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We study the cooperative generation of phonon pulses in semiconductors by groups of 
inverted equidistant multilevel coupled excitations (electrons, excitons). Such equidistant 
systems take place in chalcogenide glasses with fractal structure. It is demonstrated that the 
cooperative generation of non-equilibrium localized phonons can be observed in experimental 
studying of the relaxation of groups of excited atoms after the passage of short laser pulse 
through the glass sample. The increasing of the absorption coefficient in the process of the 
excitation of glasses by short laser pulse with relatively small power is conditioned by the 
generation of the non-equilibrium coherent localized phonons in the process of the relaxation 
of non-equilibrium excitations. These coherent non-equilibrium localized phonons strongly 
change the topology of the random potential and, thus, open a new channel of the interband 
light absorption. These transitions take place with simultaneous participation of the photons 
and localized phonons.  
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1. Introduction 
 
Recently a great attention was devoted to the studying of cooperative generation of the non-

equilibrium phonons in semiconductors [1,2]. In the ref. [1] it was shown that superradiance takes 
place not only in the multi-atom inverted two-level systems. For example, superfluorescence and 
amplified spontaneous emission of 29-cm-1 phonons were observed following inversion of the  

)E(A2)E(E 22 −  acoustic transition of Cr3+ in ruby. In this work it was demonstrated that the 
conditions for both of these manifestations of phonon avalanches are selected via the Cr3+ 
concentration. The authors of this work describe the superfluorescence in terms of a pendulum 
equation of the acoustic Bloch vector. It should be noted, that rate equations of the level and phonon 
populations account for amplified spontaneous emission. 

In another ref. [2] using the picosecond pump and probe technique the authors have detected 
oscillations of photoinduced transmission and reflection in thin films of a-As2Te3 and cis-
polyacetylene. These oscillations are due to the generation and propagation of coherent acoustic 
phonons in the film. Recently the non-linear interband absorption in such chalcogenide glass 
semiconductors (CGS) as As2Se3, AsSe, GeSe2 and As22Se33Ge45 has been studied in ref. [3]. Here the 
hysteresis dependence of the output light intensity as a function of the input light intensity was 
observed. This hysteresis takes place due to the generation of the non-equilibrium phonons, which 
change the absorption coefficient.  

As the possibility of the coherent generation of the non-equilibrium phonons was observed in 
refs. [1,2] in our paper we propose a new cooperation mechanism, which account for the non-linear 
dependence of the absorption coefficient in CGS. That is why we study the interband excitation of the 
CGS by a short laser pulse in the same way as it was done in Andriesh – Chumash experiments [3]. It 
is clear that the relaxation of the excited electrons and holes (or certain number of excited atoms [4]) 
in the quantum wells of the random potential is accompanied by the generation of the non-equilibrium 
localized phonons [5,6]. The avalanche of these phonons with the wave-length of the order of the 



A. M. Andriesh, N. A. Enaki, V. I. Koroli, I. P. Culeac, V. I. Ciornea 
 
644 

magnitude modulation length of the random potential in the CGS drastically changes the form of this 
potential. We suppose that random potential modulates the bottom of the conductor band and the top 
of the valency band of the CGS. The non-equilibrium localized phonons with such wave-length also 
change this modulation and this effect opens a new channel of the interband light absorption. For this 
reason the absorption coefficient increases with the increasing of the light intensity and this 
phenomenon can be explained by means of photoinduced light absorption in CGS with the 
participation of the fractons. In fact, the coefficient of the interband light absorption can be 
represented as a sum of two parts 

,n0 βαα +=                                                                            (1) 
where 0α  is the part of the absorption coefficient, which does not depend on the temperature, nβ  is 
the part of the absorption coefficient, which depends on the mean number of the localized phonons n . 

Thus, in the process of the interband light absorption the transitions with the simultaneous 
participation of light quanta and localized phonons play an essential role. The second part of the 
absorption coefficient in eq. (1) essentially changes in the process of the relaxation of the excited 
electrons into the localized states in the optical gap of CGS. This relaxation is accompanied by the 
coherent generation of the non-equilibrium phonons 0nnn −=∆ , where 0n  is the mean number of the 
equilibrium localized phonons. 

The aim of the present work is to show in what manner the excited electrons in the quantum 
wells of the random potential can generate the correlated localized phonons. These coherent localized 
vibrational excitations decay into acoustic phonons which propagate through the sample of CGS.  

 
 
2. The model of cooperative relaxation 
 
Let us first consider the case in which such quantum wells appear in CGS due to the random 

potential that there are only two quasielectron states in the wells: excited and ground. Similar 
quantum wells can appear in the process of the excitation of certain number of atoms (or groups of 
atoms) by laser pulse [4,7]. In general, the energies of the two levels are more or less random 
quantities, depending on such factors as the particular configuration of atoms surrounding the two 
minima, on local strains, etc. [4]. In this case the new quasibonds between the atoms, belonging to the 
certain group can occur. Such a non-equilibrium cluster states of atomic group can relax into the 
ground states, generating the non-equilibrium localized phonons. Among randomly distributed 
quantum wells of quasielectrons one can always pick out the quasiequidistant subgroups of two-level 
states in a such randomly distributed states. In the other words, the spectrum of two-level states with 
random distance between the ground and excited states can be divided into the spectrum of 
quasiequidistant groups of two-level states. For example, if we consider a single localized electron 
with the transition energy αααω 12 EE −=h  one can always find the large number of other localized 
electrons with the same transition energy between the ground and excited states. Therefore, let us 
introduce the subgroup distribution function αρ  of the electron states in the quantum wells with the 
same energy distance αωh . Every subgroup α  of coupled electrons generates localized phonons with 
the proper frequency αωh . The certain quasiequidistant subgroup can generate a coherent Dicke pulse 
[8] of the non-equilibrium localized phonons. The localized phonons decay into the acoustic phonons. 
The analogous two-level systems were proposed by Anderson et al. [4]. Such two-level systems occur 
when the certain number of excited atoms (or group of atoms) have two equilibrium positions. The 
mechanism of the excitation of the localized electron-hole pairs (or groups of atoms) by laser pulse 
and the generation of the localized non-equilibrium phonons can be described by the following system 
of the differential equations  
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where '

eN α  and '

gN α  are the mean numbers of the excited electrons and the electrons in the ground 
state of 'α  subgroup, respectively, 'α  enumerates the number of the equidistant subgroups of the two-
level systems, s

' N,...,3,2,1=α , V0  is the excitation volume by laser pulse of the sample of CGS, Is is 
the light intensity in the sample of CGS, c is the light velocity, 'αρ is the subgroup distribution 

function, having the following property ∑
=
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ατ  is the spontaneous decay time of a single electron from the 

excited to the ground state of subgroup 'α , fτ  is the leaving time of the phonons from the active 
localized region of the acoustic phonon modes [9]. This system can be obtained from Maxwell-Bloch 
equations when the laser-pulse duration is more large than the relaxation time of electron polarization 
in CGS. The cooperation effect is possible in case when the wave-length of the localized phonons is 
of the same order as the distance between the quantum wells of 'α  subgroup. 

In thin films, which play the role of resonator, the induced laser generation of phonons is 
possible due to the reflection of phonon waves from the surfaces of the films. In this paper we discuss 
the problem of the generation of localized phonons, which don't have the possibility to propagate 
through the films. The last equation of the system (2) takes into account only the generation of such 

localized phonons in the decay process of the non-equilibrium localized electrons ∑
'

'

dt
dN g

α

α

 and losses 

from the non-equilibrium phonon modes f0 /)nn( τ−− . In this equation we don't take into account 
the reflection of phonon waves from the surfaces of the films. This is valid in the case of large losses 
and thick films with thickness ∝ cm105 4−×  [3]. That is why there are no oscillations of the light 
transmitted from the laser. 

When the pulse duration pτ  has the same order as the relaxation times of the localized 
electrons and phonons subsystems one can find the stationary solution of the system (2). From the 
stationary conditions of variables eN , n  and sI  ( 0dt/dNdt/dndt/dI es === ) we obtain the 
expression for the non-linear absorption coefficient dzI/)z(dI)I( sss −=α  in the following form  

0s0f

0s00f0
0s /)z(IV1

/)z(IVn
)I(

ωβτ
ωατ

βαα
h

h
−

+
+=

  

One can observe that with the increasing of the light intensity the absorption coefficient increases. 
Such increasing was experimentally observed by the authors of refs. [3]. The nonstationary solution of 
the system of equations (2) leads to the hysteresis dependence of the output light intensity as a 
function of the input intensity. 

When the time duration of the excitation pulse is shorter than the decay times of the localized 
electrons the pulse form can be approximated by δ - function ( )t(I)t,z(I p0ss δτ= ). In this case the 
number of excited electrons during the pulse duration is given by 

j2)n(
I

VN
'''

00
0

0s
0pe

ααα ρβα
ω

τ =+=
h

  

where '

j2 α is the number of the localized excited centers (electrons, holes) in the 'α  subgroup. From 
the second and third equations of the system (2) one obtains the decay equation for the inversion 
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Here 0n  is the mean photon number of the external thermal field  1
B00 ]1)TK/[exp(n −−= ωh . 

Let us proceed to study the behaviour of the proposed system in the quasistationary case, 
when ./)nn(dt/dn f0 τ−<<  In this situation from the fourth equation of the system (2) it follows 
that  
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is the delay time of the subgroup 'α . In this case the stationary state solution for the non-linear 
absorption coefficient α  takes the form  
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(5) 

The eq. (5) describes the relaxation of the non-linear absorption coefficient after the passage 
of the δ - pulse through the sample of CGS. It should be noted that these relaxations were also 
considered in refs. [3]. As follows from eq. (5) the relaxation depends on the cooperation law between 
the localized electrons. Every function 2hsec  in eq. (5) has the maximum, when '

0tt α= . The sum on 
'α  takes into account all subgroups of the equidistant two-level states, which have different delay 

times. In this situation the relaxation law of the absorption coefficient can be more broadened than 
that in case of single group of the equidistant two-level states. This broadening depends on the explicit 
form of the subgroup distribution function 'αρ . 

  
 
3.  Conclusions 
 
Returning to our subgroups we observed that the low of coherent time excitation each phonon 

modes strongly depend: on the frequency of this phonons ωα’, on the number of excites electrons Ne
α’, 

which can pass in the regime of cooperative generation. In the Dicke theory the time of coherent 
swing of phonon modes in the cooperative relaxation theory is named the delay time of phonon 
pulses. It is not difficult to observe that the group of excited electrons in the deep quantum wells 
generates more higher frequency phonon pulse with more short delay time.  This law follows from the 
dependence of the delay time on the spontaneous relaxation time and number of excited electrons 
t0
α=τ0

α /Nln2N. As the relaxation time τα’ is proportional with the third order of transition frequency 
ωα’, the delay time for the process of collective generation of higher frequency phonon is more less 
then the same time for phonon generation at lower frequency. 
. This effect can be experimental observed in the processes of propagation through the thin 
films of laser pulses with different duration and the same energy. If the time duration of pulses is 
comparable with the delay time of high energy phonons in the process of propagation of laser pulse 
through the films in absorption process the main contribution give only the higher frequency non-
equilibrium phonons. For pulses with more large duration the low frequency coherent modes can be 
generated in time and make substantial contribution in the absorption processes of pulse. In the other 
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words, by changing the duration of laser pulses we can test the time and spectral behaviour of the 
process of coherent phonon generation. 

As one can see from the eqs. (5) the non-linear induced absorption coefficient 'α  strongly 
depends on the relaxation law of hot electrons in the random potential. This law is determined by the 
form of the random potential and by the dynamic symmetry of the relaxation in the system. From eq. 
(5) it follows that for shallow quantum wells and for the SU(2) symmetry in case of deep quantum 
wells the non-linear absorption coefficient )t(hsec 2∝α  and is similar to the Dicke superradiance 
pulse.  
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