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It is shown that the figure of merit of a thermoelectric couple can be appreciably improved by 
using a pulsed current transferred from the thermoelectric circuit. In the frame of this theory 
un unusual drop of temperature in a thermoelectric circuit is possible. An ultrafast process of 
thermoelectric conduction is described, whose increased performance is realized by 
minimizing the effects of thermal dissipation. 
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       1. Introduction 
 
 The problem of the limit for the thermoelectric figure of merit and possible values of this 
limit for thermoelectric (TE) materials was studied in many works [1-6]. In papers [5-6], it is shown 
that the figure of merit, Z , and the dimensionless parameter, ZT, where T is the temperature, are 
confined within the following limits 
 

∞ ≥ Z ≥ 0, ∞ ≥ ZT ≥ 0  
 
 At present a detailed and comprehensive analysis of the problem on the possible l imits for ZT 
has been given in paper [7]. Although Z and ZT have no thermodynamic limit, the maximum figure of 
merit, Z , obtained until today is somewhere around Z = 3.3 K-1. This paper shows that the figure of 
merit (which is proportional to the electric flow) may increase appreciably by a pulse-operating 
device, which enhances the electric flow through the concentration of the charge carriers over short 
lengths, while the rest of the sample is covered by the pulse moving with a high velocity, comparable 
with the Fermi velocity of charge carriers. The main point of such a device is the practical realization 
of a sudden drop of temperature over a short distance over the length of the sample. 

Recently, new ideas have been advanced in order to increase the efficiency of the 
thermoelectric devices [8-13]. Such devices consist of an alternate sequence of p-n semiconducting 
junctions, subjected to an alternate sequence of temperature differentials, such as to create a serial 
battery of thermoelectric generators. The performance of the power supply output is improved by 
switching electric contactors.  It has been noticed that the power output may greatly be increased for 
short and ultra-short pulses.   
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2.  Results  
 
The paper describes the transient, non stationary regime of an ultrafast process of 

thermoconduction. Under stationary external  perturbation all relaxation mechanisms compatible with 
the law of conservation of energy are set to motion in the sample which results in stationary transport 
of energy and particles. A different situation arises under short  pulse perturbations. If, for example, 
the pulse length is shorter than the characteristic mean-free path , stationary processes do not arise and 
the transition to equil ibrium state takes place some time after the end of the pulse action. In the 
presence of several relaxation mechanisms the most intensive relaxation mechanism is involved, 
which is compatible with the law of conservation of energy and characterized by shortest relaxation 
time. The subsequent system evolution in time is accompanied by other, less intense and longer 
relaxation mechanisms. 

It is worth mentioning that thermoelectric signal is formed only in the nonequilibrium 
subsystem of charged particles as a response to space and time inhomogeneous carrier temperature. 
The latter, however, is formed under the influence of boundary and initial conditions and by the 
nature of interaction with the other subsystems of quasi-particles. It is clear that thermoelectric signal  
carries information both on thermal parameters of quasi-particles and on various relaxation 
mechanisms. 
 Let 
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be the Fermi-Dirac distribution of charge carriers with the Fermi level (chemical potential) µ at the 
temperature T. A local change δT in the temperature gives rise to a change 
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in the electron density,  where v = ∂ ε /∂ p is the quasi-particle velocity and m is the quasi-particle 
effective mass of the charge carriers (which may be taken as the base electron mass for practical  
purposes) and �  denotes the Planck's constant [13]. According to the theory of slightl y 
inhomogeneous electron liquid [14] the chemical potential µ may be taken as  µ =  pF

2/2m, where pF is 
the Fermi momentum of a spherical Fermi surface. Integrating by parts in (2) and making use of the 
Fermi-Dirac integrals  
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for T/µ << 1 one obtains 
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where 323 3/ �πFpn =  is the electron concentration.The result may be generalized for non-spherical  
Fermi surfaces, and it may also be derived for relatively small concentrations of charge carriers, 
where equation (3) must be corrected. The numerical computations are carried out here as for 
electrons in simple metals. The general behavior of the results and the ensuing physical picture do not 
differ qualitatively with respect to various other practical situations. 
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  The chemical potential undergoes a change δµ, given by 
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such as to preserve the number of electrons. Therefore, 
 

δnT + δnµ = 0                                                                     (6) 
 
and 
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The change δµ in the chemical potential is equivalent with a change -δµ in the energy levels, 

and therefore, an electrical potential U appears, such as 
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or 
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 where e is the electron charge. This is the origin of the thermoelectric effect and 
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Q being Seebeck coefficient or the termopower [15]. The change in energy per unit volume is 
 

TnTTcE δ
µ

πδδ
2

2

==   ,                                                 (11) 

 
where c = (π2/2µ)nTδT is the heat capacity of electrons ( per volume unit).  
 The excited (quasi-) electrons in number of δn = δnT =  -δnµ (per unit volume) move along the 
x-axis with the (average) velocity v = vF cosθ =  vF / 2, where vF  = pF/m is the Fermi velocity. Here, 
we leave aside the finite-size and other geometric effects of the sample. The electronic quasi-particles 
have a finite lifetime τ, as due, for instance, to the electron-electron and electron-phonon interaction. 
During this short time τ they move along the mean free path Λ, so that their density n(x,t) changes 
according to  
 

n(x,t + τ) - n(x,t) = n (x-Λ,t) - n(x,t),                                               (12) 
 
or, as long as τ << t and Λ<< x, 
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This is the continuity equation, where j = v0 n is the density of particle flow. Its general solution is:   
 

n = f (x - vt)                                                                     (14) 
  
 For the initial condition n (x, t = 0) = V δn δ (x), where V denotes the volume of the local  
heating, one obtains f (x) = Vδn δ (x), so that  
 

n (x, t) =  Vδn δ (x - v0 t),                                                       (15) 
 
The original perturbation propagates along the sample with the velocity v0. The electric flow is 
therefore 
 

I0 =  -e v0 Aδn,                                                                   (16) 
 
 where A is the area of the cross-section of the sample. Making use of (4) and (9) one may write 
Ohm's law for the electric resistence as 
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Since µ / vF n = (3π2 / 2) � 3/p2

F one obtains also 
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 where ae = 1 / kF is the average inter-particle separation, kF = � / pF being the Fermi wavevector. It 
follows that the conductivity R-1 = (e2 / h) × number of current lines, hence the quanta e2/h for electric 
conductivity. It is worth emphasizing that the formation of δ -pulse through local heating is a highly 
idealized situation the volume V in (15) being given by V = A ⋅ l0 where l0 is a length of the order of 
mean free path (l0 ≅ Λ). It is worthwhile estimating the efficiency of this ultrafast thermoelectric 
conduction. According to the above equations the electric energy is given by 
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while the heating energy δE is given by (11). It follows the efficiency quotient 
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where ηC  = δT / T is the Carnot quotient. One can see that η is much smaller than ηC , since              
T / µ << 1. The thermoelectric conduction is indeed a second-order effect, in the sense that both the 
voltage and the number of charge carriers are proportional to δT, so that the electric power goes like 
(δT)2. In contrast with the heat given by (11) which is a first order effect ( and which is transported by 
thermal conduction), while the main part of heat is spent for thermal disorder, only a small fraction of 
it is spent for thermoelectric conduction. For typical values µ ~ 1eV, vF ~ 105m/s, A ~ 1 cm2, δT ~ 100 
K and room temperature T, one obtains a rather small voltage U ~ 10-4 V, according to (9), but a high 
electric flux  I0 ~ 107 A,from (16), i.e an electric power of the order of ~ 1kW. It is worth emphasizing 
that the electric flow as given by I0 in (16) does not depend essentially on the electron concentration. 
We also note that the efficiency quotient derived above for an ideal δ-pulse is the same as the 
efficiency quotient corresponding to thermoelectric conduction at thermal equilibrium. 
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 The li fetime τe of the electronic quasi-particles due to the electron-electron collisions is given 
by [14] 
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where B ≅ 4πe2 / k2

F and ρ = mpF / π2 � 3 is the density of states at Fermi level. Making use of the 
atomic units of Bohr radius a H = � 2 / me2 = 0.53 Å and e2 / a H = 27.2 eV, one gets 
 

1 / τe ≈ (ae
2 / 27.2) *107 T2,                                                     (22) 

 
and for typical electronic densities at room temperature one obtains 1 / τe ≈ 1012 s-1, and the 
corresponding mean free path Λ ≈ 10-7 m = 103 Å = 0,1 µm. The electronic quasi-particle l ifetime τ e-ph 
caused by the electron-(acoustic) phonon collisions is given by [16] 
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where M is the atomic mass and ωD is the Debye frequency. For typical parameter values one gets       
F ≈ 10 - 100 and 1/ τe-ph  ≅ 109 - 1010 T, which gives 1/ τe-ph  ≅ 1011 - 1012 s-1 at room temperature. As 
one can see, it is comparable with the electron-electron lifetime of the electronic quasi-particles and 
the mean free path l ≅ 10-7 m = 103 Å as given above. In fact, a comparison of the numerical factors in 
(22) and (23) shows that at room temperature the collision regime is usually dominated by the 
electron-phonon interaction. 
 It follows from the above considerations that the δ-pulse corresponding to the thermoelectri c 
flux I0 given by (16) is transported without dissipation over the length l of the sample with the 
velocite v = vF/2 . The time of flight is therefore t0 = 2l / vF. For l = 1mm, for instance, one obtains t0 
≅ 2 x 10-8 s, i.e. a frequency ν0 = 1/t0 ≅ 50 MHz. However, for longer times it begins to appear the 
dissipation of the electric flow, as due to the di ffusion of the charge carriers. Indeed, already for an 
open circuit the electrons bounce on the ends of the sample, giving rise to thermal dissipation. 
Similarly, for a continuous operation in short circuit the electrons move repeatedly along the sample. 
For a motion proceeding in both directions equation (12) becomes  
 

n(x,t + τ) - n(x,t) = n(x + Λ,t) + n(x -Λ,t)  -2 n(x,t),                                      (24) 
  
or 
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which is the diffusion equation. It is worth emphasizing in this context the statistical nature of 
equations (12) and (24), as 1/ τ is the quasi-particle probability, and Λ stands therefore for dissipation 
length [17]. For the same initial condition n(x, t =0) = Vδnδ(x) as the one used in (13) one may write 
for (25) the Fourier representation 
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the integral can easily be estimated as 
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which is the well-known solution of the diffusion equation. Similarly, equation (24) becomes for 
longer times 
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whose solution is 
 

tvtvxe
tv

nVtxn 0
2

0 2/)(

04

1
),( Λ−−

Λ
=

π
δ  .                                           (29) 

 

One can see that the peak of the charge carriers flattens gradually over a distance ∆x = 2 ,0tlv  while 

moving with the velocity v0. The electric flux 
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vanishes in the limit of the long times. For shorter times the electric flux is diminished to                     

I ∼ I0l0/ tv02 Λπ , where l0 ∼ Λ is the original width of the ideal δ-pulse. The time after which the 

dissipation effect prevails upon the propagation is of the order of t1 ≈ l2 /Λv0  ≈  t0 (l /Λ), corresponding 
to ∆x ≈ l. For l =  1 mm and t0 = 2 × 10-8 s given above, and for the diffusion length l  ≈ 103 Å, one 
obtains t1 ≈ 104 t0 ≈ 2 x 10-4s, corresponding to frequency ν1 ≈ 5 kHz. For any pulse- operating regime 
of frequency ν in the range ν1 - ν0 , i.e. ν1< ν< ν0, the electric flux is of the order of I given above, 
diminishing gradually for lower frequencies. For frequencies below the lower bound ν1 the electric 
flux diminishes drastically, and the equilibrium-transport regime is reached. Of course, the finite 
duration of the electric contacts has the same damping effect. 
 The ideal pulse-operating regime described above is, therefore, limited by the extent of local  
heating, over which the heat dissipation acts. Let us assume that the local heating takes place over a 
length l ', such as Λ << l' << l. Then, the heat cl'∆T (per unit area) supplied for a temperature 
variation ∆T is given by κ(∆T / l')t', where κ ≅ cvFΛ is the electron thermoconductivity, which is 
independent of the temperature difference. The pulse formed over the distance l' moves with the 
velocity v0 , so that the flight time is t = (l-l')/v0 ∼ t0 . One can see that the time t' needed for the 
formation of the pulse is much longer than the flight time (by the factor l ' 2 /lΛ). For an optimal  
operation the electric contacts should be maintened a duration t, and interrupted a duration t' , (while 
the thermal contacts must be maintened a time t', i.e. practically all the time). The operating frequency 
is therefore ν = 1/(t+t') ≅ ν0(Λl /l' 2), and one can see that the ideal case ν  = ν0  is not attained, except 
for "microscopic engine" where l ' ∼ l ( the equality  lΛ = l' 2 is difficult to be satisfied in practice. In 
fact, in order to preserve the width of the pulse durring its flight through the sample the condition lΛ 
<< l' 2 must be satisfied, which is equivalent to ν  << ν0 and t << t'). The frequency ν can be also be 
written as ν = ν1 (l/l') 

2, where ν1 = ν0(Λ/l) has been introduced above as the lower limit of the 
operating frequency. For the typical values given before ( ν1 = 5 kHz) and a reasonable ratio l '/l = 1/2 
one obtains approximatelly ν = 20 kHz. The density of the charge carriers in the pulse formed at one 
end of the sample is given by (15) where now the volume V is given by V = A⋅l'. The electric flux is 
of the order of I0, and the electric energy is given by (19) (coresponding to V = A⋅ Λ). One can see that 
it increased in the same proportion as heat increased, so that the efficiency quotient given by (20) is 
left unchanged. However, the electric power is referred to the time t' = (1/vF) l' 

2 / Λ needed for 
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formation of the pulse (as well as for its full relaxation), so that it is decreased by the factor l'/Λ, and 
the electric flux  
 

I ∼ I0 (Λ/l')                                                                     (31) 
 

 is also reduced to the same extent. One can see that the ideal situation is approached for heating 
lengths l ' as short as posible. For l '/l = 1/2 and for the typical values given above the electric flux is 

reduced to I ∼ 103 A. It is also worth nothing that the extent of pulse is now ∆x ∼ ,''0 ltv =Λ as 

expected, and t' is precisely the time needed for formation of pulse tail 'tvFΛ  of the order of l ', i.e. 

t' ∼ (1 / vF) l' 
2 /Λ. 

 In general, the high-performance device operation requires high-quality electric contacts, a 
sharply-defined operating pulse frequency ν, obeing as close as possible the contact interruption         
t' = (1 / vF) l' 

2/Λ   and contact duration t = (l - l')/v0 , good thermal isolation, and good thermal 
contacts. The latter are necessary since the thermal conduction is always present (including that due to 
the phonon transport), and a decrease of temperature as abrupt as possible must be ensured over short 
distances l '.  Under the conditions described above the heat injection into the sample is an equilibrium 
process, its rate being of the order of vF(Λ/l ') (while the heating time is t' ∼ (1 / vF) l' 

2 /Λ). A similar 
rate holds for the lattice heat, where the Fermi velocity is replaced by the sound velocity vs. Usually, 
long after the dissipation is fully developed, a stationary drop of temperature is realized over the 
sample length, of small, constant gradient, which is the usual condition under which the transport 
experiments ( like thermoconduction, electric conduction, thermopower, etc.) are conducted [15]. In 
contrast to the situation described above (which is a non-stationary, transient, and non-equilibrium 
one), such cases correspond to stationary, equilibrium transport. 
  It is worth noting that for equilibrium transport the electric conductivity σ  is given by            
I =  σUA/l and the thermoconductivity k = KAδT/l , the electric power is therefore Pe = U⋅I = σQ2A 
(δT)2/l, where Q = U/δT is the thermopower (Seebeck coefficient), while the caloric power is              
Pcal = ∂δE/∂t, one can write therefore the efficiency quotient as 
 

CQ
K

T ηση 2= ,                                                                 (32) 

 
the ratio K/Tσ  =  L is the Lorenz number, which is independent of temperature, according to 
Wiedemann-Franz law. For ideal conditions L = π/3e2. On the other hand, the ideal thermopower is 
given by  
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for T/µ << 1 , so that the efficiency quotient above becomes ,
12
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3. Conclusions 
 
The electric flux through the sample is given by I ≈ I0 (Θ /T)2 or I ≈ I0 [Θ 2/T(T+Θ 2)] , at room 

temperatures, as corresponding to electron-electron or electron-electron plus electron-phonon 
relaxation processes, where the scale temperatures are typically Θ ≈ 1 K (for 1 cm2 an area of cross-
section) and Θ 2 ≈ 102 K.  Both I0 and the voltage U are the same as those computed above [16]. One 
can see that the equilibrium processes reduce the electric flow by a factor of ≈ 105 at least, leading to  
I ≈ 102 A for typical sample employed here. It corresponds very closely to a reduction factor of the 
order Λ/l, (Θ 2∼ Λ/l), where l  is the mean transverse size of the sample, and stands for the local 
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heating length l' introduced above. As long as this length l is replaced by the much shorter length l', 
through the pulse-operating regime described here, the performance of such devices is much 
improved. In this difference resides the distinction between the equilibrium electric transport 
employed in the usually operated thermoelectric devices and the non-equilibrium electric transport in 
the fast pulse-operating devices.    

In fact it was demonstrated that an ultrafast process with increased thermoelectric 
performances can be realised by minimizing the thermal dissipation. It is described a "pulse operating 
regime" of  a new "cold" thermoelectric device. 
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