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ANALYSIS OF PHASE MEASUREMENT ERROR FOR NULL GENERALIZED
ELLIPSOMETRY USING THE PHASE COMPENSATOR

P. C. Logofatu
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An eror analysis of null generdized elipsometry for phase measurement using a Babinet
compensator is presented. It turns out that there are errors only in a second order
approxi mation, which means this technique provides high sensitivity for phase measurements.
The sensitivity can be improved by equalizing the amplitudes of the x and y components of
the field at the Babinet compensator but this complicates considerably the experimenta
procedure.
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1. Introduction

Phase measurement techniques, although known for more than a century, are increasingly
used today for their sensitivity and accuracy [1-4]. On the other hand null measurements are reputed
for being very sensitive [5]. Therefore null measurements of the phase using a Babinet compensator
(null dlipsometry) are likely to provide high sensitivity. In our paper dlipsometry is used for the
determination of the phase change in reflection for an anisotropic surface. This type of surfaces
cannot be described just by two complex reflection coefficients r, and rs. Polarization conversion of
light requires four complex reflection coefficients for a complete description of the optical properties
of the surface, ryp, I'p, Ips @ I's;, @ formalism call ed generalized dlipsometry [6-8]. In principle, one
derives an expression for the error of phase change measurement in these conditions and it turns out
that thereis an error only on a second order approximation, which is an € oquent argument in favor of
the sengitivity of this measurement technique.

The experimental arrangement for phase measurement is illustrated in Fig. 1. The beam
coming from left is linearly polarized by the polarizer P and becomes dliptically polarized after
reflection on the grating. The compensator C compensates for the phase shift between x and y
component and the beam is again linearly polarized. Another polarizer A (analyzer) is set
perpendi cular on the incident beam, which vanishes on transmission. The phase measurement is a null
measurement and we nullify the light intensity by an appropriate combination of phase shift
introduced by the compensator and polarization angle of the analyzer.

The ultimate god is the determination of the opticd properties of the materid, i.e. the
reflection coefficients. The measurable must be a function of these coefficients,

A=A,

p,rps,rw,r§).
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Fig. 1. Experimental arrangement for phase measurement using a Babinet compensator. P is

the polarizer, A the analyzer, C the phase compensator, D the detector, K the grating vector,

¢ theazimuth angle, © theincidence angle, Ypthe polarizer angle, W the anayzer angle and
E", E™ E°and E™ are thelight field at different positionsin the system.

2. Error analysis

For calculations we will use the Jones matrix approach [9]. The input components of the
beam are

E" =E"cosy,,

in _ —in; (1)
E, =E"sny;,.

Upon refl ection the fiel d becomes
E ro [y co A
Ey rsp rS Snl//P

Er =(rpp cosy, +rpssinl//p)Ei",
Ef = (rSp COSY, + I SN, )E‘".

or
©)

The phase shift due to reflection on the sampleis

E™ r. cosy, +r_sin
A — arg i/ef — arg sp l//P ss : l//P ]
E Mo COSYp +1  SNY,

X

4)
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The compensator will introduce a phase shift Ac which in the end is supposed to be equd to A
but for now we assume is arbitrary. Then we have

EC - Eref

5
ES =E/ exp(-iA.). ©

After the anayzer the beamis
EM _{ cos’ i, coswAsint//A] Ef)
E)") \sng,cosp, sn’y, JE/

coswA]

sny,

(6)
(coswAEf +sint//AEff{

The output intensity measured by the detector D is

Iout :1[
2

1 ; . ; . 2
E‘cosz//A Ey +siny,E) exp(—lAc)| = )

oS’ Y, |1 +sin? @, 11¥ +2sing, cosy, /114 11¥ cos(A -2 ),

e[ +[E5#[" ) = Sloosy, ES +sings, E5| =

where

|1 =1 cos’a,
ref _ ref
11 =

®)

sin’a,
and

:| rp COSp + 1 SINYY, |
11 COSY, +1, SINYY, |

tan(a) ©)

I"¥ is the intensity that can be measured by a detector right after the reflection on the sample and also

happens to be the maximum output at the detector D in Fig. 1 (when the analyzer A is paralld to the
linearly polarized output beam and if there are no pure transmission losses in the compensator and the
ana yzer). Obviously, from Eq. (3), 1" is of the form

. . 2 i
| = Qrw cosy, +r$S|n¢/p|2 +|er cosyp +rpssmwp| )I " (10
with
R
Im - Eln . 11
2‘ (11)

a is the polarization angle of the beam when the phase shift is compensated and also the angle at
which there is one of the semiaxes of the polarization dlipse. Using Egs. (8) and (9) we can rewrite
(7) as
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| =1 (cos® @, cos? @ +Sin® @, Sin® @ + 2sing,, cos  sinarcosarcos A —4)).  (12)
To obtain an expression for the phase measurement error we derive the output 1° on the phase A:

ol out __E . . . _ ref
AT 25|n(2£//A)5|n(20')5|n(A A 13

At null conditions one has Y, =0£172 and A=Ac. Then, it follows

A :%‘sinz(Za)l e, (14)
or
[ 200
D=\ ant2a) @ =

where J (O) is the measurement error for output intensity when this intensity is zero. Generdly, this
is the minimum value of the error.

3. Discussion

It isimportant to note that the error appears only in the second order approximation. Thereis
no measurement error for the phase in afirst order approximation. Thisis adirect conseguence of the
fact that a null measurement type technique is used. It must be aso mentioned that these
consi derations apply to precision not to accuracy. They are valid only if random, unbiased errors are
assumed.

This relation makes sense, and we can derive it just from intuitive considerations. Since the
phase measurement is a null measurement, the larger is the input to nullify, the more precise is the
measurement of the phase. And we can see that for large values of I, 3A isindeed smaller. Also, the

precision of the phase compensation is better when the components E;ef and Eff have comparable

amplitudes and is maximum when they are equa. The precision of the phase compensation is
obviously rdated to how large is the difference between the maximum and the minimum output at the
detector, because a large difference alows for a better discrimination of the minimum. Or, this
differenceis a maximum when

ref
EX

— ref
—‘Ey

(16)

and is minimum when one of the componentsis zero. Indeed the smaller error is for a=45°, when Eq.
(16) is fulfilled and becomes infinite for a=0° or a=90°, i.e. E;* or EJ¥ is zero. From Eq. (12) if
we alow the compensating phase shift Ac to vary we obtain

| ™~ ™ = lsin(2,)sin(2a )1 ™ 17)

This quantity is obviously maxi mum when a=45° and is minimum when a=0° or a=90°.

Therefore, an important enhancement of the precision of the phase measurement can be done
if we rotate the axes of the compensator with an amount 6 necessary to equilibrate the x and y
components. In this case Eq. (15) becomes
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24 (0

AN = s (18)

However, A expressed by Eqg. (4) becomes

A=ar Ere . E,¥ cosf +E," siné 19
J J -E sind+E}¥ cosd )’

where E/*" and E;Ef' are the components of the reflected beam in the rotated frame. Although the

rotation of the compensator axes can dramatically improve the precision, in practice is difficult to
implement and it may not be worth the trouble. To find the angle 8, you need to scan the output at the
detector for various angles 5 with the compensator inactive until you find two positions say y; and
W, separated by 90° where the output is equa. Then you have to rotate the compensator so that the x
and y axes matches the two positions. Then 8 must be noted for further use in calculations. This
procedure must be repeated for each measurement and for each measurement we have a different
value for 6.

One must be aware that Eqg. (15) is valid only in the approximation that there are no pure
transmission losses in the compensator and the analyzer. Generdly, we do have this kind of 1osses and
Eg. (15) must be modified accordingly

o [ 20 -

sin?(2a)T.T, 1™

where T is the transmission of the compensator and T 4 is the maxi mum transmission of the anal yzer,
when the beamis linearly polarized and the anal yzer is pardld to the beam polarization.

4. Conclusion

We have shown using quantitative arguments that null dlipsometry using a Babinet
compensator is a highly sensitive phase measurement technique. The first order approximation of the
error is zero and we have to go to the second order approximation. By rotating the compensator to a
position, where the x and y components are of equal amplitude, the sensitivity can be considerably
increased but this complicates the experimental procedure and the computations and introduces
supplementary sources of errors.
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