
Journal of Optoelectronics and Advanced Materials Vol. 3, No. 1, March 2001, p. 45-49 
 
 
 

 
 
 

ANALYSIS OF PHASE MEASUREMENT ERROR FOR NULL GENERALIZED 
ELLIPSOMETRY USING THE PHASE COMPENSATOR 

 
 
P. C. Logofatu 
 
Center of High Technology Materials, University of New Mexico 
1313 Goddard SE, Albuquerque NM 87106, USA 

 
 

An error analysis of null generalized ellipsometry for phase measurement using a Babinet 
compensator is presented. It turns out that there are errors only in a second order 
approximation, which means this technique provides high sensitivity for phase measurements. 
The sensitivity can be improved by equalizing the amplitudes of the x and y components of 
the field at the Babinet compensator but this complicates considerably the experimental 
procedure.  
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1. Introduction 

 
Phase measurement techniques, although known for more than a century, are increasingly 

used today for their sensitivity and accuracy [1-4]. On the other hand null measurements are reputed 
for being very sensitive [5]. Therefore null measurements of the phase using a Babinet compensator 
(null ellipsometry) are likely to provide high sensitivity. In our paper ellipsometry is used for the 
determination of the phase change in reflection for an anisotropic surface. This type of surfaces 
cannot be described just by two complex reflection coefficients rp and rs. Polarization conversion of 
light requires four complex reflection coefficients for a complete description of the optical properties 
of the surface, rpp, rsp, rps and rss, a formalism called generalized ellipsometry [6-8]. In principle, one 
derives an expression for the error of phase change measurement in these conditions and it turns out 
that there is an error only on a second order approximation, which is an eloquent argument in favor of 
the sensitivity of this measurement technique.  

The experimental arrangement for phase measurement is illustrated in Fig. 1. The beam 
coming from left is linearly polarized by the polarizer P and becomes elliptically polarized after 
reflection on the grating. The compensator C compensates for the phase shift between x and y 
component and the beam is again linearly polarized. Another polarizer A (analyzer) is set 
perpendicular on the incident beam, which vanishes on transmission. The phase measurement is a null 
measurement and we nulli fy the light intensity by an appropriate combination of phase shift 
introduced by the compensator and polarization angle of the analyzer.  

The ultimate goal is the determination of the optical properties of the material, i.e. the 
reflection coefficients. The measurable must be a function of these coefficients, 

( )sssppspp rrrr ,,,∆=∆ .  
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Fig. 1. Experimental arrangement for phase measurement using a Babinet compensator. P is 
the  polarizer, A the analyzer, C the phase compensator, D the detector, K the grating vector, 
ϕ  the azimuth angle, θ  the incidence  angle, ψP the polarizer angle, ψA the analyzer angle and  
                Ein, Eref, EC and Eout are the light field at different positions in the system.  
 
 
2. Error analysis 
 
For calculations we will use the Jones matrix approach [9]. The input components of the 

beam are 
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Upon reflection the field becomes 
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The phase shift due to reflection on the sample is  
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The compensator will introduce a phase shift ∆C which in the end is supposed to be equal to ∆ 
but for now we assume is arbitrary. Then we have 
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After the analyzer the beam is 

 

( ) ���
�����+

=���
��������

�����=���
�����

A

AC
yA

C
xA

C
y

C
x

AAA

AAA
out
y

out
x

EE

E

E

E

E

ψ
ψ

ψψ

ψψψ
ψψψ

sin

cos
sincos

sincossin

sincoscos
2

2

.   (6) 

 
The output intensity measured by the detector D is 
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where 
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and  
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Iref is the intensity that can be measured by a detector right after the reflection on the sample and also 
happens to be the maximum output at the detector D in Fig. 1 (when the analyzer A is parallel to the 
linearly polarized output beam and if there are no pure transmission losses in the compensator and the 
analyzer). Obviously, from Eq. (3), Iref is of the form 
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with 
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α is the polarization angle of the beam when the phase shift is compensated and also the angle at 
which there is one of the semiaxes of the polarization ellipse. Using Eqs. (8) and (9) we can rewrite 
(7) as 
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( )( )∆−∆++= CAAAA
refout II coscossincossin2sinsincoscos 2222 ααψψαψαψ .        (12) 

 
To obtain an expression for the phase measurement error we derive the output Iout on the phase ∆: 
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At null conditions one has ψA ≈α±π/2 and ∆≈∆C. Then, it follows 
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where ( )0Iδ  is the measurement error for output intensity when this intensity is zero. Generally, this 
is the minimum value of the error. 
 
 

3. Discussion 
 

It is important to note that the error appears only in the second order approximation. There is 
no measurement error for the phase in a first order approximation. This is a direct consequence of the 
fact that a null measurement type technique is used. It must be also mentioned that these 
considerations apply to precision not to accuracy. They are valid only i f random, unbiased errors are 
assumed.  

This relation makes sense, and we can derive it just from intuitive considerations. Since the 
phase measurement is a null measurement, the larger is the input to nullify, the more precise is the 
measurement of the phase. And we can see that for large values of Iref, δ∆ is indeed smaller. Also, the 

precision of the phase compensation is better when the components ref
xE and ref

yE  have comparable 

amplitudes and is maximum when they are equal. The precision of the phase compensation is 
obviously related to how large is the difference between the maximum and the minimum output at the 
detector, because a large difference allows for a better discrimination of the minimum. Or, this 
difference is a maximum when  
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and is minimum when one of the components is zero. Indeed the smaller error is for α=45°, when Eq. 

(16) is fulfi lled and becomes infinite for α=0° or α=90°, i.e. ref
xE  or ref

yE  is zero. From Eq. (12) if 

we allow the compensating phase shi ft ∆C to vary we obtain 
 

( ) ( ) ref
A III αψ 2sin2sinminmax =− .    (17) 

 
This quantity is obviously maximum when α=45° and is minimum when α=0° or α=90°.  

Therefore, an important enhancement of the precision of the phase measurement can be done 
if we rotate the axes of the compensator with an amount θ necessary to equilibrate the x and y 
components. In this case Eq. (15) becomes 
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However, ∆ expressed by Eq. (4) becomes 
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where 'ref
xE  and 'ref

yE  are the components of the reflected beam in the rotated frame. Although the 

rotation of the compensator axes can dramatically improve the precision, in practice is difficult to 
implement and it may not be worth the trouble. To find the angle θ, you need to scan the output at the 
detector for various angles ψA with the compensator inactive until you find two positions say ψ1 and 
ψ2 separated by 90° where the output is equal. Then you have to rotate the compensator so that the x 
and y axes matches the two positions. Then θ must be noted for further use in calculations. This 
procedure must be repeated for each measurement and for each measurement we have a different 
value for θ.  

One must be aware that Eq. (15) is valid only in the approximation that there are no pure 
transmission losses in the compensator and the analyzer. Generally, we do have this kind of losses and 
Eq. (15) must be modi fied accordingly 
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where TC is the transmission of the compensator and TA is the maximum transmission of the analyzer, 
when the beam is l inearly polarized and the analyzer is parallel to the beam polarization.  
 
 

4. Conclusion 
 

We have shown using quantitative arguments that null ellipsometry using a Babinet 
compensator is a highly sensitive phase measurement technique. The first order approximation of the 
error is zero and we have to go to the second order approximation. By rotating the compensator to a 
position, where the x and y components are of equal amplitude, the sensitivity can be considerably 
increased but this complicates the experimental procedure and the computations and introduces 
supplementary sources of errors.  
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