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Microstructure in silicate glasses is reviewed from the standpoint of density fluctuations, 
phase separation and microsegregation. Recent experiments in Brillouin Scattering and 
Nuclear Magnetic Resonance (NMR) spin relaxation are used to characterise the length scale, 
magnitude and dimensionality of density fluctuations in monophasic silicate glasses and of 
phase separation in biphasic glasses. New Small Angle X-ray Scattering (SAXS) experiments 
are introduced which reveal the presence of much finer microstructure whose geometry is 
linked with the position and width of the First Sharp Diffraction Peak. For silica this structure 
resembles the quasiperiodicity recently identified in large tetrahedral model networks. For 
silicate glasses quasiperiodic order with a shorter spacing occurs in the microsegregation of 
glass modifiers from glass formers evident from Molecular Dynamic structures as well as 
from the empirically determined local structure. 
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1. Introduction 
 
Heterogeneity in glass structure has been known about for more than 60 years but has 

developed somewhat independently of the modelling of glass structure, which is generally assumed to 
be homogeneous. This division of labour and of vision has arisen mainly because the techniques that 
are sensitive to fluctuations in glass density and composition – light scattering, small angle X-ray 
scattering (SAXS), electron microscopy - are rather distinct from those that are appropriate for 
probing local atomic structure – neutron scattering, X-ray absorption fine structure (XAFS) 
spectroscopy, NMR. Nevertheless, with recent improvements in all of these experimental techniques 
and with the increasing possibilities opening up by computer simulation, it is now possible to look in 
both directions at once and to endeavour to establish links between microstructure and local structure.  
Assuredly, more than for any other type of material, the structure of glass is unified across all length 
scales and this overview attempts to take advantage of this outlook.    

 

2. Density fluctuations 
 

To a first approximation, glass structure has indeed often been regarded as homogeneous.  
The popular Zachariasen model [1], supported by early X-ray experiments by Warren [2], concluded 
that glass structure is “an unbroken system of bonding which does not allow any boundaries or voids 
to produce density fluctuations on a 5 – 50 Å scale”. Where such a Continuous Random Network 
(CRN) representing a glass former would necessarily depart from a homogeneity on the atomic scale, 
changes in density at this level were considered by Zachariasen and Warren to be random and hence 
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the overall inhomogeneity stochastic. However, in the liquid state single component systems are 
physically inhomogeneous, the average density ρ0, being broken up by thermal fluctuations of mean 
square density  <∆ρ2> given by 
  

V<∆ρ2>/ρ0
2 = kBT ΚT      (1) 

 

where T is the temperature, V is the volume of the fluctuating elements and ΚT is the isothermal 
compressibility [3]. For the case of viscoelastic liquids kBT ΚT in Eq. (1) can be separated out into 
 

kBT ΚT = kBT (ΚT - ΚS) + kBT ΚS =  kBT (ΚT - ΚS) +  kBT ΚS
r + kBT ΚS

∞ 
 

where kBT (ΚT - ΚS) is due to entropy fluctuations at constant pressure, kBT ΚS
∞ relates to fluctuations 

stemming from the high frequency adiabatic compressibility and kBT ΚS
r to fluctuations related to the 

complementary relaxation compressibility (ΚS
r = ΚS - ΚS

∞) [4]. Moreover, the high frequency 
adiabatic compressibility, ΚS

∞, equals 1/(ρ0v∞2), where v∞ is the velocity of sound for acoustic 
vibration modes. Accordingly, as a viscoelastic liquid is cooled, the contribution of kBT Κs

∞ to 
V<∆ρ2>/ρ0

2 continues to fall with temperature whilst the remainder, kBTf (ΚT - ΚS) + kBTf ΚS
r, 

becomes frozen in as density fluctuations as the fictive temperature, Tf, is passed and a glass is 
formed, i.e. 
 

V<∆ρ2>/ρ0
2 = kBTf (ΚT - ΚS + ΚS

r) + kBT/(ρ0v∞2)     (2) 
  

Given the presence of density fluctuations, <∆ρ2>, in a single component material, light or   
X-rays will be scattered in proportion to <∆ρ2>. For light scattering from a glass, the static (Rayleigh) 
and phonon (Brillouin) contributions to V<∆ρ2>/ρ0

2 are spectroscopically separated [5]. Rayleigh 
scattering occurs at the frequency of the incident light, ν0, and Brillouin scattering at ν, where  

 

ν =  21/2nv∞ν0/c 
 

n is being the refractive index. The ratio of the Raleigh and Brillouin components, called the Landau-
Placzek ratio, RLP, is given by 
 

RLP = (Tf/T) (ρ0v∞
2ΚT – 1)      (3) 

 

where the value for SiO2 glass at room temperature, for example, is 23 [6].  Eq. (2) and Eq. (3) give 
 

       V<∆ρ2>/ρ0
2 = (1 + RLP) kBT/(ρ0v∞

2)      (4) 
 

From the measured RLP values, V<∆ρ2>/ρ0
2 in SiO2 glass is 1.3 Å3 and in B2O3 glass a little 

larger, viz. 2.7 Å3 [7].    
For (Na2O)x(SiO2)1-x glasses smaller RLP values of around 10 compared to 23 in silica have 

been measured by one of us (YV) [8], with similar values reported for (K2O)x(SiO2)1-x glasses [9] - in 
both cases for trisilicate compositions and above (x ≥ 0.25). Considering Eq. (3), these values for 
silicate glasses should not be too surprising, as the differences in the corresponding isothermal 
compressibilities, ΚT, between silicate glasses and silica are < 10 % [8] whereas the fictive 
temperatures, Tf, for alkali silicates (x ≥ 0.25) are typically a half those of silica. Also the longitudinal 
acoustic sound velocities, v∞, are smaller. From Eq. (4), the magnitude of density fluctuations, 
[<∆ρ2>/ρ2

0]1/2, in monophasic silicate glasses might well be lower than in silica. However, in order to 
establish values for [<∆ρ2>/ρ2

0]1/2 in silica and silicate glasses, estimates are required for the size of 
the fluctuating volume elements, V.    

Density fluctuations in glasses have also been studied by SAXS [10,11]. As X-rays are 
scattered by fluctuations in electron density, the relevant parameters are ρe, the mean electron density, 
and <∆ρ2

e>, the mean square fluctuation in ρe, where    
 

<∆ρ2
e>/ρ2

e = <∆ρ2
0>/ρ2

0                     (5) 
 

In particular, at zero scattering angle, the X-ray scattering intensity, I0, is given by [12] 
 

I0 = Ie NV2 <∆ρ2
e>                                                              (6) 
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where N is the number of scattering particles and Ie is the X-ray intensity scattered by an electron.  
This can be rewritten in terms of electron units (e.u’s) as   
 

I0  = (V<∆ρ2>/ρ0
2) NA ρ0ΣZ/M                (7) 

 

where NA is Avogadro’s number, ΣZ is the number of electrons per scattering unit and M is the 
molecular weight.  Values of I0 for silica are around 24 e.u.’s [10] and close to 50 for vitreous GeO2 
[11] and B2O3 [13].   

Comparing Eq. 7 with Eq. 4, it is clear that I0 gives an independent measure of (V<∆ρ2>/ρ0
2) 

and taken so in conjunction with the Landau-Placzek ratio, RLP, the magnitude of density fluctuations, 
[< ∆ρ2 > /ρ2

0]1/2, and their size, V1/3, can be determined. For silica [< ∆ρ2 > /ρ2
0]1/2 ~ 1 % and the 

corresponding volume element is ~ 8000 Å3, equivalent to a 20 Å cube [14]. Considering the smaller 
values of RLP in alkali silicate glasses beyond the trisilicate composition, the magnitude of density 
fluctuations in these binary glasses might indeed be less than in silica [9], but without complementary 
I0 SAXS values this has yet to be confirmed.  
 
 

3. Phase separation 
 

Despite the interest in density fluctuations, microstructure in oxide glasses is, perhaps, best 
known in the context of compositional fluctuations or phase separation. A two-component mixture 
may originate in the melt and be quenched into the glass at Tf or be generated from a rapidly quenched 
homogeneous glass by annealing above the glass transition [14,15,16].  Phase separation in glasses is 
confined to particular systems and compositions. For example sodium silicate glasses, (Na2O)x(SiO2)1-

x, with compositions above trisilicate (x ≥ 0.25) are perfectly homogeneous, that is apart from density 
fluctuations. However for compositions below tetrasilicate (x ≤ 0.2), the structure bifurcates into 
regions where the modifier content is less than x and regions where this is greater  than x.    

Phase separation is conventionally measured using light scattering and electron microscopy, 
the composition being determined from electron microprobe measurements. Phase diagrams are 
available for lithium and sodium silicates [17] and some other melts and glasses. Fig. 1 shows the 
well-known coexistence curve for the (Na2O)x(SiO2)1-x system [18], where the separation of soda-rich 
from silica-rich phases stretches from the liquidus at 845 °C down in temperature and covers a 
composition range approximately given by 0.02 < x < 0.2. It is asymmetric and peaks around             x 
= 0.08. The immiscibility dome is broader in the case of lithium silicates [17] and possibly narrower 
for potassium silicates [4]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Sub-liquidus coexistence curve for the (Na2O)x(SiO2)1-x system [from 18]. The 
spinodal, defined by d2F/dx2 = 0, where F is the free energy, is indicated by the dotted curve.  
This  distinguishes  the  region  of  spinodal decomposition  in  the centre from  nucleation 
and  
                                                       growth on the flanks.  
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Phase separation is usually manifest on micron length scales and leads to opal glasses [14] – 
each phase exhibiting strong connectivity. This is illustrated in Fig. 2 for a Na2O – SiO2 glass.    Phase 
separation can also be present on a much finer scale in an otherwise transparent glass from which 
opalescence can be developed by ripening processes. Immiscibility within the coexistence 
composition range is believed to stem from much smaller fluctuations in composition, x, accompanied 
by variations in the free energy, F. Thermodynamically phase separation is considered to develop, 
either by nucleation and growth where F is in the vicinity of a compositional minimum (d2F/dx2>0) 
[19], or by spinodal decomposition where F falls at a compositional maximum (d2F/dx2<0) [20]. The 
spinodal, defined by d2F/dx2 = 0, differentiates between the two regimes. To a first approximation 
phase separation in the centre of the coexistence region in alkali silicates, for instance, should develop 
by spinodal decomposition and by nucleation and growth on its flanks.   These are differentiated in 
Fig. 1 by the dotted curve [18]. Morphologically there is little to distinguish qualitatively between the 
two mechanisms, both spinodal decomposition and nucleation and growth resulting in phase 
connectivity [21,22]. Quantitatively, though, there may well be geometrical differences, depending on 
the growth mechanism.   

 
 
Fig. 2. Fully developed phase separation in a Na2O – SiO2 glass [16].  Electron micrograph of  
                                                            an etched surface. 
 
Time dependent SAXS from lead aluminoborate glasses was used in classic experiments by 

Zarzycki and Naudin [23] to confirm Cahn’s theory of spinodal decomposition [20] for compositions 
at the centre of the biphasic region. A peak in the SAXS profile develops with time around 
wavevector, Q, of 0.04 Å-1 (The scattering wavevector, Q, is given by 4πsinθ/λ, where 2θ is the 
scattering angle and λ is the wavelength). As the phase separated microstructure ripens with annealing 
time this peak shifts to smaller Q values. The thermodynamic treatment predicts that        X-rays will 
be diffracted from compositional fluctuations with a time dependent intensity, I(Q,t), given by 

 
I(Q,t) = I(Q,0) e2R(q)t                                                              (8) 

                          
          where     R(Q)/Q2 ∝ Q2.   

     

R(q), the so-called “amplification factor”, is sharply peaked at, Q = 2π/Λ, from which a “spinodal” 
wavelength, Λ, can be deduced. The initial stages of heat treatment of lead aluminoborate glasses [23] 
closely resembles these predictions and a value of 130 Å is deduced for the spinodal wavelength, Λ. 
Similar behaviour has also been reported in the time-dependent annealing of glasses in the 
(Na2O)x(SiO2)1-x system [24].   

The proportions by weight of the two phases in a phase-separated glass can be obtained using 
the “lever rule”: 

(x2 – x)/(x – x1) = M1/M2                                                     (9) 
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where x is the mean composition, x1 and x2 are the two phase separated compositions and M1 and M2 
are the respective masses for a particular annealing temperature. From the known compositional 
dependent density, ρ0, of a silicate glass system, the mean square compositional density fluctuation, 
<∆ρ2>, can be calculated for each value of x as well as the corresponding electron density contrast, 
<∆ρe

2>. The electron density contrast as a function of composition in the biphasic region for 
(Na2O)x(SiO2)1-x glasses calculated from Fig. 1 for the T = 580 °C tie line is shown in Fig. 3.  
Compared to the immiscibility dome from which it is derived, <∆ρe

2> versus x is symmetrical, with a 
maximum at x ≈  0.1. Close quantitative agreement has been found between curves such as this for 
different temperatures and the values deduced from absolute SAXS measurements for glasses 
annealed at these temperatures [16]. Fig. 3 also includes values of <∆ρe

2> obtained from preliminary 
Landau-Placzek ratio measurements from (Na2O)x(SiO2)1-x glasses [8] using Eqs. 4 and 5. <∆ρe

2> 
from RLP measurements also peaks around x = 0.1. Earlier RLP values for (K2O)x(SiO2)1-x glasses [9] 
indicate a maximum at x < 0.1, consistent with a narrower immiscibility zone in potassium silicate 
glasses.  

Fig. 3. Mean square density fluctuations obtained from Landau-Placzek Ratio measurements, 
RLP, for (Na2O)x(SiO2)1-x glasses [8] using Eq. 4 (points). These are matched for a fluctuation 
volume, V, of 1.88 × 104 Å3 to the electron density contrast values, <∆ρ2

e>, calculated from 
the  phase  separation  density  differences  [15] given  by  the  sub-liquidus  coexistence 
curve  
                                                           [18] plotted in Fig. 1. 

 
In Fig. 3, the fluctuating volume, V, from Eq. (4), in this case for compositional variations, 

has been adjusted to match the <∆ρe
2> values deduced from the sub-liquidus coexistence curve from 

Fig. 1. Best agreement is found for a volume of 1.88 × 104 Å3, equivalent to a cube of dimension      
26.6 Å. This is much shorter than optical wavelengths and, indeed, unless sodium and potassium 
silicate glasses are heavily annealed, they are optically clear. 2π 26.6 Å is similar in size to Λ, the 
“diffraction wavelength”, deduced from the development of SAXS intensity during the initial stages 
of spinodal decomposition [23,24]. 26.6 Å is also close to the value of 20 Å quoted earlier as the scale 
of density fluctuations in silica obtained from combining RLP and I0 measurements [14]. This raises the 
interesting question as to whether or not density fluctuations promote the compositional fluctuations 
that drive the development of phase separation. Finally it is also worth noting from Fig. 3 that for 
compositions beyond the immiscibility dome (i.e. x > 0.2), <∆ρe

2> values deduced from RLP 
observations using Eq. (4) and the same value of V return to the magnitude of <∆ρe

2> for silica of       
~2 × 10-5 [electrons.Å-3]2. This demonstrates the monophasic character of silicate glasses outside the 
coexistence region.  Here modified glasses share density fluctuations similar in magnitude to those in 
SiO2 glass, and by the same token of similar length scale. Whether or not density fluctuations in single 
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phase sodium silicates are smaller in magnitude than in silica, as others have claimed [9] for 
potassium silicates, will require more precise Brillouin scattering experiments.   

The dimensionality of the phase-separated microstructure can be probed through NMR spin 
relaxation by direct dipolar coupling to paramagnetic impurities introduced into the glass [25].   
Originally applied to determine the fractal dimension of the mass distribution of 29Si spins in silica 
gels [26], Sen and Stebbins [25] extended the technique to investigate both phase separated and 
monophasic Gd-doped Li and Na silicate glasses – Gd3+ being a suitable paramagnetic impurity.  In 
the first place they observed differential spin relaxation for Q3 and Q4 species in Li2Si4O9 glass which 
they found increased with annealing. By contrast no difference was found in the relaxation behaviour 
of Q3 and Q4 species in the monophasic Li2Si2O5 and Na2Si2O5 glasses. Qn represents the SiO4 
tetrahedral configuration where Si is co-ordinated to n bridging oxygens (BO) and 4-n non-bridging 
oxygens (NBO). In Gd-doped glasses, Gd3+ will preferentially associate with Q3 rather than Q4 sites.  
From the coexistence curves for the Li silicate system [17], the tetrasilicate composition Li2Si4O9 falls 
within the immiscibility dome and will be phase separated with lithia-rich and silica-rich regions. 
Since these glass phases are high in Q3 and high in Q4, respectively, and because Gd3+ impurities 
group with the former, 29Si relaxation rates for these two species are expected to be different in 
Li2Si4O9 glass and the differences exaggerated by annealing, as Sen and Stebbins observed. On the 
other hand in Li2Si2O5 and in Na2Si2O5 glasses – compositions outside the coexistence regions - the 
spin relaxation behaviour for Q3 and Q4 configurations are found to be equivalent, confirming the 
monophasic character of these glasses and the intimate mixing of different configurations on the 
length scale of the experiment.  

For the dipolar-paramagnetic coupling, for example between 29Si spins and Gd3+ ions, the 
recovered magnetisation at a given time t, M(t), is given by  

 
M(t) ~ tD/6     (10) 

 
where D is the mass fractal dimension [26]. Interestingly Sen and Stebbins found that the recovery 
rate for 29Si in Li2Si4O9 glasses was significantly different from either Li2Si2O5 or Na2Si2O5 glasses.  
The two disilicate glasses both shared a more rapid 29Si spin relaxation behaviour than the tetrasilicate 
glass.  Using Eq. 10, they found D = 2.62 ± 0.22 for the phase separated Li2Si4O9 glasses but D = 3.06 
± 0.18 for the monophasic Li2Si2O5 and Na2Si2O5 glasses. The power law regimes observed for 
Li2Si4O9 and for Li2Si2O5 and Na2Si2O5 glasses [25] are reproduced in Fig. 4 and Fig. 5, respectively. 
Note that Q3 and Q4 species in each glass share the same power law dependence for 29Si magnetisation 
recovery, including the Li2Si4O9 glass where the strength of the Q3 signal (open symbols) is greater 
than the Q4 signal (Fig. 4).  
 

 
Fig. 4. Power law regimes in 29Si magnetisation recovery for phase separated Li2Si4O9 glasses 
with different Gd2O3 doping levels [25]. The open symbols refer to 3Q species and the closed 
symbols to 4Q species.  Although the magnitudes are different, the slopes, D/6 in Eq. 6, are 
the 
                             same within experimental error. See text for details. 
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For this glass, though, the value of D = 2.62 is close to the mass fractal dimension 2.6 for an 
infinite percolation cluster [27]. This is entirely consistent with the interconnectivity observed in 
nucleated phase separated Li silicates off-centre from the immiscibility dome [28]. Fig. 2 illustrates 
the case for fully developed phase separation in an annealed Na silicate glass [16]. It is worth 
mentioning that spinodal decomposition, which occurs on-centre in the coexistence region, is not 
expected to exhibit a fractal geometry [29]. By comparison from Fig. 5, Euclidean geometry is 
recorded for Qn species (D = 3.06) in the disilicate compositions Li2Si2O5 and Na2Si2O5. This is 
expected for the overall silicate network of these single-phase glasses on the length scale of the 
technique. NMR spin relaxation measurements probe a few 10’s Å to a few 100’s Å [25]. They 
therefore overlap with the length scale of Brillouin Scattering and, from the results shown in Fig. 3, 
should extend down to Q (~ V1/3) = 0.04 Å-1 in the SAXS regime.   

 

 
Fig. 5. Power law regimes in 29Si magnetisation recovery for monophasic silicate Li2Si2O5 
and Na2Si2O5 glasses [25]. Because there is no differential spin relaxation amongst  nQ 
species, 
                                 the total 29Si signal has been used.  See text for details. 
 
It is important to stress again that, in the absence of excessive heat treatment, Li and Na 

silicate glasses are optically clear. Accordingly, phase separation is not just a feature of opalescent 
glasses (Fig. 2), although the geometry of the interlacing phases may be scale invariant. On the 
shortest length scale so far discussed of a few 10’s Å, the geometric magnitude of phase separation in 
silicate glasses is close to that of density fluctuations. However, modified glasses also exhibit 
microheterogeneity on length scales far finer than this and close to atomic dimensions in size. 

 
 
4. Local order, long range order and phase separation 

 
Quite apart from density fluctuations and phase separation, microstructure deriving from the 

microsegregation of network modifiers from network formers was predicted in silicate glasses from 
the very first Na, K and Ca XAFS experiments [30,31]. These confirmed that well-defined short-range 
order was present around modifying cations. Na XAFS Fourier transforms for two oxides glasses - a 
silicate and an aluminosilicate - are compared in Fig. 6(a) [32,33], where the principle nearest 
neighbour oxygen shell around 2.4 Å is clearly in evidence, including the presence of Na-Na 
correlations approximately 3.5 Å. Indeed in the crystalline state [34] the distance between alkalis in 
adjacent silicate units is very similar in size to this value. The different local order around sodium in 
the two glasses, resulting from the different glass former compositions, is illustrated in Fig. 6(b) by 
the differences in the oxygen co-ordination number, N, and in the variance of the oxygen            
distances, 2σ2.  
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Fig. 6. Local atomic arrangements around Na from Na XAFS in two different silicate glasses: 
Na2Si4O9 (solid line) and Na0.17Al0.03Si0.23O0.56 (dashed line) [32]. (a) Partial rdf’s obtained 
from Fourier Transforming Na XAFS, differentiating nearest neighbour oxygens, RM-O, from 
mearest neighbour sodiums, RNa-Na. (b) Results of least square fitting of experiment to theory 
shown in the form of Debye-Waller (2σ2) versus Coordination Number (NNa-O) correlation 
maps.  95% significance contours clearly distinguish the well - defined local order in these 
two  
                                                               different glasses. 

 
Taken in conjunction with the strong tetrahedral configuration of silicons established in the 

earliest X-ray measurements [2], observations of local order around modifying cations, such as Na, 
led to the modified random network model (MRN) for oxide glasses [32] illustrated in Fig. 7(a) [33].  
Long range order in the MRN model is characterised by interpenetrating modifier and network 
components and the resulting microstructure should lead to a fractal geometry on the nanoscale 
similar to that observed in incipient phase separation [25] but on a smaller length scale.  In the case of 
alkali microsegregation the percolation threshold [27] will be reached once the modifier component, 
x, has reached 16% [32]. Below 16%, individual islands of alkali clusters are expected within the 
partially depolymerised silicate network. Such long range order is also a natural outcome of molecular 
dynamics (MD) simulations of silicate glass structure [35, 36, 37]. Fig. 7(c) illustrates this for sections 
taken through MD simulations for a sequence of (Na2O)x(SiO2)1-x glasses where the alkali content is 
increasing (left to right) from x = 0.05 to x = 0.3 [36]. The development of microsegregation is very 
obvious. The middle frame in Fig. 7(c) corresponds to x = 0.2, just above the percolation threshold.   

Fig. 7(b) illustrates the principles of the MRN model extended to an aluminosilicate glass 
structure.  Here, aluminiums are fully charge-compensated by alkalis and there are no NBO’s. This 
“compensated” continuous random network, or CCRN, is fully connected like silica [33]. However, 
since odd member rings are not prevented, Lowenstein’s Rule of chemical order that describes 
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crystalline aluminosilicates will not necessarily apply to glasses of equivalent composition. Some 
clustering of aluminiums and therefore of charge compensating modifying cations is expected, as  Fig. 
7(b) illustrates and Fig. 6 supports through the modelling of Na-Na correlations [33]. 
 

 
Fig. 7. Random Network models for silicate glasses. (a) Modified Random Network model 
(MRN) which includes BO’s and NBO’s charge compensated by modifying cations [32]. (b) 
Compensated CRN (CCRN) for aluminosilicate glasses which excludes NBO’s but where 
aluminiums are charge compensated by modifying cations [33]. Clustering of modifying 
cations is evident in both models. For larger MD models quasiperiodic structure is observed 
(see Fig. 12). (c) MD simulations of (Na2O)x(SiO2)1-x glasses [36]. In these sections, Na’s and 
NBO’s are shown shaded.  With the modifier content increasing from left to right, x = 0.05, 
0.2 and 0.3 and  microsegregation  is  evident, even  in  the most dilute case. Channels 
become  
                                established above the percolation threshold x = 0.16 [27]. 

 
Additional evidence for alkali microsegregation in silicate glasses has been obtained from 

solid state 17O NMR which can be used to distinguish bridging from terminal oxygens in potassium 
silicate glasses i.e. BO’s from NBO’s [38]. Also the preferential co-ordination of potassium to NBO’s 
has been detected. As modifying cations are also highly co-ordinated to NBO’s [31,32], a picture of 
the close-packing of NBO’s and modifying cations emerges which geometrically is bound to result in 
some degree of microsegregation of glass modifier from glass former. Furthermore new developments 
in double resonance 29Si have revealed that correlations exist between different Qn species [39, 40], 
notably Q3 species. As Q3’s share NBO’s with modifying cations, this again points to clustering of the 
modifying component. The fact that such long range order is not seen in NMR spin relaxation (Fig. 
5), where the bulk fractal dimension, D ~ 3, is because alkali microsegregation occurs on a length 
scale much smaller than the minimum length scale for magnetisation recovery of several 10’s Å [25]. 
Finally, recent analysis of the neutron scattering pattern from K2Si4O9 glass using Reverse Monte 
Carlo techniques has also resulted in a model structure in which K atoms cluster, despite a starting 
structure in which the alkalis were uniformly distributed [41].   
 Returning to Fig. 7 it is clear from the long range order present in MRN and CCRN models 
that compositional variations exist on the subnanometre scale. In particular, local order does not 
extend homogeneously into the regime of density fluctuations and phase separation. Indeed, from the 
MD calculations of binary (Na2O)x(SiO2)1-x glasses [e.g. 36], when x < ~0.2 and alkali channels are 
incomplete, the structure is necessarily microphase separated, with sodium-rich and silica-rich 
regions. There is every reason to suppose that this long range order is also present below the liquidus.  
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We speculate, therefore, that these are the fluctuations in composition, x, from which incipient phase 
separation will nucleate, rather the density fluctuations  
 

kBTf (ΚT - ΚS + ΚS
r) 

 

frozen in at the glass transition (Eq. 2). At the same time we anticipate that the density fluctuations 
will limit the extent to which the long-range order that stems from local order persists. 
 
 
 
 

 5. Microsegregation and quasiperiodicity 
 

 Because density fluctuations and, for glasses with compositions in the coexistence regime, 
phase separation are ubiquitous throughout the structure of a glass, we should only expect to find 
evidence for the long range order stemming from modifier microsegregation on length scales shorter 
than V1/3 or Λ/2π. Local atomic order is usually described in terms of the total radial distribution 
function, T(r), and this is plotted for a typical oxide glass, Na2Si2O5 [42] in Fig. 8(a). The contribution 
from Na-O correlations at 2.4 Å, clearly seen in Na XAFS (Fig. 6), can be identified by the shoulder 
between the strong Si-O (1.6 Å) and O-O (2.6 Å) peaks coming from corner-shared SiO4 tetrahedral 
units.  The experimental neutron scattering pattern, Qi((Q), from which T(r) is obtained is also plotted 
in Fig. 8(b).  Experimental values for both T(r) and Qi(Q) are directly compared with an MD structure 
simulated for Na2Si2O5 glass [35] in Fig. 8, which demonstrates the particularly good agreement that 
can be obtained in both wavevector and real space by computer modelling [43]. From Fig. 8 wide 
angle diffraction quite clearly starts above 1 Å-1. Accordingly, evidence for modifier microsegregation 
in silicate glasses should be found in the wave vector window between approximately 0.05Å-1 (V-1/3) 
and 1 Å-1.   

 
Fig. 8.  The total rdf (T(r)) (a) and the weighted structure factor, Qi(Q), (b) for Na2Si2O5 glass 
obtained from neutron scattering (Exp) [42] compared to the predictions from an MD model 
(Sim) at 1000 K [43].  Note the FSDP at 1.8 Å-1. This can be related to the Na-Na correlations 
of spacing around  3.6 Å  (see Fig. 6) and  the quasiperiodicity evident in the model projection  
                                                              (Fig. 2). 
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Initial SAXS measurements in this range for alkali silicate and borate glasses have revealed 
marked differences between modified glasses and glass formers like silica [44]. As alkali was added 
to the glass composition, the scattering was observed to increase substantially between 0.03 Å-1 and 
0.1 Å-1.  It also became more pronounced the heavier the alkali-type. We have recently made a more 
detailed SAXS study of (Na2O)x(Si2O5)1-x glasses [45], using the same samples employed for Brillouin 
scattering [8] discussed earlier in connection with Fig. 3. Preliminary SAXS results for silica and for 
Na2Si3O7 glass are plotted in Fig. 9. These profiles are also merged with the initial First Sharp 
Diffraction Peaks (FSDP) obtained from X-ray scattering for the same glasses.  Plotted as ln I versus 
ln Q, Fig. 9 clearly identifies the wavevector window of 0.05 Å-1 to1 Å-1 and the way that this is filled 
in when Na2O is added to silica. It also reveals a common I ∝ Q-4 regime below ~0.04 Å-1 for both 
glasses. There are also differences in the height and position of the FSDP with composition, which we 
shall return to later. 

Fig. 9. Scattering from silicate glasses in the window between SAXS and the start of the 
structure factor S(q), log I versus log Q from 10-2 Å-1 to 2 Å-1.  Recent SAXS measurements     
[45] have been merged with X-ray Diffraction (XRD) results [46] for SiO2 and Na2Si3O7 
glass.  
 
The morphology of complex inorganic and organic composites, like silica gels and porous 

glasses, have been traced over many decades of length scale by combinations of light scattering, 
SAXS and XRD [29, 47]. When microstructure is nucleated from similar sized particles two scattering 
regimes can usually be delineated. In descending length scale (increasing Q) this sequence starts with 
Guinier’s law  

 
I ∝ exp(-Q2Rg

2/3),                                                                 (11) 
 

which describes the scattering by the monodispersed particle agglomerates, and ends with Porod’s law  
 

I ∝ Q P                                                                                                                     (12) 
 
which relates to the scattering from internal surfaces within the particles [12], where 
 

P = -2D + DS                                                                                                           (13) 
 

For mass fractals, surface area scales with mass, so D = DS in which case P = -D, the bulk 
fractal dimension.  Because surface fractals are uniformly dense D = 3 and P = -6 + DS, where DS is 
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the surface fractal dimension. For smooth interfaces DS = 2 and P = -4 as we find for scattering from 
silicate glasses in Fig. 9. For rough interfaces, though, DS < 2 and P < -4 and for diffuse interfaces       
DS > 2 and P > -4 [29]. The different scattering regimes are schematically contrasted with diffraction 
in Fig. 10 whilst in Fig. 11 the X-ray scattering simulated from the MD model of Na2Si2O5 glass 
[35,43] introduced in Fig. 8 is plotted. Like Fig. 9, Fig. 11 incorporates both the SAXS and the wide 
angle XRD regime [44].  

 

 
 
Fig. 10. Schematic showing the different regimes for scattering from a nucleated 
microstructure compared to Bragg diffraction [from 29].  Plotted as ln I versus ln Q, on the 
longest length scale scattering is from the largest particles (Guinier). The Porod regime 
beyond this comprises scattering from mass distribution within the particles (I ∝ Q-D) and 
ultimately scattering of domain interfaces (I ∝ Q-6 + Ds), where D is the mass fractal dimension 
and DS the  
            surface fractal dimension.  Finally Bragg diffraction follows at the largest Q. 
 
 
In present context, the Q-4 regime in Fig. 9 found experimentally for both silica and Na2Si3O7 

glass can be associated with scattering from smooth interfaces of nm size. Since both glasses are 
monophasic on this scale, we can ascribe these interfaces to those generated by density fluctuations.  
As we have seen the magnitude of density fluctuations for both glasses determined from Brillouin 
scattering (Fig. 3) are the same within experimental error. Interestingly, I ∝ Q-4 scattering can also be 
seen in Fig. 11 for the scattering calculated from an 8640 atom model for Na2Si2O5 glass. This was 
assembled from 8 units of the 1080 atom MD model [43,44]. Although this structure was 
subsequently relaxed, scattering from the original 24 Å box size clearly remains in the strong 
interference fringes. Since the box size is close to the experimental V-1/3 values obtained from RLP and 
SAXS, the average Q-4 trend in Fig. 11 can be considered crudely to model density fluctuations in the 
monophasic glass. The fact that the magnitude of the calculated Porod scattering is greater for the 
model (Fig. 11) compared to experiment (Fig. 9) reflects the sharper interface in the model due to the 
box size compared to the interfaces between density fluctuations in real glasses. 

Returning to Fig. 9, the I ∝ Q-4 behaviour exhibited by both silica and Na2Si3O7 glass 
continues out to Q ~ 0.04 Å-1, at which point scattering from the two glasses bifurcate. The power law 
weakens more for Na2Si3O7 glass than for silica, the initial ln – ln slopes for the two glasses being –3 
and –2.4 respectively. This is reminiscent of scattering from bulk mass fractals and is indicative of 
new microstructure for both glasses but on a length scale less than 20 Å.    

Scattering from nested multiple scale microstructures [29, 46], generally exhibit overlapping 
Porod and sometimes Guinier regimes. Finer structure emerges as the wavevector Q increases, the 
reciprocal of the wavevector at the overlap providing an indication of the size of coarser domain. In 
Fig. 9, the weakening of the power law for the two glasses and the splitting of the silica profile from 
that of Na2Si3O7 glass occurs when the wavelength of the X-rays is smaller than the size of the density 
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fluctuations, which have already been quantified in silicate glasses as being around 20 Å [14].  
Similar behaviour is modelled in the SAXS profile calculated for the simulated glass in Fig. 11. The 
arrow in Fig. 9 marks q = V-1/3 = 1/26.7 Å-1 obtained from fitting RLP for phase separated Na2O – SiO2 
glasses in Fig. 3, adding further evidence to a common scale for the density fluctuations and phase 
separation in silicate glasses.  It is beyond the point marked by the arrow in Fig. 9 that scattering from 
smaller-scale microstructure emerges.     

 

 
Fig. 11. Total X-ray Scattering predicted for a 8640 atom model of Na2Si2O5 glass assembled 
from the MD structure whose rdf and structure factor are shown in Fig. 8(a) with the real 
space structure in Fig. 12 [44]. The interference fringes in the SAXS regime result from 
scattering from the original 24 Å box size of the 1080 atom model [35] but additional 
scattering can be seen q  >  0.1 Å-1,  leading  eventually  to  interatomic  diffraction  in  the  
form  of   the  model  
                                                             structure factor. 
 
The MRN model for modified silicate glasses predicts microsegregation, comprising 

interconnecting channels of alkali surrounded by silica network as depicted in Fig. 7(a). Fig. 12 shows 
a section through the MD model of Na2SiO5 glass [36,43] described earlier (Fig. 7). This clearly 
reveals microsegregation of glass modifier from glass former, as earlier MD studies have reported 
[36]. Given the box size of 24 Å, the quasiperiodic spacing can be judged to be between 3 and 4 Å. 
This close to the mean Na-Na distance [35] in the MD model, which is also found experimentally 
from XAFS (see Fig. 6(a)) [30-33]. The geometry of this long-range order is expected to be of low 
dimension, mirroring the chain and layer structures of crystalline silicates [34].  Accordingly, the 
power law measured for Na2Si3O7 glass (I ∝ Q-2.4) beyond Q ~ 0.04 Å-1 in Fig. 9, which points to a 
mass fractal dimension of 2.4, is strong evidence for alkali microsegregation in modified glasses. 
Indeed we find that this trend continues for other (Na2O)x (Si2O5)1-x glasses as the Na2O content, x, 
increases further [45], the SAXS for all the silicate glasses branching at the same wavevector (Q = 
~0.04 Å-1) – including, incidentally, glasses in the coexistence region. 

Extending a similar interpretation to the SAXS pattern for silica in Fig. 9, the observed power 
law of I ∝ Q-3 indicates a mass fractal dimension D = 3. The presence of another level of 
microstructure in silica, on a finer scale than density fluctuations, is at first unexpected. All the 
modelling studies for this classic glass [48, 49, 50, 51, 52] point to an isotropic homogeneous 
structure on the scale of 10’s Å. However, heterogeneity in the form of quasiperiodicity with a repeat 
distance ~3.4 Å has recently been analysed from the large scale modelling of a-Si [53]. Indeed, very 
fine density fluctuations are revealed in the model rdf beyond around 10 Å. This quasiperiodicity is 
reproduced in Fig. 13 for a model section with a box size of 66.5 Å. Scaling this tetrahedral network 
to mimic silica by replacing Si-Si (2.38 Å) by Si-O-Si (3.1 Å) enlarges the box size in Fig. 13 from 
66.5 Å to 90 Å and raises the repeat distance from ~3.4 Å to ~4.1 Å. Whilst there is some indication 
from the experimental rdf of silica for residual periodicity at large distances in the region of 4 Å [53], 
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the strongest evidence for quasiperiodicity in silica and indeed in other silicate glasses comes from the 
location and width of the FSDP. 

 

 
Fig. 12.  Quasiperiodicity predicted from MD modelling studies of Na2Si2O5 glass [35,43,44].  
The network is shown shaded, with sodiums identified by open circles. The box size is 24 Å 
and  the quasiperiodic spacing is approximately 3 to 4 Å. This  matches the Na-Na 
correlations  
                   in the model and what is observed from Na XAFS [33] in Fig. 6(a).  
 

 
Fig. 13. Quasiperiodicity revealed from modelling studies of a-Si [53]. The contrast is 
between neighbours connected by odd numbered chains (grey) and even numbered chains 
(black). These mirror the contrast between voids and atoms in the tetrahedral structure. 
Scaling up to replicate silica by replacing Si-Si by Si-O-Si results in a quasiperiodic spacing 
of ~ 4.1 Å 
                                                       and a box size of ~ 90 Å. 
 
 
6. The first sharp diffraction peak (FSDP) 
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There has been much discussion as to the origin of the FSDP in network glasses [54], not 
least in its definition. Assuming that this is indeed a Bragg peak, the FSDP at QFSDP will contribute to 
interatomic correlations RFSDP given by 

 
RFSDP ≈ 2π/QFSDP                      (14) 

 
Accordingly, with QFSDP falling at values between 1 Å-1 to 2 Å-1, this diffraction relates to 

interatomic correlations RFSDP in the range 3 Å to 4 Å. In the total rdf, T(r), like the one plotted in Fig. 
8(a), RFSDP falls in the vicinity of fourth nearest neighbours where changes between different glasses 
are difficult to interpret without 3 dimensional models. This originally added confusion when the 
origins of the FSDP were first considered [54 and references therein]. Given that the FSDP is a Bragg 
peak, then the correlation length, LFSDP, which measures the range over which the periodicity is 
maintained in the glass, is be related to the width of the peak (FWHM) [55], ∆QFSDP, by 
 

LFSDP ≈ 2π/∆QFSDP      (15) 
 

  The FSDP for silica and for Na2Si3O7 glass can be clearly seen in Fig. 9 at 1.5 Å-1and 1.8 Å-1 

respectively, as well as in the neutron scattering pattern of Na2Si2O5 glass (Fig. 8(b)). By contrast the 
structure factor “proper” for silicate glasses commences at Q > ~ 2.5 Å-1 (2π/rO-O neutrons) and           
> ~ 4 Å-1 (2π/rSi-O X-rays).  It is noteworthy from Fig. 9 that the magnitude of the FSDP for X-rays is 
reduced for Na2Si3O7 glass compared to silica, which bears out the results of earlier neutron scattering 
studies of silica and Na and Li disilicate glasses [56] where similar behaviour was reported. In more 
recent neutron scattering measurements of (Na2O)x(SiO2)1-x glasses for 0 > x > 0.4 [42], the FSDP can 
be seen to reduce in magnitude and also to shift to larger Q with increased Na2O content. These 
changes in the position and shape of the FSDP for silica compared to silicate glasses have so far not 
been discussed in the literature. Fig. 14 illustrates equivalent behaviour in the FSDP for 
(K2O)x(SiO2)1-x glasses [57], where the peak position clearly moves to larger Q with increasing x, viz. 
from 1.5 Å-1 for silica to 2.0 Å-1 for K2Si3O7 glass.   

 
Fig. 14. First Sharp X-ray Diffraction Peaks measured in (K2O)x(SiO2)1-x glasses [57].  Note  
                            the shift of the peak to larger Q with increasing alkali content. 
 
The FSDP can be computer modelled quantitatively, provided box sizes are sufficiently 

greater than LFSDP. A distorted version of the FSDP at ~2 Å-1 can be seen in the MD simulations of  
Na2Si2O5 glass in Fig. 8(b) [35] and in Fig. 11 [44]. In modelling silica, Nakano and coworkers [52] 
have stressed how the size of the FSDP increases with the model size, correlations in the 4 Å to 11 Å 
range playing a vital role. These interatomic distances embrace the 4-bond neighbours – Si-O(2) and 
O-Si(2) – and are prominent in 5- and 6-fold rings [50]. More generally the FSDP has been 
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interpreted qualitatively on the molecular structure inherent in network glasses and melts, medium 
range order arising from cluster-cluster correlations or from ordering of the voids generated between 
them [54, 58]. For silicate glasses, on the other hand, the modifier component depolymerises the silica 
network which in principle will affect the ring statistics. In addition, alkali oxide modifiers bring 
charged NBO anions and alkali cations into the structure. In completely polar systems ionic 
interactions can give rise to Coulomb ordering [59,60] and these affects may also be influential in 
determining the intermediate range order in modified silicates. At the same time the inclusion of Na2O 
or K2O will remove some of the voids that are believed to characterise medium range order in AX2 – 
type systems [58].  

 
Table 1.  Experimental positions (QFSDP) and widths (∆QFSDP) for First Sharp Diffraction 
Peaks (FSDP)  for silica compared to Na and K silicate glasses.  Quasiperiodic  spacings  
(RFSDP) and  
                             Correlation Lengths (LFSDP) are shown alongside.   
 

 QFSDP/Å-1 ∆QFSDP/Å-1 RFSDP/Å LFSDP/Å References 
SiO2 1.5 0.4 4.1 15.7 [61] 
Na2Si3O7 1.8 1.2 3.5 5.2 [45] 
Na2Si2O5 1.7 0.6 3.7 10.5 [42] 
K2Si19O39 1.5 0.5 4.2 13.8 [57] 
K2Si6.4O13.8 1.9 0.7 3.4 8.5 [57] 
K2Si3O7 2.0 0.5 3.2 12.7 [57] 

  
The simplest interpretation of the FSDP, certainly in the silicate glasses we are discussing, is 

that this is the Bragg peak associated with the quasiperiodicity that constitutes the long range order 
identified from SAXS for Q > ~ 0.04 Å-1 in Fig. 9. Such microstructure exists on a length scale much 
shorter than the size of 20 Å characterised for density fluctuations and phase separation from RLP.  
Whilst much experimental information about FSDP’s is available for classic single and two 
component glasses [54], like silica for example [61], little is catalogued for more complex systems, 
like the modified silicate glasses under review. We have therefore drawn together in Table 1, values 
for the FSDP positions and widths, QFSDP and ∆QFSDP, for the Na and K silicates discussed in this 
paper. Using Eq. 14 and Eq. 15, values for the corresponding quasiperiodic spacings (RFSDP) and 
correlation lengths (LFSDP) are presented. Three simple points can be concluded:   

1. RFSDP values for silica and for sodium disilicate indeed fall close to the respective 
quasiperiodic spacings of 4.1 Å and 3.5 Å deduced from models [35,53] and from experiment 
[32].  Hence we feel confident in making the connection between changes in the FSDP and in 
the SAXS that is intuitively evident in Fig. 9. 

2. The correlation length LFSDP for silica of 16 Å approaches the 20 Å size that we have 
determined for density fluctuations. This points to the fact that in the absence of 
thermodynamic fluctuations in the melt quasiperiodicity in silica might extend still further, as 
indeed modelling studies suggest [53]. Note that the most dilute potassium silicate, x = 0.05, 
also has similar LFSDP values. 

3. For intermediate concentrations of sodium and potassium in silicate glasses the correlation 
lengths, LFSDP, are very much shorter than for silica: typically 5 to 10 Å. If the long range 
order in these structures adheres to the MRN concept of interpenetrating modifier and 
network sublattices, then we can expect the existence of two quasiperiodic spacings which, 
with close mixing, will mutually interact to reduce the overall correlation length.  

 
 
7. Conclusions 
 
Density fluctuations in monophasic silicate glasses occur on the same length scale of around 

20 Å as incipient phase separation for coexistent compositions. On a finer scale quasiperiodic 
structure exists which is derived from the local atomic structure. The coherence length of this 
miniature microstructure is restricted in single phase glasses by density fluctuations whilst in binary 
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glasses it is substantially reduced because of the mixing of two quasiperiodic structures with different 
spacings – one related to microdensity fluctuations in the silicate network and the other to alkali 
microsegregation. It would appear that phase separation is nucleated from such compositional and 
structural fluctuations.  
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