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There was a wide range of structures which are neither monocrystalline nor amorphous. 
Setting up a general model for such structures is very difficult because lattice distortions have 
different reasons and configurations. Therefore only approximations can be simulated. One of 
the most useful approximation is the model of paracrystals mainly developed by R. 
Hosemann. His idea was to postulate the distance to the neighbour atom or particle by a 
certain statistics. Starting with the linear "paracrystal" it is very easy to generate a statistical 
distribution of atoms or particles. But even for two dimensional paracrystals the problem 
arises that the diagonal statistics does not obey the general idea of the paracrystal. Several 
attempts have been made to model the two or three dimensional paracrystal but only the 
present authors potential field model offers the possibility to simulate those structures. The 
basic idea is very simple. To each of the atoms (or particles) positive center Gaussian 
functions are attributed together with a certain number of negative Gaussian traps; there 
interaction leads to the position of the neighbour atoms. Using the Monte Carlo method each 
of the neighbours can occupy a statistically generated position. So the three dimensional 
paracrystal can be generated. Several possibilities of additional parameters enable to adapt the 
model to the wanted conditions. 
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1. Introduction 

 
Mainly in the field of biochemistry structures could be observed which were neither mono- or 

polycrystalline nor amophous (Fig. 1). The X-ray patterns of those substances gave the hint, that 
contrary to the constant distances of atoms or particles in monocrystals the neighbour atom distances 
there are statistically distributed. 

 
Fig. 1. Small angle diffraction pattern (CuKα radiation) of ceratine of a seagull quill [1] 
This fact led to the “Theory of the Paracrystal“, developed mainly by R. Hosemann [2].    
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2. The linear paracrystal 
 
The linear (one-dimensional) paracrystal was quite simply described with a mathematical 

formula. 
Starting with an arbitrary zeropoint of the system the right and left neighbour position has to 

be generated by a certain statistics. Because of the a priori condition, which postulates that any of the 
system points can be selected as the zeropoint, this procedure of generating the neighbour point has to 
be continued to the right and left side until the whole paracrystal is generated. Theoretically the linear 
paracrystal has an infinite length. 
If trying to expand this model to two or three dimensions serious problems arise. If the procedure is 
applied to the other directions of the coordinate system, there is no way to get the proper statistical 
behaviour in any diagonal direction.  

Several models were proposed by Hosemann and his co-workers but none of them could 
cover the gap between the theoretical “ideal paracrystal“ and the reality. So the conception of the “real 
paracrystal“ was born, which considered a more or less rough approximation between theory and real 
structures. 

A promising model for generating paracrystals was made by the present authors: The potential 
field model. This model replaces each atom or particle of the system by a high positive center and, 
according to the binding character, a certain amount of negative traps, whose meaning will be 
described below. The pair energy of one atom related to all the others of the system can be calculated 
by multiplying their respective two fields and adding the product over a certain range. Doing this for 
all atom pairs of the system and adding all total energies of a configuration will give an indication for 
the stability of this particular configuration. The next step is generated by a Monte Carlo movement of 
the selected atom. This next procedure is repeated until preselected total energy conditions are 
reached. 

With this modelling process ideal conditions for generating “ideal paracrystals“ with 
statistical center to trap distances or “real paracrystals“ with fixed distances but mixed kind and size 
of atoms of the system are introduced. 
 
 

3. Mathematical description of the “Ideal Paracrystal“ 
 
The realisation of a formula for the one-dimensional  “ideal paracrystal“ can be carried out by 

a convolution product ρ0
∩H *) where ρ0( )x  is the electron density distribution of the (identical) 

atoms of the system, and H x( )  the distance statistics of the neighbour atom.    
The convolution product is a combination of the geometry of both factor functions ρ0  and H. 
In any case the convolution product is broader than ρ0  or H, unless one of them is pointlike. 

According to the a priori condition the same procedure has to be applied to all atoms of the system. 
Finally one gets the following equation for the linear “Ideal  Paracrystal“ ρ( )x :              

 ρ ρ ρ( ) ( ) ( ) ( ) ( )x x x H x x H x xk k

kk
= + − + +

⎡

⎣
⎢

⎤

⎦
⎥

∩ ∩ ∩∑∑0 0 1 1 . **)                     (1) 

A diagram resulting from Eq. 1 valid for five atoms is shown in Fig. 2. 
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Fig. 2. Diagram of the distance statistics of five atoms of a linear paracrystal. 

 
*)  ρ ρ ξ ξ ξ0 0( ) ( ) ( ) ( )x H x H x d∩

∞

= ⋅ −∫ ; ξ  is the integration variable 

**)  ( ) ( ) ( ) ( )H H H Hk∩ ∩ ∩ ∩= .......   k-times the convolution product; 

      x1= the average distance of two atoms; 
      2 1k + =  number of atoms of the system. 

Evidently the method is not suited to describe the position of a particular atom but gives a 
possibility to evaluate X-ray diffraction patterns. 
 
 

4. The evaluation of X-ray patterns by fourier invers transformation 
 
Since the detection of X-ray diffraction of crystals by Max v. Laue /3/ and the theoretical 

derivations by P. P. Ewald /4/ it is evident that the X-ray diffraction pattern can be calculated by 
applying the Fourier transformation [ ]FT to the structure ρ .  
Doing this in the case of the linear paracrystal we get with h as the coordinate in Fourier space: 

[ ]FT x e dx x e dx x H x x dxi hx i hx k

k
ρ ρ ρ ρπ π= = + −− − ∩ ∩

∞∞∞
∑∫∫∫ ( ) ( ) ( ) ( )2

0
2

0 1  

    + +∩ ∩

∞
∑∫ ρ0 1( ) ( )x H x x dx

k

k
        (2) 

An interesting aspect of Eq. 2 is the fact that the formula covers the whole range of different 
kinds of structures, starting with a monocrystal H x( )  pointlike function up to amorphous structures 
with very broad H x( )  functions. 

Using the convolution theorem of Fourier transform *) we get from Eq. 2: 

           [ ] [ ] ( ) ( )[ ] ( )[ ]FT FT FT FT H x x FT H x xk k

kk
ρ ρ ρ= + ⋅ − + +

⎧
⎨
⎩

⎫
⎬
⎭

∑∑0 0 1 1  **)     (3) 

Eq. 3 can be used to analize the average distance x1  of atoms, the atom or particle structure 
ρ0 ( )x , and the distance distribution H x( ) . But at best it will be only a more or less rough 
approximation of the reality. 
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5. The “Real Paracrystal“ 
 
As mentioned in the introduction the extension of the linear paracrystal to two or three 

dimensions led to serious problems because the definition of the statistics of the system in two or 
three dimensions automatically fixes the statistics in diagonal direction, which does not fit to the 
statistics requirements.  

*) [ ] [ ] [ ]FT A B FT A FT B∩ = ⋅ ;       **)  [ ] [ ] [ ] [ ]FT FT FT FTk = ⋅ .....  

Furthermore the statistical distribution is getting broader and broader with increasing distance from 
the zeropoint, so that atoms of different layers cannot be differentiated and any kind of (para-) crystals 
vanishes. For that reason R. Hosemann was forced to introduce domains within the system, with sizes 
that had a relation to the width of the atom statistics. This was considered with his α* law 

    α* = ⋅N g       (4) 

Here N  is the average number of particles within one domain and g is the width of the 
statistics ( )H x . Most of the values in Fig. 3 were derived experimentally. As a result all values were 
arranged in the region 0 1, < α*< 0 2, . 

 
         Fig. 3. Hosemann’s α*-law [5]. 

 

One of the earlier examples for illustrating real paracrystals was Hosemann’s coin model (Fig. 
4) which used two different sizes of coins. 
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Fig. 4. Hosemann’s coin model with 10% statistically distributed larger coins. 

But a check of the distance probability statistics (the distances from each coin to all others 
were measured, Fig. 5) of the coin model made clear that it can only be a rough approximation. 
Because there is evidently no broadening of the statistics with the increasing distance from the center. 

 
Fig. 5. Probability statistics of the coin model. 

 
 

6. The potential field model 
 
Although the present author’s potential field model was developed originally for processes 

like crystal growing etc. it is suited as well for the generation of paracrystals. The main idea of that 
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model is to represent each of the atoms of an atom pair by separate fields. In each atom a strong 
positive center is surrounded by several weak negative traps according to the binding character of the 
atoms. Depending on the special task the pair energy of two neighbouring atoms can be calculated by 
the convolution product of both atoms either in one, two or three dimensions. The lowest pair energy 
is attributed to the most stable distance position of the atom pair and is reached if each of the centers 
coincides with a trap of the other atom, cp. “strongest binding“ in Fig. 6. If a system of atoms has to 
be modelled the total energy  as the sum of the pair energies of a selected atom with all others gives a 
hint of the stability of the system. 

atom 1 atom 2

strongest bindingnon binding            repulsion  
Fig. 6.  Some configurations of an atom pair. 

 The one-dimensional ideal paracrystal can easily be realized by generating the center-to-trap 
distances by a random generator with a certain statistics and by bringing the linear system of atoms to 
its lowest total energy. As has been mentioned at the end of the chapter “The Linear Paracrystal“, the 
step from the ideal to the real paracrystal can be made just by replacing the statistics by a certain 
number of different atom pair distances and sizes. 
 
 
 7. Pair energy as a convolution product 
 
 By replacing the centers and traps of the atoms by Gaussian functions (Fig. 7a) the 
convolution product (i.e. the pair energy) can be evaluated easily by calculating a one-dimensional 
Gaussian function at the place of the center to center or ccnter to trap  distance. The result is positive 
in the first, and negative in the second case. This enables to establish a modelling computer procedure 
to bring the atoms into the lowest total energy positions (Fig. 7b). 

 

center traptrap

 
Fig. 7.  a) Cross-section of the potential field distribution of one atom consisting of Gaussians. 
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 Fig. 7.  b) Product of two-atom cross-sections like in Fig. 7a in the case of strongest 
binding of an atom pair, cp. Fig. 6 center. 

 
 
 8. Monte carlo modelling 
 
 To build up a one-, two- or three-dimensional paracrystal the Monte Carlo gambling method 
for establishing the position of a selected atom is well suited.  
 Initially the system may contain more than one atom, but let us start here with one atom. 
There is obviously no pair energy. We are putting now a second atom into the system by a Monte 
Carlo jump, which means generating its new center and traps angular position by a random 
generator.Then the pair energy of both atoms can be calculated. The jump is accepted if the energy is 
zero or negative.  Otherwise the jump is rejected and the procedure is started again until an acception 
will take place. This process is continued until all atoms of the system are considered and, depending 
on the  task, the lowest energy is reached. 
 
 
 9. Lennard-Jones pair energy 
 
 For more concrete cases the Gaussian functions of center and traps can be adapted to the well 
known Lennard-Jones pair energy function, so that the cross section of the convolution product of two 
atoms fits to the Lennard-Jones formula. Such a fit is shown in Fig. 8. 
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Lennard-Jones

Two Gaussians 

atom distance 

pair energy 

0

 
Fig. 8.  Pair energy of Gaussian approximated atoms adapted to the Lennard-Jones pair energy [6]. 

 
 
 10. Two- or three-dimensional paracrystals 
 
 Putting atoms consisting of two-dimensional Gaussians into the Monte Carlo process and 
introducing 10% larger atoms, the Hosemann’s coin model can easily be reconstructed (Fig. 9). 

 
  
      Fig. 9.  Reconstruction of Hosemann’s coin model by the potential field modelling. 
                                          Ten percent larger atoms are black indicated. 

 
 
 
 11. Conclusion 
 
 Paracrystalline structures have a broad distribution especially in biological substances. Up to 
now the mathematical description of these structures has to be reduced to statistical average studies. 
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 The step from the ideal paracrystal to the real one did extinct a part of the problems. A 
promising method seems to be the present authors potential field model because it openes up the 
possibility to adapt atom structures and distance statistics to real problems. 
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