tgo. = Ld/2f . In this case we have
HI=b-L=/ /tgo—L=2 { f/d-L. The fringe separation is

HI A
i'=A—=—1|af —L(a-1)|. 11
o = aqaf ~La-1)] (n
For the number of interference fringes we obtain
] 2
S Ad (12)
i Affaf ~L(a—-£)]
and, this time, the number N' depends on the position of the source.
In the limit a—-+ we have
. - Ld?
pegt=l . e M (13)
d AM(f-L)
On the other hand, in the limit a—+ f we find
., Af Ld?
i'=— and '=—, 14
d Af? G

3.1.2. The screen installed between J and K (in the point M)

Let be CM=L, so that MK=CK-L, with CK expressed as in eq. (2). We can write
y''=MK tgB=MK.(V’C/ CK)=(D —d) .MK/2. CK, so that finally we find

w_ af(D—d)-L[D(a-f) +d]

2
d af

(15)
On the other hand,
Ml=b-L="T20700 (16)
The fringe separation is
A

2 E:_ = =
‘"lzf ad[af L(a-1)] a7
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and, for the number of interference bands on the screen, we obtain

2y" _ d{af(D-d)-L[D(a—f)+fd]}

N":
i Mlaf -L(a—1)]

(18)

The validity of the relations (12) and (18) could be verified by applying them to the particular
value from eq. (4). We immediately obtain

N'= N"= d(D“d) , (19)
2Af
i.e. the maximal number of interference bands previously found in the relation (8).
When a—»+f, from the general relations (17) and (18) we find
i"= &(f -L) and N'= dff-d)-LD] ; (20)
d Af(f-L)
and, when a—+f, from the same relations we get
pM g o dE0-9-1d] en
d Af

3.2, The a <f case
In this case, the images of the object S given by the two semi-lenses are virtual - as it is

shown in Fig 5, and the device is functioning like the Fresnel biprism. The interference zone, which is
unlimited along the symmetry axis, has its own axis on the symmetry axis of the device.

(&)}

(£}
Fig. 5 Interference with Billet's bilens in the case SC = a <[

The coherent sources are the virtual images (I’ and I'*) of the source S in the two halves of the
lens. As for the case of Fresnel's biprism, the interference field is unlimited on the direction of the
symmetry axis (A).

As previously, if SC=a and CI=b, from the lens equation in the Gaussian form (1/a-1/b=1/f)
we should obtain b=af/(f-a). From the similarity of triangles SII' and SCC' we easily find the

distance between the "Young-sources" I' and I'', namely
d
2= (22)
f-a
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For the angular opening of the interference region (the harrowed zone in the drawing) we can
approximate

20 d
2aw~b-=-f7. (23)

If the monitoring screen were installed at the distance L= CO, the field of interference on the
screen would be

2y ~2aL = % (24)
and the width of an interference fringe is
. Mb+L) A
=———=—Jaf + L(f —a)|. 2
I g e+ T4} (@3}
Now, we can determine the number of interference bands on the screen as
2
P AN (26)
i Affaf +L(f -a)]
and we notice that, for L—+o0 , the number N is finite,
2
NN =8 @)
A(f —a)

We can also remark that all results obtained in this last section of our paper do not depend on
the diameter D of the initial lens.

3. Conclusions

The "new" hypostasis of the Billet bilens described in this paper is able to enhance
significantly the utility of this classical interference device. On this bases is possible to produce new
passive elements for integrated optics in amorphous chalcogenide films with the technique developed
in [13]. The laser or the electron beam can be used for tailoring Billet bilens for use in the infrared
region of the electromagnetic spectrum.
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