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1. Introduction

The aim of this work is the identification and characterization of optical solitons in
stimulated Brillouin scattering (SBS). A large class of nonlinear processes is investigated using the
inverse problem in the scattering theory, which was pioneered in the work of Gardner et al. [1] and
Reed and Simon [2].

The study of the optical nonlinear processes using the inverse problem in the scattering
theory revealed the physical conditions for the existence of optical solitons and allowed the
description of their dynamics (the evolution in nonlinear media, collisions, interaction between
several solitons etc). Calogero and Degasperis described the spectral analysis of the nonlinear
equations of evolution that results from the inverse problem in the scattering theory [3]. Ablowitz
and Segur [4] gave a rigorous characterization of solitons in the inverse method in the scattering
theory Novikov et al. [5] analyzed the existence of solitons in the interaction process of several waves
in nonlinear media.

We have built the nonlinear SBS equations using the derivatives along the characteristic
directions of the solution of D’Alembert wave equation (the main mathematical technigue in the
inverse method in the scattering theory) [6]. This system of (first-order nonlinear autonomous)
equations takes the general form:

dxf
d—=a}x‘ +h}k.r"x" (1)
y
where ¥ are Riemann invariants (which contain the pump beam intensity and the Stokes beam

intensity).
We found out the conditions for the Stokes soliton occurence in the SBS media with losses
(o>0) and without losses (o = 0) in the form:
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where: « is the linear optical losses coefficient ;
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Iy - the Stokes component;

I;c - the incident component perturbed in the SBS process;

I, - the incident component that is not perturbed in the SBS process;
and  Ap/pp - the acoustic field component, the relative variation of the nonlinear medium
density.

We have analyzed the soliton which arises from the compensation of the dispersion by the
SBS nonlinearity, the pulse duration and propagation velocity in the nonlinear medium. This soliton
is called, in this paper, compensation soliton.

Finally, we have built the system of equations (1) supposing very low dispersion
(k =k (@) = 0). In this case, the Stokes soliton occurs not as the result of the compensation between
the dispersion and the nonlinearity (as in the case of the Korteweg - de Vries equations), but it is the
result of a condition imposed on the SBS nonlinear equation system, which is given in our case by
Eq. (2). This SBS soliton is called, in this paper, topological soliton and it is characterized by
different parameters than those of the compensation soliton. Sagdeev et al. [7] describe a similar
tentative for identifying solitons in hydrodynamics.

2. Nonlinear model of SBS using prime integrals on the
characteristic curves

The hypotheses in which the model is constructed are following the SBS description given by
Yariv [8]:
a) the electromagnetic field is described by the Maxwell’s equations with nonlinear polarization, P.
in the Gauss system, (hypothesis introduced by Armstrong and Bloembergen );
b) the SBS process is produced by the variation of the dielectric permittivity of the medium, which is
induced by the pressure fluctuations, P, at constant entropy, S: @5/8T=0, A, =0; A, =0;
¢) the conservation relations holds: 33 =m;, K=K, +K;=2K,; o= C;’:. —ay
d) the geometry of the SBS process is that of Fig.1; where K| is the wave vector of the pump optical
field, K is the wave vector of the scattered (Stokes) field and K is the wave vector of the induced
acoustical field
e) a progressive wave representation for the incident and for the reflected (scattered) fields is
selected;

NL*

= = - -
f) the field evolution is considered on the propagation axisonly: £ = E (z. 1), B = B (z'.,0);

- -
g) the electric £ and magnetic B fields are linearly polarized vectors;
h) the scaitered component of the field in the SBS process are the Stokes components.
A
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Fig. 1 The geometry of the SBS process; I, - pump intensity;
Is - scattered intensity; I - transmilted intensity.
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With these hypotheses, we shall write the nonlinear equations of the evolution of the optical
pump, scattered (Stokes) and acoustic fields. The selection condition for the Stokes component can
be written as [13] and are defined in annex:

fL_fszz'fu (3)
In order to simplify the equations, one can introduce the some new variables, with physical
meaning of phases of the waves, which are defined along the three characteristics {£] , £8, £1£:}[8]:

p=0,t+K, -2'=§, K, ,ps =05t -K; - 2'=8; - Ks, ¢, =t +K-2'=§,, - K (4)

where the @ is the frequency of the pump optical field, @y is the frequency of the scattered optical
(Stokes) field and o is the frequency of the induced acoustical field.
The prime integral along the {£1f, &, &s} characteristic is (are derived in annex):

Bk, By BT @

- il E.-p'
g, 4T ay, BsP)
0E;, o ny’ 8
S = — E————(E, p' 5
o, i aas( LP) (5)
" & 3
% +[4§w] '=8Y 2 (EL-FES)Z
a‘:,f = np,ol,

where E; is (optical) field; Es - the amplitude of the scattered electrical (optical) field and p' - the
amplitude of the acoustical field.

Substitution of {£, &, & in eq. (5) leads to:

7E, -« Ty: 8 FE; -« zy* &

= N — E.-p 4 ] E.+ i E . ',
do, 4K, 1T g2 é,%( s FP) oo, 4K, ST p2 5(95( L P) ©
2p 4o v -K?

K
Lo 2 (£, + E )
29, Ty - Sfrpoml"g( v+ Es)

The system (6) can be normalized by means of the substitutions: (/; = the maximum value of
the pump field intensity)

cn cn Ty’ 20 o a «
= -E, = —-E, = . v A:—-—-;a':—; o — 7
Vg, Fv Ve B T @) T, %2k, "2k, Kk

T=Knw/po

where n is the linear refractive index of the propagation medium, c is the light velocity in free space,

Mg is the viscosity of the propagation medium, and «- linear losses of the propagation medium.
In order to obtain

ox o 9 oy o' 3]
=——x——(y-z) S——yt+—rix2z)
op, 2 o9, dps 2 @cas( )

2, ¢
oz _ wpy® avl,

(8)

. x . ;
8, Enp T4 ¥

where ) is the isentropic compression coefficient of the nonlinear propagation medium and v is the
velocity of the acoustical field in the nonlinear propagation medium.,
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Using the expression of the SBS gain defined by Kroll [9]:

e [ 4 2
g5 [ﬂ] = M ©)

Wl e’ np L,
the characteristic length of interaction and the normalized cross-section in the SBS process [10 ]
L =an- 2 (10)
@
and the normalized SBS gain in the form:
" v
Gbef:gs’[‘a'ln:‘q'”g;‘g’fo (1)
we can obtain the complete set of equations which describe the SBS process with conditions (a) -(h):
Ox o é ( ) 2y o . 2 ) Az T (12)
=——:x- yz), =——-y x-z), =- z+o Xy
dp, 2 dg, dps 2 Doy Ty

We shall present some methods for solving SBS equation system (12). The Cauchy problem
for the system (12) is:

201),., =%lon,) Mos), ., =nles,) Z(%]M% =2lp,)  @13)

where:

Prliia =Prh>» Pslpis =Psir Prlice = Ph (14)

In order to obtain an homogenous structure in the phase space, we introduce the scalar

transform
L L
de=j=lx Y= =Ry 'mz (13
7 Ly

where Ly is the interaction length in the (S.B.S.) process and the system (12) takes the form:

o

ox' a' 0 oy o 7] &z
—:——‘x'——(y‘-z), =——-y'+—( '-z), =-24-z+0,-x")
op, 2 op, dps 2 O Op;, ' (16)

21 =g;Lr3 I,

We are looking for solution of the system (16) in the form:
—igp y

x'= xl.e"% +xl‘.e""9’:., y': yl_ef% +y:-e""’", Z=Z|'€iw +ZI"€ 17
From (16) and (17), one can derive:
0 ; a'
(x1 + 3 ‘zl)+""(x1 + '21)="_'x|’

dp, 2

0 o . o'
a ,—x,-z,)+:(y,-x1-z])=—?-y] (18)
—+i -z, =24z +0,-%, -y,
O,

where: x;% 3,* and z;* means the complex conjugated of x;, y; and z; respectively,

Using the complex conjugated equations of the system (18), a system describing a quasilinear
- hyperbolic evolution is obtained.

For the beginning, the system (18) is put in a parametric form by means of the "projection" of
the evolution along the [¢,] and [gy] characteristics on the acoustic field characteristic [/ QJ}J. The
configuration of the characteristics ¢, g, ¢, in the {z’, £} plane, is presented in Fig. (2).
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Fig. 2 The characteristics in the space-time plane.
These characteristics are defined in the form:
Liig, =0, t+K,2', T, ips=w; 1 - K2, T5i9,=0-t+K-2' (19)
By using Fig. 2, one can write:
@y, c g c w v c.. v
gR == A=+ gh=-T=—— THs (20)
;T K £ %

If the coordinate system from Fig. 2 is normalized by: z'— K-z', t— @ fthe

characteristic equations take the form:
@,

K K
Lo, —;(w'f)"'?‘t(](zl); P =ﬂ;_3(w‘ )_?S(Kz'); T Py =(w't)+(K‘-’7') (21

In this case, Egs. (19) become:

@ Y @ n o v
Differentiation of (21) yields:

n\( dz' n) dz
T, 4ol
do, L c\dt), —dos o, i dt ),

dp, 1+J;[dz'] ’a‘@f » \/;_/(ﬁ)
Py Py

o T ey 1+—=
v\ df v \ dt

In the case of moving along {7 7}, the initial condition is:

(&)%),

(22)

(23)

(24)
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In this case, from (23) and (24), one can obtain:

() | el |

dp, _ @, s dos _ s

= = . = : =—=.4 (25)
l+£[ﬁ] 1+ ﬁ[ﬁJ Ay Wy @
v \ dt & v\ dt &
Using (25), eqs. (18) take the form:
‘a'_(x1 ) z])+ 5[5&](’51 ) z])= _3[6&] Rl
g, @ 2 @
0 ) . a' @
a(yl =y By )+‘[§j](,}’| =%z ):_5"[ ;LJ'J’: (26)
s

7] : "
%(21 + 'z1)=_(2A)ZI To XY
f
A nonlinear transform is used to bring the system (26) into a real form. In this case, the
solutions of the real (differential hyperbolic quasilinear) system are implicit functions of Riemann
invariants associated to the system (26) [11]. The Cauchy problem for the new system is defined.
Thus, the system (26) takes form:

&N N
a"?; =—4y, - N, +(271)‘N1N3 ’(7;); a_;=‘47: N, =2y, Ny -8, N\N,
(27)

N
i =+4y,N, +[}—J»N., +2.N,N,-2-N,N?
on 2 -

The invariants {N](n), N2(n), N3(n)} are function of { XA y]y,'; W(n)=zz,(n) } and the
following equations can be written:

- *“4(1—N§][N1+;V_2_N2-N3J

xix =
PTG U Ty, 1N
N | N, 4N, v, Ny-N[

XX, ) =|—2—+ N+ -2 28

() 0ar7) L—Nf 1+3N§[ "4y, 1-N? e

% vi; =N
These are precisely the components of the algebraic invariants calculated in [13].
If we write:

XX =W =6, (x1x;)-(y|yr)=(az (29)
then:
20, - 20,

XX =T———, W) = ——— (30)
Vo 40, — @, \1"5512"'4@2"'??[

The numerical solutions of the equations (27-30) are given in [13].

3. Solitons in nonstationary SBS process
3.1. Compensation solitons

We try to find solution in the form of "sech® " using the hypothesis of " isospectral evolution"
described in [3, 17,18]:

Von)=28,(n), .., 31)
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In terms of the {N;, N2, N3} invariants, the condition (31) becomes:
N,(7)=0 (32)
Eq. (32) may be written in the form:

2
- - )2 1_N2 . -
(xixl _ylyl) =[ N 2 ] (xzxi ) (yly] ) (33)
3
Using (28), (30) and (32), one can derive the functions {¢], ¢2} as:
-N? 16N2 =Y
||qu='4(1_N%“)‘(N1+y_2]; (/JZIN‘_-O:—S':} N1+L‘
* 1+3N; 4y, . (1+3N3) 4y,
From (30) and (34), we can write { x,xl‘ b }’1.?; } in the form:

4N + 2 4N2 .| N, + 12
1 3 1

- 47| 4}{!
X% = )

: = 35
h+3n?) * 2 (1+3n32) el

The equations of evolution for {N,, N3}, with (32) and (27). take the form:

(34)

oN oN
—]=_4y|‘N|_(72); .—3=+471N3+2’N|N3 (36)
on an
Egs. (35) lead to the implicit form:
y: ()= Nixx(n) (37)

Eqgs. (37) express the dependence of the normalized Stokes field intensity (vy*) on the
normalized intensities of the optical pump and acoustic fields. This is the strong condition for the de
existence of optical solitons in the scattered field. It can be mentioned also that Eq. (37) describes
exactly the usual amplification regime of the Stokes field, with the difference that the normalized
intensity of the optical pump field (xx*) is perturbed (it is affected by the feedback induced by the
other two fields, which is described by Eqs. (16)). We can also add that (yy* xx* Ny) are algebraic
invariants that characterize the system (26) [12,13].

The Cauchy problem for the system (36) can be written in the form:

N!(’?)‘ :;=.r}’= NJO{I?'); NJ(?;")| r}:r;'z Nm(’?') (38J
where:
Niy(7)=Nyp(xo(7) 210(7))s Nyo(17') = Ny (xy6(7')s y10(7')) (39)
The solutions of the system (36), (that are not difficult to be found) and the Cauchy problem
(38) and (39), show that Egs. (35) are the evolution algebraic equations for { x]x: by y,y,' } on the

characteristics {77, 2 }.
One can express the prime integrals along the {71} and {72} characteristics as following:

along {I'2} one can calculate the prime integral for { x,xl'(f;.-') }, while { y, y,' (7) } remains constant at
the intensity level of the spontaneous scattered field (Fig. 2):

X10(775) ol xtx;(mip

s (40)
o @)le = yi(e) =55
In these conditions, and taking into account that:
Xo(M) N Vs (41)

eq. (40) yields:
X, ()] p=x,(77) - €777 “2)
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Along {I'1}, one can calculate the prime integral for { ¥y, (77,) }, while { x,x/(77) } will take
the form (42), which remains unchanged along this characteristic:
X% () = 2%, ()],

62 (43)

Vs|p 2031 ()

Limg—n=n,

From (42) and (43), one can obtain:

i {_ 2 _—n{mi-n)
(?};)‘eﬂ‘{""_"}‘c}r'{ln 3y3. LBy e — ° ](44)

yoi () =Ly, (15 =) +x,(775)

12 xo(78) 20 8y,
When a= 0, eq. (44) becomes:
. x'.u(f?}})} ” 3ys .. Mo—n A, .
=|—=|ch™|In — + X C— - 45
wn(n,) ( 12 X0 (1) 0o 20_(7?0 7 (45)
One remark's that:
H)’l‘(fia;) = ey =X e (46)
For a‘ # 0, eq. (44) leads to:
L Ty T 47)
12 ¢

. n.
e+ ;z{J =

I___ 2 -Bh%i“—:f,)
ch’| In 3 +3}’| Y2 (ﬂJ~(I+Ez;)+fm(f+£z;)--1;e N
¢ c

v-‘)lo("‘kfz;) d 4 8,
¢

One can notice that, under the conditions for a "square hyperbolic secant " solution, the
condition {N, = 0} can be put in the form:

2
. ; - N? . N
) (xlxi =N )2 = ( N. 3} (x:x] ) (y,y,) (48)
3
If Nf ({1, eq.(48) becomes:

o) O = Ny (g =y ) (49)

In addition, for:
XX W, (50)

eq. (49) takes the form:
Yo =Ny x (51)

which corresponds to eq. (37).
If, in Eq. (49): % Y » (52)
then, one can find:
xx = N3 -y, (53)
Eq. (51) and (53) explain the "reciprocal" character of the SBS process. This is confirmed

experimentally and by numerical calculus in [12,13].
In the case {N2 = 0}, the egs. (36) lead to a nonlinear Schrdinger equation [4]:

*N3! "
6—5":_4(1\1, +3y,)? =20y +2y, |- N7 (54)
]
where:
N(m)=c,-e -T2, (55)
4y,

and ¢, is a constant of integration. From egs. (28), (N;? << 1), one obtains:
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v 1 . .
N,(m)+ 4;| =7 &% —wn) (56)
One can be remark that the solution of eq. (54) is a hyperbolic secant only if:
4N, +3y,)" =20y7 +2y,>0 (57)

Eqs. (56) and (57) lead to:

wxl =yt ) =127, 4 80T -5y, (58)
1
Thus, the necessary condition for a solitonic solution is given by Eq. (58) on the {I'l} and
{12} characteristics and the sufficient condition is given by the Cauchy problem for {N3™ (n)}:

NI M) gy = Ny () # 0; (59)
Eqg. (58) may be written as:
3 . 20 1 a‘( Q)LJ 1 8w’
X, X - ———|86—s1=_1——=- 60
X () y1y.(n)>alrn et 5 T,o, (60)
If S~1; 82’ (T, o, (61)
eq. (60) takes the form :
. ‘ 20 .
xx, M-y () —0-a) (62)
UIFB
Taking into account that:
L IL - Is
X% ”Z:ytyl *’Z’ (63)
Q=26 =g, L, Iyl =1 — (64)
K \/;‘3 K’ 1 g.ﬂ' B Qg 4(0 :

with L’; - the total section of interaction, the condition for a solitonic solution (62) becomes:

. w(w—a‘:}%}%, i :[ﬁ._ye(a,oﬂz‘&

IL-I)—— , = (65)
“REE 8y T v-L'y LN 2/}
From Eq. (47) one can calculate the velocity of the compensation soliton:
L
gplyLy — 4ot
=@ Ly 66°
vx B 2 5 ( )
and the soliton duration :
26
At (66™)

= a)(gf;IoLB —da- r)

For the nonlinear medium CS,, commonly used in SBS [14-16], the interaction length is

5= 8.005 cm and consequently, the soliton velocity is v, = 6.15% 10° em/s and its duration takes the
value At=1.3 ns, for a peak intensity of 500 MW/cm’.

3.2. Topological solitons

The conditions for the solitonic solution can start also from the egs. (16) in the case «’ = (no losses):
x+yz=¢(gs), y—x-z=¢(0,) o =(2:A)z+0xy (67)

S
where ¢;(¢g) is a prime integral on the characteristic (¢g) and ¢; (¢,) is a prime integral on the (g,
characteristic. The third equation represents the equation of evolution of the field acoustic amplitude,

z, on the (g characteristic.
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According to the theory of the algebraic invariants which characterize the autonomous
nonlinear differential equations, the two prime integrals defined in (67) are proportional to the linear
combination of the algebraic invariants. The simplest case is:

¢, (05) = X,(0g) . cy(@,) =0 (68)

In these conditions, the eqs. (67) become:

x((‘DL ) A xu(@’s e Jf'(% ) Z(wf )s y((ps )= z(;pj )k x{(ag )

8508, 69
ﬁ?(z-A)z(¢,)+crlx(m)y(@s) =

o,
After some substitutions, the eqgs. (69) take the form:
X Xy Z oz 0%y
X = - = y, =——=—(2A)+——=="2 70
a2’ Y1427 ag - ARy (79)
with: 2A =4ot. (71)

If the quality factor for the acoustic field is high, the system (70) accept the following prime
integrals:

exp[—Z- f{:g;-Lﬁ 1, dp, +80 rch}

-(;{- ((PL) = '{Lo I
4ch [Log,, Ly-1,,do, —40 1<pL]
I\
Is(os)= ; 1 (¢s) (712)
4ch2[£: g;-LB-ILOdguL—cla)rqos}
B2 exp| [ 251, L dp, 407,
n Po fo
The prime integrals from (72) exist if:
¢ 2
15={f%-%] -I,_t_, a=0, w-7>>0 (73)
n Py

Thus, the conditions (73) are the conditions for existence of the solitonic solution for the
Stokes field. The prime integrals from (72) are plotted in Fig, 3. From Eq. (72), the velocity of the
Stokes solitons (at the output of the nonlinear medium) can be obtained:

4t
gp Ly 1, —dor

]

5
soliton — 1, ?4)
lit Ks (

The velocity of the Stokes soliton defined in (74) is valid only in the case of the non
stationary isentropic S.B.S.compression. which requires:

j: ‘g5 Ly-1, do'Yorp, (75)
Ly
In the case of the isentropic expansion, defined by:

‘C: gp Ly fLodfp'(‘*fv’f% s (76)

one can notice from (72) and (73) that solitons can also exist. The amplitude of these solitons is in the
neighborhood of the spontaneous Stokes field, and their velocity is close to the phase velocity of the
Stokes field.

Thus, the velocity of the topological soliton is larger than that of the compensation soliton; in
CS,, it is approx. 1.8 x10' cm/s, in comparison to 6.15 % 10° em/s for the compensation soliton. The
duration of the topological soliton, in CS,, is 1.45 ps, much smaller than that of the compensation
soliton (1.3 ns). The amplitude of the topological soliton is much smaller than that of the
cmnpensation one.



Solitons in stimulated Brillouin scattering

59

i = 3

| %
I

| e ) - oy

- =
— @
TS el
i = s e T

Fig. 3 Evolution of the intensities in the SBS process in the case of a Stokes soliton
Solution for the two states of the acoustic field.

) [" gL+, d0Y0r0,, @[ gL, 1, doGarmp,

Let write the egs. (16) in the form;

o' a a' z
x+yz)=—-——x, ——\y—-xz)=——y, ——=—(24)z+0,-xy
If the pump optic pulse envelope, C; { r;of}, satisfy the boundary condition:
L -
ao,

2! '=4)
where: (x & X,y Y,z Z)

X+Y-Z=C, Y-X-Z=C,
the eqgs. (16) take the form:

9 __C-CZ G C+CZ dZ_ . (c-¢,z)(c,+¢2)
G 1+2' ° @& 1+z® ° @& en (1+2°)’
with:

L & . 24 G

7o—+2 % 3, &=7, P yi_?’n, 72—?,0

()

(78)

(79)

(80)

(81)

One can mention that in contrast with the generation of the classical soliton, when the
nonlinearity compensate dispersion, in this case, we have imposed a restrictive condition on the phase

space topology in order to obtain the soliton, namely:
Ca(0¢)=0

that can be written in the form:
Y=XZ

(82)

(83)
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It can be noticed that eq. (83) is identical with the first equation from (73) and this is the
restrictive condition for the existence of the topological soliton. This condition has the physical
meaning of the interference of all three fields in the SBS interaction.

In this case, the egs. (80) become:

ac} iy dZ%( . ci(n)z?
1.(??):" 1E??) ) (‘?):—}’1'2"(7?)“"?: t(n) (’?2) (84)
an 1+2%(n) on (1+22(n))
where: ”q=2-§=a‘c-5(pf (85)
2:n-o
The eqgs. (83, 84) have a prime integral in the form:
(44 5 Cl(n)-2?
e Gl () Sl 20)
(1+2(n)) (1+2%(n))
5 (86)
dc,
Zi(r’,)zzo.exp{_.yi.??1_4.}/2.](%] d??]
n
with the initial condition:
Z(n) =Z,.Ci(n) =C, (87)

n=m, n=n,(Z'=0)
Eliminating Z from (84), one obtains the equation, which defines the envelope of the optical
pump pulse:

(LM 1y (n) 260, 142y, (4E) -

dn’ y
( ) 4 i (88)
dC (n dac
0 42
T, ( n ) ( dn Y2 dn
From the eqgs. (86), one obtains also the Stokes field amplitude:
Ci(7
1
ch[ln( Zy)-y,-n+4y, j[d—W] dr}]
A particular solution of eq. (88) is:
_nl
Ci(n)=Cy, e Z (90)
The Stokes field take the form of the topological soliton:
|
G 2
Y(n)= e O
ch{lnzﬂ - ?11]—?2(3,20 -e_l'”}
or in non-normalized quantities:
Azl
e 2
Es(n)=E, (92)
ch[fn(Zo) y‘q-%ﬁﬁ, e '“']
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We notice that, if one considers that equation (88) gives the spectral data of “the potential® in

the nonlinear - Schrédinger equation (in terms of the inverse problem in scattering theory), these
spectral data are obtained for:

S=[R(K)=O; -0<K<+0, p=C,, P:%] (93)
The G. L. M. equation [3] becomes:
4oz
K(nn')+M(n+n')+ [do-K(n.a) M(a+n')=0 (94)
n
From (94). one obtains:
1
>(inCiy-n')
1 2
K(q,nr)=~?i—— (95)
chg(!nclo —n]
if one defines:
W(n)=2-K(n, n'=n+0), (96)

the potential of interaction in the nonlinear Schrédinger equation is found as:

1

H(n-mc,)|

Thus, the “topological soliton” is a soliton of the nonlinear Schrédinger equation with the
potential defined in (97).

d 1
U(n) =~ (n)=-1 o
ch2|:

o

(2),(3

8. 8 8R8RESF

1 2 3 4 5 6 T

Fig. 4 Time evolution of: Normalized pump intensity (1); Stokes intensity
(compensation soliton) (2); Acoustic field intensity (3).
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Fig. 5 Time evolution of> Normalized pump intensity (1); Stokes intensity
(topological soliton) (2); Acoustic field intensity (3).

4. Conclusions

In this work the necessary and sufficient conditions for the temporal soliton generation in
SBS were derived. We demonstrated that, in this nonlinear process, two types of solitons can occur:
the usual compensation soliton (arising from the compensation of the dispersion by the nonlinearity
(see Fig. 4) and the topological solitons (defined by some conditions imposed to the nonlinear
equations, in the phase space- see Fig. 5).

The topological soliton appears on the increasing and decreasing slope of the isentropic
compression of the nonlinear medium. The acoustic soliton generates the compensation soliton. The
acoustic soliton and the optical compensation soliton result from the interaction of the singular
oscillations of the acoustic field and of the interacting topological solitons.

The generation of these solitons is related to the mechanisms and to threshold conditions.
The amplitude, velocity and duration of the compensation and topological solitons are different.
Both types of solitons could be observed simultaneously in a space-time window, in the limits
imposed by their parameters.

Appendix
The direction derivatives for the D'Alembert solution of the wave equation

In this section we will build the S.B.S. equations [16]. Regarding the S.B.S. process as a
scattering process of the optical field on an induced "potential”, we will use a "technique" paper to
the "inverse method" in the scattering theory, namely the derivation on the characteristic directions of
the general D'Alembert solution of the wave equation.

We consider the wave equation, which describes the S.B.S. process (Gauss system of
measurement):

2 .2 3 NL '
[ﬁ] G’E(t,z) & E(i,Z) LA P il G0 @
¢ a* &' c & ne a
We define the restricted Cauchy problem (initial conditions) in the form:
ak(t,z' y
B =0 =00 To2 =)= (a2)
=0

In the case of regular distributions, the general D'Alembert solution of the equation (A.1)
with initial conditions (A.2) is written in the form:
: ='*§(f--')
E(t,2)=— [dr [F(&o)é (A3)
2ny A

where:
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é 4r o™ (z',:)]
— = F (A.4)

n
F(Z'\y=———|a-E(z',1)+
(=44) cat [ .4 n-c at
is the inhomonogeneous term of the wave equation which contains, through the nonlinear polarization
(P™), the nonlinear S.B.S. terms.
Using the following transformations of coordinates:
4
& =Sz g =Lu-2 (A.5)
n n
the integral equation (A.3) takes the form:
" 7oEutE) &y
EEE)=5— [ [FEmE (A6)
2 3 .
—£s v;r
The partial derivation of the scalar field E(&;,&;) are the derivatives on the characteristic
directions of the wave equations, directions materialised in the system of coordinate transformation

(A.5).
So, we may write:

.7 fo-s)
(& +Es) a0
0.7 fas
We make explicit F(z,¢) in the form:
F@n=-2 Agg(z',t) (A8)
where:
o D B p 4 2E 20 (A.9)

e a

Using relations (A.8) and (A.9), we make explicit the prime integral from (A.7).
Let be the coordinate transformation (transformation which defines the "movement" on
"direction" &, J:

. c
2'=§, -—7; t=1 (A.10)
n
From (A.10) it results:

L L (A1)

F[({L —irj,r}= —Egg[(gﬁ —%r],r} i (A.12)

In this way, the first integral equation from (A.7) takes the form:

oE 1| [1 n 1 i
a—é?g{qjﬁr%):z—c(éﬁ +&) |-2le. | (A13)
From condition (A.2) it results:
gl,.0]=0 (A.14)
and then, equation (A.13) takes the form:
oE 1] [1
g=—5{gg[&f&),%@i+ﬁs]}} (A15)

Eg=const
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Equation (A.15) defines the "movement" on the (§ J_) characteristic, where (és) is a constant
(parameter). In these conditions, equation (A.15) takes the form:
9E _ 1 (% Eﬁ_aJ
ok, 2°\2°c 2
By expliciting (g), we obtain for the ( E L] component of the field, equation:
0E, o T8
—=——E, -——FP"(E,,E A.17
551 4 L nz aE-'L ( L S) ( )
We analyze now the second integral equation from (A.7). In this case, we make the
coordinate transformation:

(A.16)

==& +£r; t=7 (A.18)
n

This transformation defines the movement along the direction (E_,S); in this case, &, isa
parameter. In this conditions, we make explicit F from (A.7) and obtain:

0]
F[[— &k % r), r:| = —%Eg{(— S+ % f} r} — (A.19)

Even in these conditions, the second integral equation takes the form:

% Hdte-e) 2 se)]-dbosl a2

Similar with (A.14), from condition (A.2) it results:

g[0,&] =0 (A21)
and then, equation (A.20) takes the form:

%=—%{g{%(§z _(:s)s%(fz, +&s )]}g,_zmmf. (A22)

Equation (A.22) defines the "movement" on the [E_,s) characteristic, where (E_, L) is a constant
(parameter). In these conditions, equation (A.22) takes the form:

A L[ & nos
Gy 2 2'c 2
By expliciting function (g) we obtain for the (£¢) component of the field, equation:

GE; o w0
Ry e g Y (A24)
So, the equations obtained (A.17) and (A.24) describe the behavior of the optical field in the
S.B.S. process. The same algorithm may be applied also to the wave equation of the acoustical field,
induced in the S.B.S. process.
In conclusion, we mention that this method may be described so: in the wave equation (A.1)
we make the coordinate transformation (A.5); the wave equation becomes:

52E(§L=‘fs)_a é—EJrﬁ orpM
%08 &, & (A.25)
i=L,8; -j=L,S

By integrating this equation on (&) or on (&) we obtain equations (A.17) and (A.24). Why have

we used this method?

- in the given case of the S.B.S. process, the equations on the characteristic curves form a
system of equations cvasilinear, coupled, situation which allows a continuation of the
analytical investigation of the S.B.S. process.

In the case of the polistochastic S.B.S. process the equations on the characteristic curves allow

an average of F - P - K type

(A.23)
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- the equations on the characteristic lines allow the simple use of the initial conditions.

‘We mention, however, that the Maxwell system of equations which describes the behaviour of
the optical field and the Euler system of equations, which describes the behaviour of the acoustical field
are systems of equations of first order.

We will describe these equations using the variables on the characteristic curves.

After making these systems of equations compact we will obtain a result identical with those
obtained trough the derivation of the general D'Alembert solution.

Using relations (Cummins and Gamman/966) for the variation of the dielectric permitivity {&}
with the conditions of the (B) hypothesis we will have:

a .s') i ( l s)

= =y Kol — (A.26)

( 2P/ apl,

where: K's - the adiabatic coefficient of compressibility;

We define the coefficient of electrostictive coupling {y °}. described in [19], in the form:
. e
7= pn[—J (A27)
ap);

For expliciting the nonlinear polarization (induced in the nonlinear medium), we use the
relation from [20] in the form:

Py (E s)=As(p)-(E, + Eg) (A.28)
where:
As(p) = (E] Ap; (A.29)
ap ),
From relations (A.27) and (A.29) it results:
TRaY
Ae(p)=7=E; (A30)
Pa
The Euler equations which describe the evolution of the quantity { Ap/ p,}. have the form
[21] and [22]:
z{a_p]ﬁ_ﬁ: o =%
at\ p, ) &z dt (A31)
2 I
.v_i A_p +£=_‘i W_B ﬂ-l— ¥ (EL'I'ES)}
y 22'\ p, gt dz'|\ p, )8z Bmp,

The hydrodynamic equations (A.31) type were written in hypothesis (B), where v is the sound
velocity in the nonlinear medium and y is the adiabatic coefficient {y = ¢, / ¢, }.
We shall use the following relations:

2 2
vV @ n I
e —pz = ——Ki ; (A32)

1
where 'y = — has the significance of a spectral width for the acoustic field and equations (A.31) takes
T

the form:
_t.?..[A_p].i.a_VI:O;V:ﬁ
at\ p, ) fz dt (A.33)
a [ Ap 2V 7 Vv ¥k’ 1
o ——| = [+ K= | (T —+ E,+E
é’z'[ p.,J 8t é’z’[( “)az' Szrpn( 2+ Es)

The characteristic lines equations for the acoustical field has the form:

®
§,I=Er+z'; &y =—t—2 (A34)

L
K
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The operator equations associated to the characteristic lines equations (A.34) are:
Ké_6 46 & _206 8

a— e ——————
o ot &, &, 6 &, & (A.35)
s K ¢ . f éa K ¢ ¢

&, oo o7 &, oo or
With the new variables {£, &} equations (A.33) have the form {Ap/ p, = p' }:
2 oyt
5§if @ af?f
a K a K (A.36)
(=)= (p-—K)=
&, o & e

o _ o) Lo, d |, rK :
= [&U ,ﬁngJ[ — [df” + 552-( ]P'l' S?Iﬂowz (EL + Es) j|

Adding the two expressions from (A.36) results:

(P-27)=0
o

oKy 20| L 2, @], 2K 2 (A37)
*Z, “'”wy)‘[rx:.,. &s},}[ mx[a;,fa:,,]“’ 3w (E”E"}'
for which:
b7 &
—(p'-=F)=0 =Sy (A.38)
By i
We substract the two expressions from (A.36) and it results’:
Zl_i(p,_ﬁyh_[ 6 o ] - (_f5"_+i]p-+ r K gy (A.39)
Gy @ &, wK\d,, &, 8mpo e
for which:
K
. (p'+—V)=0; (A.40)
1y @

The equations of evolution on the two characteristic lines {&; &g of the quantity
{p'=Ap/ p,} have the form:
4.2 _ 0| T & rK gy
&, &, wK &, 87p 0 ! :
4. apu P 0’5 __r_;!;_' 5p1 ?’"Kz
&y Oy | 0K 35y 87p,0°

(AA41)

(EﬁEs)z}

One can notice that the two equations have the same form and we shall use the prime integral on
the characteristic line {& forms the point of view of the Stokes line selection, namely:

1

& =Strr=——(0,t+K,7")
n K,
[

£, =St L (o5t - K,z (Ad2)
n s

1 il
Sy :E(mr+1{z)
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In conclusion, the equation of evolution of the S.B.S. process, function of the characteristic
variables, defined in (A.42), has the form:

OE, o -y’ 38
L R MR BT
ot, sl gg, EsP)
0E, o . my" 8
ks S NS MO A43
aE, a0 a‘ig( P ( )
ap' [41«0] vk 2
+ '= E, +E
O, T o SNpOml"g( £ ﬁ)
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