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The medium range order in disordered chalcogenides has been explained by the existence of 
reminiscent crystal-like configurations with distorted arrangement of the atoms. Using the 
paracrystall ine theory, two parameters have been defined for the characterization of the MRO 
in glass: paracrystall ite thickness and paracrystall ite distortion. 

 
(Received May 7, 2001; accepted May 31, 2001) 
 
Keywords: Paracrystal, Medium-range order, Chalcogenide, Non-crystalline 

 
 

 1. Introduction 
 
 One of the most important problems in the physics of amorphous materials in general and 
non-crystalline chalcogenides in particular is the structure at the atomic scale. The extent of the order 
in a disordered material is stil l a subject of controversy [1]. 

The short-range order (SRO) in a given solid is related to the chemical bonding. Therefore, a 
profound similarity does exist between the SRO in crystalline and non-crystalline state of the same 
compound. 

The medium-range order (MRO) or intermediate-range order (IRO) is defined by the 
correlation between the positions of the atoms in the range 0.5 – 1 nm, in excess of those expected for 
an ideal Zachariasen-type continuous random network characterized by a random dihedral angle 
distribution [2]. 

It is very unlikely that a detailed physical theory will be developed to relate all macroscopic 
properties of glass with atomic processes without providing practical means of defining atomic 
geometry. 

The “signature”  of MRO in covalently bonded glasses is the first sharp diffraction peak 
(FSDP) or pre-peak in the X-ray diffraction pattern, I(Q). The intensity, hal f-width and position of 
this peak on the scale of the scattering vector, Q, are characteristic for every material. The FSDP of an 
amorphous solid exhibits high sensitivity against temperature, pressure, aggregation state, etc. [3-5]. 

The FSDP is situated at low Q values (1.0 – 1.5 Å-1) and arises probably from correlation at 
distances of 4.5 – 6.0 Å rather than from simple nearest or next nearest neighbours. 

In this paper we discuss the X-ray diffraction features of several  amorphous solids exhibiting 
FSDP, with special emphasis on non-crystall ine chalcogenides, in the frame of a new model based on 
the paracrystalline theory of Hosemann [6], proposed for disordered materials. 

 
2. Structural models for medium-range order 
 
Careful analysis of the X-ray diffraction patterns in many amorphous and glassy materials has 

shown that FSDP is a widely observed feature (e.g. in a-As [7], a-SiO2 [8], a-As2Se3 [9]) but not 
universal (e.g. FSDP is lacking in a-Si [10]). This particular feature of many non-crystalline solids 
aroused much speculation as to its origin in real space. 

Four main models for the atomic scale configuration, that determine the special aspects of 
MRO in amorphous solids, were developed up to day. 
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a) Microcrystalline model 
The model was applied firstly to amorphous As2S3. Leadbetter and Apling [11] have 

calculated the correlation functions in real and wave vector space for small randomly oriented 
fragments of crystal structure. The agreement between the model and experiment was found to be 
poor. The strongest discrepancy in the radial distribution curves is related to the strong peak at about 
4.5 Å, due to cross ring correlations in the crystal, which are absent in the experimental functions. 

 
 b) Layered model 
 As an alternative, the experimental results on the same a-As2Se3 were interpreted in the frame 
of a structure with disordered layers [3,12].  
 The fundamental evidence for layers in a-As2S3 was the presence of the FSDP and its near 
coincidence with the (020) reflection of the crystal. A layer is defined as two or more sheets or 
roughly parallel and planar atom groupings, which are bound mainly by non-bonded forces. In this 
model, the non-bonded interactions, i.e. interlayer correlations, give rise to the FSDP. The definition 
of the layer does not exclude single sheets of atoms wrapped over each other. Because the layers can 
be appreciably cross-linked by chemical bonds the structure approaches that of a cluster and, 
therefore, an ambiguous interpretation of FSDP cannot be avoided. 
 
 c) Clustered model 
 A cluster is defined as a group of atoms (in general greater than six) constrained to a 
particular internal geometry by chemical bonds. Clusters can be either chemically bonded within the 
main structure or packed randomly and held together by non-bonded forces. The first clustered model  
was developed by Phillips [13] and is represented by condensation of the so-called “outrigger rafts” . 

In the clustered model the MRO is expressed as intra-cluster correlations and from this order 
appears FSDP. 

Nevertheless, the major difficulty with clusters (especially big cluster ~ 20 atoms, as e.g. 
“outrigger rafts”) is that they introduce too much medium-range order. To overcome this difficulty the 
clusters must be distorted but this implies a serious problem of stability. 

 
d) Void correlation model 
Fowler and Ell iott [14] gave arguments to support the conclusion that FSDP is due to 

contributions of Fourier components from a broad region of the real space (including e.g. a density 
deficit at about 4.5 Å in the case of a-As2S3), rather than a distinct structural feature. They speculated 
that the presence of lone pairs in the amorphous solid, rather than clusters could cause such a density 
deficit. After Fowler and Elliott [14] lone pairs strongly repel each other and, therefore, force a 
structure to become more open, especially if the structure is disordered. The presence of lone pairs 
(absent in a-Si) forces an expansion of the average ring size, with the concomitant deficit in inter-
atomic correlations near 4.5 Å, necessary for the observation of FSDP. 

According to the void correlation model [15] FSDP is a chemical order pre-peak due to 
interstitial volume around cation centered structural units. The calculated positions of FSDP for some 
covalent glasses (SiO2, GeO2, ZnCl2, GeSe2) agree well with the experiment and the temperature and 
pressure dependencies of the FSDP can be, thus, explained in terms of density effects. 

Although successful in many instances, the model cannot explain satisfactorily the di fference 
in behaviour of the FSDP when the glass is subjected to uniaxial compression and when hydrostatic 
compression is applied. In both cases the peak intensity decreases [16]. 

All the above-described models fail to account for all details of I(Q) function. In general only 
FSDP or FSDP + main diffraction peak are examined in order to establish the validity of a model. 
 

3. Paracrystallinity and the microparacrystalline model 
  

The paracrystalline theory developed by Hosemann [6] and formerly applied to fibers, stems 
from the idea that the non-crystall ine solid consists from crystall ine, distorted configurations, that are 
preserved during crystal-amorphous or crystal-melt transition. These configurations are quasi-aligned 
in the disordered matrix. The general structure based on paracrystallites gives rise to an X-ray 
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diffraction pattern similar to that corresponding to a multi layer structure. First order intense peak is 
followed by higher diffraction order peaks with rapidly decreasing intensity. 
 Hindeleh and Hosemann [17] found a very important relation between the peak width and the 
diffraction order. There exists a l inear dependence between the width of the diffraction halos, δb, and 
the square of the quadratic sum of the Miller indices for the basical paracrystalline plane, (00h): 
 

   δb= 1/D + [(pgh)2/d]                                                  (1) 
 
 In the case of layered structures, the basical layer plane can be assimilated to a (001) plane. 
The linear dependence δb ~ f(h2), where h is the diffraction order, is a strong argument for the 
existence of microparacrystallites as constituent elements of a given glass [18]. 
 From the Hindeleh-Hosemann plot one can extract two important parameters. The intercept of 
the line with the ordinate gives the value 1/D, where D is the mean paracrystall ite thickness normal to 
the paracrystalline base plane. From the slope of the right line one gets the paracrystalline distortion, 
g, as defined in the theory as the relative paracrystalline distance fluctuation: 
 

     g2 = (d2/
� 2 – 1)1/2                                                              (2) 

 
where d is the net plane spacing, d2 is the mean of d2 and �  is the averaged d, that is the quasi-
periodicity. 
 For the ideal crystalline structure g = 0 and for the complete disappearance of crystal-like 
structural features g = 1. 
The application of the theory of paracrystallinity to catalysts, bio-polymers, fibbers, syntheti c 
polymers, glasses and melts [19,20] led to an empirical relation of a new kind of equil ibrium state: 
 

N1/2.g = α*                                                                   (3) 
 
with    α* = 0.15 ± 0.05. N is the mean number of net-plane layers in a paracrystallite. 
 The equation 3 implies that there is a limit to the growth of paracrystal layers, N, depending 
on the magnitude of the paracrystall ine distortion, g.   
 We must finally remark that, based on a wide range of data, Phillips [21] suggested that in 
vitreous SiO2 there are clusters, which have the internal topology of cristobalite, a cubic structure of 
SiO2 with density 5 % greater than vitreous SiO2 and with the Si atoms arranged on a diamond lattice. 
The dominant surface structure of the cristobalite paracrystallites is expressed by (001) planes and the 
clusters are about 60 Å in diameter. 
 Taking into account the above discussed data, we developed a paracrystallite model for 
medium-range order, which was applied to vitreous SiO2 and to a number of glassy chalcogenides. 
 In the case of chalcogenides, which are characterized by mean atomic coordinations between 
2 and 3, the basical layers in crystals lose their intrinsic order by amorphization, but preserve the layer 
stacking along the distances of the order of paracrystall ite thickness parameter. The type of structural 
element preserved in the glassy state seems to depend on the chemical composition of the material. 
The most stable structural planes of the corresponding crystalline phases are maintained in the 
disordered materials with ill-defined packing and they give rise to MRO structural effects. The 
existence of long-lived crystal-like clusters in melt, before quenching, leads to a lower free energy for 
gas-like + crystal-l ike configurations than for homogeneous gas-like atomic configuration [22]. 
 Supposing the formation of paracrystallites in bulk chalcogenide glasses it is possible to treat 
the problem of medium-range order in the frame of the Hindeleh-Hosemann theory. Thus, after 
careful  processing of the X-ray diffraction data, it is possible to get two parameters, which 
characterize the paracrystallites in the glass and, therefore, the atomic correlations: the paracrystallite 
thickness and the paracrystalline distortion. 
 
 4. Documented cases  
 
 We have applied the microparacrystall ine model for medium-range order, firstly to vitreous 
SiO2 and then to several representative glassy chalcogenides: GeSe2, AsS1.66 and As2Se3. Fig. 1      
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shows the Hindeleh-Hosemann plot for vitreous SiO2. From this plot the two MRO parameters were 
obtained: D = 18.5 Å and g = 0.056. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Hindeleh-Hosemann plot for the determination of the paracrystallite 
parameters D and g in vitreous SiO2. 

 
 The paracrystall ine clusters in glassy SiO2, after Phillips [24], are extended over a distance of 
at least 25 Å. Cristobalite domains with size ~60 Å were observed from TEM by Zarzycki [21]. 
Meade et al. [25] reported a mean size of quasi-ordered configurations of ~20 Å. The distortion of the 
paracrystall ite is enough low, if one compares our result with the value reported by Hosemann et al. 
[26]: g = 0.15. 
 The peaks in the X-ray di ffraction diagrams of GeSe2 and AsS1.66 [27] have been carefull y 
measured, in order to draw the Hindeleh-Hosemann plots (see Fig. 2 and 3). The results show for 
glassy GeSe2: D = 69.6 Å and g = 0.071, and for AsS1.66: D = 26.6 A and g = 0.068. While the 
paracrystall ine distortion is nearl y identical in both cases, the paracrystall ine thickness di ffers 
considerably, and this is an interesting result. The values of D extracted from the width of FSDP and 
reported in the literature are 60 Å for GeSe2 and 30 Å for As2S3 [28]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              a                      b 
Fig. 2. The Hindeleh-Hosemann plot for the determination of the paracrystalli te parameters in  
                                                 glassy GeSe2 (a) and AsS1.66 (b). 
 

 Finally we analyzed the cases of As2Se3 chalcogenide when heated above the softening 
temperature (Tg = 215 oC) at 400 oC and at 630 oC [29]. It is well known that, during heating, and 
even in the molten state, the MRO tends to develop i tself, as evidenced by the amplification of the 
FSDP intensity. Figure 4 shows the results. 
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Fig. 3. The Hindeleh-Hosemann plot for an As2Se3 sample in the molten state at 400 oC ( �  )  

                                                                 and at 600 oC ( � ).  
 

When the sample temperature is raised from 400 to 630 oC the paracrystall ite thickness 
decreases from 45.1 to 42.1 Å and the paracrystalline distortion increases from 0.067 to 0.072. At the 
room temperature As2Se3 exhibit a D value of 30.4 Å [18] while g is 0.067. This discrepancy can be 
explained as follows. In the molten state few constraints are exerted on the disordered paracrystalline 
layers and, therefore, more relaxation is produced with the consequence of a better alignment of the 
layers. In the amorphous solid state the stacking of the disordered layers is more di fficult to appear on 
a longer scale, because the constraint from the surrounding matrix is higher, and, therefore, the 
thickness of the paracrystallite is smaller.   
 
 5. Conclusions 
 
 A new model for medium-range order in non-crystalline chalcogenides has been introduced. 
The model is based on the old paracrystalline theory of Hosemann with one major amendment: the 
paracrystallites consist of the backbones of the original stable crystal corresponding to the chemical 
composition of the material (or crystal of the most approached composition), including as entities the 
planes of closest packed arrangement of the atoms. These planes represent the ultimate reminiscence 
of a crystal in the melt. For many chalcogenides these planes are not composed of ordered 
configuration of atoms as in the crystal, but are characterized by a disordered arrangement of atoms, 
reflected in the ring configuration with various number of atoms.  
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