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Metal transmission gratings with apertures much smaller than the wavelength used can 
exhibit very high transmission efficiency. We have performed numerical calculations for the 
transmission through lamellar silver gratings with very small slits and have shown how the 
geometrical parameters of slits contribute to the transmission enhancement. Such effect could 
be of great use in nano-optics and optical sub-wavelength lithography.  
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1. Introduction 
 
With nowadays fabrication facilities, metallic structures perforated with sub-wavelength 

apertures can be manufactured for visible light operation. These structures can be integrated into 
optoelectronic devices according to new trends of miniaturization toward a future nano-optics. 
Therefore the problem of light guiding through nanometer-size apertures has attracted considerable 
interest [1-5].  
 Recently it has been discovered that optically thick, metallic films perforated by cylindrical 
holes of sub-wavelength diameter can display highly unusual transmission in the visible and near-
infrared region [1, 2]. For radiation of wavelength as large as ten times the diameter of the holes, the 
absolute transmission efficiency calculated by dividing the fraction of light transmitted by the fraction 
of the surface area occupied by holes, is ≥2. In other words, more than twice as much light is 
transmitted as impinges directly on the holes [1].  
 In this paper we theoretically report on the same effect observed in silver lamellar 
transmission grating of very narrow slits (a term which will become more precise later). We are able 
to interpret the high transmission as a resonance effect of the fundamental mode in the slit and to 
predict under what conditions high transmission through optically thick gratings is achieved. In order 
to study the propagation of light through metal transmission gratings we use a rigorous approach for 
solving the diffraction problem, known as the Rigorous Coupled-Wave Analysis (RCWA) [6,7].  

 
 
2. Rigorous coupled-wave analysis  
 

  The grating considered here is a freestanding, mono-periodic metallic structure consisting of 
spatially vacuum separated silver rods of rectangular cross section (Fig. 1). The width of the gap (slit) 
between rods, the period and the thickness of the grating are w, Λ, and d, respectively. The grating is 
situated in the Oxy plane and extended along the Oz axis; its structural periodicity is only along the 
Ox axis. This metallic structure is illuminated at normal incidence by a plane electromagnetic wave of 
TM polarization (the magnetic-field vector is parallel to the metal rods and Oy axis). The wavelength 
is denoted by λ. As a response to the incident field, the grating will give rise to a diffracted field in the 
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region above and below it and also a stationary field pattern inside it.  
 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 1 Lamellar silver grating analyzed in this paper. The optical indices of the incident 
 medium and of the substrate are both equals to unity (vacuum). In the grating region,  

the relative permittivity is alternatively 1 (vacuum) or ε (metal). 
 

 The RCWA is a versatile and efficient tool for describing the diffraction of electromagnetic 
waves in periodic structures. The relative permittivity ε(x) in the grating region is a periodic function 
along the Ox direction and therefore can be expanded in a Fourier series of the form: 

 
where εm is the m-th Fourier component of the relative permittivity. 
 Because of periodicity along Ox axis, the electromagnetic fields inside the grating region 
(0<z<d) can be also expressed as a Fourier expansion of space-harmonic fields: 

 
where Uyi(z) and Sxi(z) are the normalized amplitudes of the i-th space-harmonic fields such that Hy 
(x,z) and Ex (x,z) satisfy Maxwell's equation in the grating region (near-field region). 

Away from the grating (far-field region) the diffracted fields are taken as a superposition of 
plane waves (i.e. Rayleigh expansions):  

 
 
where the projections kxi of k-vector are given by the Floquet condition [8]: kxi = – i(2π/Λ) and the 
projections kzi can be calculated from: 
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 We noted by Ri the normalized magnetic-field amplitude of the i-th backward-diffracted wave 
and by Ti the normalized magnetic-field amplitude of the i-th forward-diffracted wave. Introducing 
the Fourier expansions (Eq. 1 and Eq. 2) in the wave equation results a set of coupled-wave equations 
which alows to represent the electromagnetic field inside the grating (amplitudes U and S) as a 
function of the eigenvectors and eigenvalues of the coupled equation system: 

where (Aq,i) and (Bq) are the eigenvectors and eigenvalues of the coupled equation system. Finally, the 
unknown coefficients (Cq) and the amplitude of reflected (Ri) and transmitted (Ti) waves are found by 
matching the electric and magnetic field components at the boundaries (z=0 and z=d). 

The numerical implementation of the RCWA involves two steps: First, the eigenvalues and 
the eigenvectors of the matrix have to be computed and then a linear system of boundary equations 
has to be solved for finding Ri and Ti amplitudes. The diffraction efficiencies are defined: 

 
where k0 is the wave vector in vacuum (2π/λ). 

The sum of the reflected and the transmitted diffraction efficiences given above must be unity 
for lossless gratings The dimension of the matrix associated with the eigenvalue problem is given by 
the number (N) of space harmonics taken to develop the field inside the grating. In order to get 
convergence, all propagating diffraction orders and a lot of evanescent waves have to be retained in 
the RCWA.  

We should mention that it is not our objective to discuss the numerical implementation of the 
RCWA. Recently, the RCWA has been revisited by several authors and an enormous increase in the 
convergence speed for the computation of grating efficiencies has been reported [6,7]. Note that there 
are several other rigorous diffraction theories for periodic structures based on the differential 
formulation of the diffraction problem [8].  

 
3. Results and discussions 
 
Our results are with respect to the above example of lamellar silver grating with very narrow 

slits. We considered for silver a dielectric function that disperses with frequency ε(ω) = [n(ω) 
+ik(ω)]2. For the purpose of RCWA calculations the complex index of refraction of silver was 
interpolated from values tabulated in Ref [9]. Motivated by the results of Refs. [1,2], we investigate 
the optical response of a silver grating of fixed period (Λ=0.9 µm) in the near infrared region of the 
spectrum, namely between 0.9 µm and 2 µm. The grating in this region of the spectrum is a 'zero-
order' diffraction grating because all diffracted orders, other than zero-th forward-transmitted and 
backward-reflected order are evanescent. Losses to metal associated with the imaginary part of the 
refractive index, physically manifested as carrier heating in the metal, can be extracted by the relation 
A=1-η0,t-η0,r, where η0,t and η0,r is the zero-order transmission  and reflection  efficiency, respectively. 
 The incident power is normalized to the unity. Fig. 2 and Fig. 3a show the transmission 
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efficiency (η0,t) of grating as a function of the slit width (other diffraction parameters, as the grating 
depth, period and light wavelength were fixed). For large slits (w > 100 nm), the grating exhibits a 
broad signal that goes to the unity. However, specific slit widths inferior to 100 nm produces a 
striking optical response: the grating exhibits very sharp transmission peaks where the absolute 
transmission efficiency is greater than the unity. This absolute transmission efficiency may be 
estimated by dividing the calculated zero-order transmission efficiency (η0,t) of the grating to the 
transparency fraction (w/Λ) of grating. The transparent region is rigorously somewhat larger than the 
slit width (w) due to the skin effect (skin depth is around of 10 nm). In particular, the strongest peak 
where η0,t=40% (see Fig. 3a) shows that this grating of geometrical transparency w/Λ = 3.6% 
transmits more than 10 times light of 1.433 µm wavelength than impinged directly on the slits. The 
slit has 32.4 nm width, which is nearly 45 times much smaller than the wavelength of incident light. 
That is what we call a very narrow slit.  

Fig. 3b shows the transmitted efficiency (η0,t) as a function of grating thickness (period, slit, 
and wavelength are fixed at Λ=0.9 µm, w = 90 nm and λ =  1.433 µm, respectively). Fig. 3c shows the 
spectral response of a silver grating between 0.9 < λ < 1.8 µm (period, thickness, and slit fixed at 
Λ=0.9 µm, d = 1.8 µm and w = 90 nm, respectively).  

 

 

 

 

 

 

 

Fig. 2 Zero-order diffraction efficiency (η0,t) of a lamellar silver grating illuminated   
normally with an incident TM-polarized plane wave as a function of the slit width  

(λ = 1.433 µm, d = 1.8 µm and Λ=0.9  µm). 
 

 
Fig. 3 Zero-order diffraction efficiency (η0,t) of a 0.9 µm-period lamellar silver grating illuminated 

with a normally incident plane wave under TM polarization: (a) as a function of the slit width w (fixed 
parameters are λ = 1.433 µm and d = 1.8 µm); (b) as a function of the grating thickness d (fixed 
parameters are w = 90 nm and λ = 1.433 µm); (c) as a function of the wavelength of the incident 

wave λ (fixed parameters are w = 90 nm and d = 1.8 µm). 
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In order to analyze these results, we have investigated the propagation of electromagnetic 
eigenmodes inside the grating. The RCWA provides a direct method to find the wave-vectors (kz) of 
eigenmodes [10,11]. In general the eigenmode is leaky and its wave-vector is a complex number. 
However, in our case (for slit width w<100 nm) we found that there is only one mode of real wave 
vector (Real(kz) ≠ 0) which can propagate in the z-direction without significant heat losses 
(propagative mode). All the other high-order modes have imaginary wave vectors and are strongly 
evanescent (Real(kz) ≈0). The normalized z-component of wave vector of the propagative mode plays 
the role of the effective refractive index of the grating (neff = kz/k0, where k0 is the wave vector in 
vacuum 2π/λ).  
 We found that the electrodynamical interaction between metallic walls in close distance 
strongly modify the phase constant of propagative modes. While the effective index is independent of 
the slit width for a perfect metal (no skin depth) being equal to the unity whatever the slit width is, for 
the real metallic case (our case), the effective index strongly depends on the slit width, especially for 
narrow slits. As the slit width becomes larger than about 200 nm the effective index of the slit goes to 
unity. So there is a strong difference between our real metal case and the perfect metal case [12].  
 In the following we will demonstrate that this effective refractive index is a very useful 
concept to predict the transmission peaks of metallic gratings of very narrow slits. We will provide 
that the transmission peaks occur whenever the effective slit cavity contains an integral number of 
half-wavelengths of the propagative mode, which is expressed by a Fabry-Pérot resonance condition: 
m λ/neff = 2d, where m is an integer. Indeed, the agreement between neff computed by the RCWA and 
those resulted from the Fabry-Pérot resonance condition is very good for the peak location in Fig. 3a 
(see Table 1).  

Table 1 
The modification of transmission efficiency and of the effective refractive index  

of the metallic grating as a function of slit width. 
Slit width [nm] Transmission 

efficiency (η0,t) 
neff (RCWA) neff = m λ/2d  

32.4 0.4 1.54 1.59    (m=4) 
16.2 0.16 1.95 1.99    (m=5) 
10 0.08 2.36 2.38    (m=6) 

 
Moreover, the three locations resonance (d1=0.59 µm, d2=1.17 µm and d3=1.76 µm) deduced 

from the resonance condition m λ/neff = 2d for λ = 1.433 µm, neff = 1.22 (effective refractive index of 
the slit of width w = 90 calculated by RCWA), and m = 1, 2, and 3 are consistent with the peak 
positions in Fig. 3b. The resonance condition is confirmed in the case of peaks observed in Fig. 3c too.  
 We conclude that the very high transmission efficiency may be conceived as a resonant effect 
associated to the propagative mode supported by the grating waveguide structure. This observation 
clearly reveals that the electromagnetic field inside the slit is basically governed by the backward and 
forward propagation of one single mode. For a given depth not corresponding to a multiple of the 
half wavelength, no resonance occurs, and no transmission is obtained.  
 The metallic grating being an efficient converter of incident light to oscillatory energy of 
electrons it is not surprising that so efficient incoupling of light into waveguiding  structure is 
observed. In a recent paper [5], we have demonstrated that the coupling between the incident light and 
the fundamental mode supported by the slit is strongly controlled by surface waves (plasmons). As a 
result, the collection of light into the slit is favored and an unusual optical transmission is achieved.  
 This paper is dealing with the calculation of optical responses which exhibit a resonant 
behavior where the signal quickly varies. Much care was taken to guaranty accurate computational 
results. Because eigenvalues are numerically obtained they are only approximate values and their 
accuracy increases with the number of retained orders for the eigenvalue problem (see Sec II).  
 
 

 

 

 



40                                                                       M. Palamaru, S. Astilean 
 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 4 Transmission efficiency calculated at the point M of Fig. 3b as a function of  
the number of retained orders. The grating depth is d = 1.637 µm. 

 
Fig. 4 shows the zero-order transmission efficiency (η0,t) as a function of the number of 

retained orders. As can be seen 200 retained orders guaranty the accuracy of our results with a relative 
error smaller than 1%. 

 
 
4. Conclusions 
 

 We have introduced the concept of effective index to interpret the optical transmission of real 
metallic transmission gratings with very small slits. A simple model based on resonant propagation of 
the eigenmode inside the grating structure predicts the location of resonances, such as slit width and 
slit length at which the high transmission will occur. 
 We believe that the concept of effective index will be of great importance in evaluating the 
transport and optimum incoupling of light in metallic nanochannels. The result is of broad interest 
covering research work on metallic gratings, aggregates and colloidal media and may have important 
consequences for filtering with metallic plates in the near infrared, nanolithography or optical near-
field microscopy. 
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