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1.  Thermal waves 

 
The word “thermal wave” commonly refers to the typical wave-like temperature field that is 

induced by a harmonic heating process. These waves were already used by Lord Kelvin and A.J. 
Ångström to investigate the thermal diffusivity of bodies, but only recently, in the early 80’s, have 
been called “thermal waves”, arousing a remarkable clamour [1-4]. Presently the scientific community 
still debates on the real nature of thermal waves, even if their formalism is widely accepted and used 
to describe the temperature field in periodical regime. In the following we want to recall the basic 
theory and discuss some fundamental phenomena as the thermal wave reflection and refraction, the 
thermal wave interferometry, the thermal wave resonance, and the thermal wave scattering, together 
with the main relative applications. 

The fundamental point to be understood is how the heat conduction could show a wave-like 
behaviour. Heat conduction, as it is well known is the classical case of a diffusive process, as shown 
by the Fourier equation 
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where k and D are respectively the thermal conductivity and diffusivity of the medium, and w is the 
heat supplied per unit time per unit volume. The Green function solution of Eq.(1) for a unitary 
heating pulse placed in the origin O  at time t=0, that  is [5,6] 
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where ρc is the heat capacity per unit volume, shows clearly the diffusive behavior.  
A different situation is found in the case of harmonic heating. If the quantity w is harmonic in 

time, with the period 2π/ω, the temperature field T is forced to be harmonic with the same periodicity. 
By introducing in Eq.(1) the complex quantities w~  and T~ , so that [ ]tjeww ω~Re=  and 

[ ]tjeTT ω~Re= , one obtains the Fourier equation in harmonic regime [5-7] 

k
wTT
~~~ 22 −=−∇ β ,     (3)  

where the analogy between Eq.(3) and the Helmoltz wave equation has been put into evidence by 
introducing the wave number Djωβ = . As a consequence one may apply the well-known theory 
of the wave physics even to the harmonic thermal field.  
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 As an example we want to study the Green function solution of Eq. (3) for the unitary 
harmonic point source in the origin O, that is [5-7] 
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where r is the distance from the origin, and l  is the thermal diffusion length defined as ωD2=l . 
By a first inspection of Eq.(4) one may notice that the temperature field G2  behaves as a spherical 
wave of wavelength  2π l , and, for this reason, has been called “thermal wave”. The main 
characteristic of such a wave is that it decays strongly, moving away from the heating source (see the 
exponential term in Eq.4). In practice the thermal wave vanishes within some wavelengths so that 
many authors still debate on the use of the term “wave”. The damping is driven by the wavenumber  
β=(1+j)/ l . It is a complex quantity with the same real and imaginary part. As a consequence the 
thermal diffusion length l  plays a double role: from one side it is proportional to the thermal 
wavelength 2π l , and from the other side it represents the extinction length at which the exponential 
term in Eq.(4) is reduced to 1/e of its initial value.  

Once we have introduced the spherical thermal wave G2, it can be used to describe any 
harmonic field T which may always result from an appropriate superposition of spherical thermal 
waves sprung from the heating sources. Analogously we could introduce the plane thermal wave 
when the heating sources are arranged along a plane. By heating harmonically and homogeneously the 
medium along the plane xy, T assumes the shape of a plane thermal wave propagating in the z 
direction, as follows [5-7] 

( ) ( )

( ) ( )[ ] ( )ll

l
rr

ztAeezTtzT

AeAeAezT
ztj

zjzr

−==

===
−

+−−⋅−

ωω

ω
ω

ββ

cos,~Re,

,~ 1
 ,  (5) 

A being the amplitude at z=0, and β
r

 the wavevector which points the direction of propagation. The 
plane thermal wave in Eq. (5) is plotted in Fig. 1 as a function of the distance z, for different values of 
the time: in particular the curves a,b,c,d correspond to =tω 0, π/3, π/2, π . As the time goes on, the 
maximum temperature rise is reduced but moves in the z direction, like a forward damped wave. Note 
that, at any time, the temperature oscillates within the two exponential envelopes [ ]lz−± exp , that 
limit the thermal wave range. The difference between spherical and plane thermal waves is merely 
geometrical and does not affect the general properties just shown; in particular any field T may always 
be also decomposed in terms of plane thermal waves propagating in various directions. 
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Fig. 1. Example of plane thermal wave. The temperature rise is plotted vs the distance z  
(in l unit), for different value of the time: curves a,b,c,d respectively correspond to 

=ωt 0, π/3, π/2, π. Τhe two envelopes represents the maximum and  the  minimum  values  
of  
                                                             the temperature rise. 
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2. Thermal wave reflectin and refraction 
 

Besides the thermal wave generation and propagation in a homogeneous medium, other basic 
phenomena should be observed when at least two media are involved: the reflection and the refraction 
[7-9]. In the following we will discuss these phenomena, without lack of generality, for plane thermal 
waves.  

When a plane thermal wave approaches the interface between two media (i.e the plane z=0), it 
is partially reflected back and refracted beyond. By imposing the continuity at the interface of both 
the field T~ , and the vertical heat flux ( zTk ∂∂ ~

− ) one obtains 
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where the fields in the first ( 1

~T ) and in the second medium ( 2
~T ) have been decomposed in terms of 

plane thermal waves as follows   
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where A,  rA  and  tA  respectively are the amplitudes of the incident, reflected and refracted waves, 
while θ1 , θ1' and θ2 are the angles between the directions of the waves and the normal to the interface. 
By combining Eqs.(6) with Eqs. (7) one obtains the Snell relationships for the angles 
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and the relationships for the reflection  (r) and the transmission (t) coefficients 
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Dke =   being the thermal effusivity. Note that in the case of D2>D1 the Snell law is valid only 

until ( )211 DDarcsin≤θ  (see Eq. 8). For larger values of θ1 the thermal waves in the second 
medium become inhomogeneous (the planes at constant phase differ by the planes at constant 
amplitude) [9]. Although such waves have been not yet observed, the theory predicts for them an 
anomalous attenuation larger than the one described in Eq. (5), as will be discussed later. Eq. (9) gives 
the coefficients r and t, and consequently, the efficiency of the heat transfer through the two media. 
Generally the reflection (r) and transmission (t) depend mainly on the effusivity mismatch, but also on 
the diffusivity mismatch (in fact the term ( )2cos θ  in Eq. (9) is linked to diffusivity by Eq. (8)); one 
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exception is for normal incidence ( 021 ==θθ ) where r and t depend on effusivity only. In Fig. 2 
both coefficients are plotted vs the effusivity ratio e2/e1, just for normal incidence.  
 

2.1 Thermal wave mirror 
 

If the effusivity mismatch between the media is very high, a relevant reflection phenomenon 
takes place (see Fig. 2) whether in phase, for very small e2/e1, or in opposition of phase, for very large 
e2/e1 [10]. In both cases the second medium behaves as a “thermal wave mirror” ( 1±→r ); but the 
transmission, that is always t=r+1, in one case tends to 2, in the other tends to 0. As an example we 
consider the interface between a generic gas and a generic solid. Since any solid is always at least 100 
times more effusive than any gas, the effusivity mismatch is extremely high, and consequently, the 
solid behaves as a thermal wave mirror for the gas and vice versa for reciprocity, but with the 
following differences:  
(a) if the incident wave is coming from the gas, the effusivity ratio is e2/e1>100, the reflection 

1−→r , and the transmission 0→t ; in synthesis in the gas takes place a destructive interference 
between incident and reflected waves, at the interface the temperature rise is kept to zero, and in 
the solid there is no relevant energy transfer.  

(b) if the incident wave is coming from the solid, the effusivity ratio is e2/e1<0.01, the reflection 
1→r , and the transmission 2→t ; in synthesis in the solid takes place a constructive 

interference between incident and reflected waves, at the interface there is the maximum 
temperature rise, and in the gas there is the maximum energy transfer.  
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Fig. 2. The thermal reflection and transmission coefficients between the media No.1 and No.2  
                                   are plotted vs the thermal effusivity ratio 12 ee . 

 
Just to conclude this theoretical discussion, it is of practical interest to understand which is the 

appropriate depth for a thermal wave mirror, or, in other words, which is the lower limit for the 
thickness of a material, beyond which the reflection properties are lost. An advanced study on the 
layered structures has recently put into evidence how the reflection properties of a slab change with its 
thickness. If ∞R  is the reflection for an infinite thick slab, the effective reflection R for a finite slab 
differs by ∞R as follows [7,10]. 
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where d is the thickness of the slab. Note once again the perfect analogy between Eq. (10) and the 
equations for the Fabry-Perot interferometer in the wave physics; in our case, a thermal wave 
interference occurs in the slab, which may whether enhance (constructive interference) or inhibit 
(destructive interference) the effective reflection R with respect to ∞R . In order to study the efficiency 
of such thermal wave mirror, in Fig. 3 we plot ∞RR  as a function of the normalized thickness 

defined as 
⎟
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, for different values of ∞R  (0.2, 0.5, 0.9, 0.99, 0.999). Note that all curves 

merge together in the two following opposite limits: 
(a) for a high normalized thickness the slab is thermally thick, behaves as an infinite medium, and 

consequently ∞→ RR  (mirror regime); 
(b) for a low normalized thickness the slab is thermally too thin, the incident thermal wave is 

transmitted beyond the slab, without a relevant reflection 0→R  (transparent window).  
Note also that the transition from transparent to mirror regime occurs when the normalized thickness 
is practically unitary, which, for a high effusivity mismatch ( )1≈∞R , corresponds even to an 

extremely small thickness ( )21 ∞−⋅≈ Rd l . This is the reason why even extremely small defects, 
cracks, and delaminations, behave as thermal wave mirrors, and may be easily detected by the thermal 
wave interfererometry [11,12]. 
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Fig. 3. The normalized thermal reflection ∞RR of a slab is plotted vs the normalized 

thickness for different values of the interface reflection coefficient ∞R (0.2, 0.5, 0.9, 0.99, 

0.999).  The  normalized  thickness  is  defined  as 
l

d
R

R
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

− ∞

∞
21

  where l   is  the  slab  thermal  

                                                               diffusion length. 
 

 
2.2  Evidence of the thermal wave reflection 

 
A simple experiment to prove the reflection of thermal waves is shown in Fig. 4. A plane 

thermal wave is generated in air by heating periodically a thin absorbing layer with a wide pump laser 
beam  (s = 4mm). The plane wave propagates in air along z for a short distance (L = 1mm) till 
approaches the aluminium foil which acts as a thermal wave mirror. The foil lies obliquely so to form 
the angle θ  with the x axes. As a consequence the reflected wave forms an angle 2θ  with the incident 
one, and the temperature rise in air calculated where the waves are superimposed is [9] 
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( ) ( ) ( )[ ]xsinzz
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where A is the amplitude of the incident wave in the origin O, and R is given by Eqs. (9) and (10). The 
detection of the thermal field in Eq. (11) may be obtained for example by using the mirage technique 
[13-17]. A probe beam is sent along the y axis, in air, close to the origin O. The thermal gradients met 
along the path produce the beam deflection which is measured by a remote position sensor. In 
particular its orientation is chosen so to detect the components of the deflection angle along the x and 
z directions which are given by [9,10] 
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where n, dn/dT respectively are the air refractive index and the air optothermal coefficient, and Leff is 
the effective length useful for the beam deflection, which depends on the lateral dimensions s of the 
incident thermal wave. By combining Eqs. (11) and (12) one obtains  
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where C  is a constant defined as C
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β .  Note that the simplifications in the 

exponential terms in Eq. (13) are allowed if the probe beam travels close to the origin O, at a shorter  
distance than airl . In such a case the two components are proportional to each other, and their ratio Ω  
depends only on the angle θ  and on the reflection coefficient of the mirror R as follows 
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In Eq.(14) we have assumed 1−≈R  because the aluminium foil, for any θ, acts as a thermal wave 
mirror (see Eqs. 9, 10). The experiment has been performed in the thermal wave cavity described in 
Fig. 4, where the tilt angle θ  between the mirror and the absorbing layer has been set at θ=11°. Both 
components ~Φx  and ~Φz  have been measured and their ratio Ω has been compared with Eq.(14). The 
results have been repeated by changing the modulation frequency f (i.e. airl ). In Fig. 5 the amplitude 
ratio |Ω| is plotted as a function of f ; the symbols represent the experimental data, the full lines are 
the theoretical values by Eq. (14) for the tilt angles θ reported on the right scale (0°-5°-10°-11°-15°). 
Note that the experimental points lie, with some noise, on the line at θ=11°, at any frequency. This 
agreement proves the following points: 
(a) The reflection phenomenon takes place as described by Eq. (11) 
(b) The aluminium foil acts as a thermal wave mirror for a wide spectrum of the thermal wavelength 

(i.e. airl ). 
 



R. Li Voti, G. L. Liakhou, S. Paoloni, C. Sibilia, M. Bertolotti 

 

785

Absorbing layer
Pump beam

Incident wave

Reflected

Thermal mirror
O

wave

x
z

Probe
2θ

y

s

L

 
Fig. 4. Scheme of the thermal wave cavity for the detection of the reflected thermal wave. 
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Fig. 5. The amplitude ratio Ω  between the deflection components along x and z is plotted vs 
the modulation frequency square root: the open square symbols (�) represent the experimental 
points, while full lines are calculated by  Eq. (14)  for  different values of  the  tilt  angles  θ  
as  
                                                       shown in the right scale. 

 
 

2.3  Evidence of the thermal wave refraction 
 

Besides the proof of the thermal wave reflection, an experiment may be set up to prove the 
refraction of the thermal waves as shown in Fig. 6. The pump laser beam propagates along y, is 
modulated in time and focused onto a solid sample (medium 1) by means of a cylindrical lens. The 
dimensions of the ellipsoidal pump beam spot in the plane xz (see Fig. 4) are adjusted so to realise, at 
the best one can, a line heating source along x. The generated thermal wave propagates along z inside 
the solid until it reaches the interface with the second medium (air) which is placed obliquely with 
respect to the line source (the normal to the interface n forms the angle θ1 with the z axis). Therefore 
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the theory predicts that the incident wave is reflected back and refracted in the second medium 
according to Eqs. (7) and (8). For the thermal field refracted in the second medium one may write [9] 
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Fig. 6. Schematic set-up for the detection of the refracted thermal wave. 
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where A is again the amplitude of the incident wave in the origin O, t is the transmission coefficient 
given in Eq. (9), 

rr  is the position with respect to O, 2β
r

 is the wavevector which points the direction 
of the refracted thermal wave, θ2 is the refraction angle between 2β

r
and the normal to the interface n . 

In Eq. (15) the quantity ~T2  is expressed as a function of x and z which are the reference axes. Note 
that in such reference system the direction of the refracted wave 2β

r
 forms the angle θ2-θ1 with the z 

axis (see Fig. 6 and Eq. 15). The detection of the thermal field in Eq. (15) is given by the mirage 
technique , as in the previous experiment. The probe beam is placed in the second medium near the 
interface, where the heat flux is larger. The two components of the deflection angle along x and z are 
given  by combining Eqs. (12) and (15) as follows [9] 
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Note that in this case the two components are proportional to each other everywhere, 

whatever x and z, and their ratio depends only on the incidence and refracted angles  
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By looking at the analogy between Eqs. (14) and (17), one concludes that the amplitude ratio 

Ω  is useful not only to detect simply the thermal wave, but also to reveal exactly its direction. The 
physical reason is in the basic principle of the mirage technique: the deflection angle is related not 
directly to the temperature field T~ , but rather to its gradient T~∇  which points the direction of the 
heat flux. Therefore if one is interested in the direction of a thermal wave, the knowledge of the scalar 
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function T~ , even if at any plane, could be helpless, while the vectorial field ∇ ~T  gives immediately 
such information, point by point.  Therefore the mirage represents the most appropriate technique for 
this purpose. In particular the ratio between the components xΦ~  and zΦ~  gives, as previously shown, 

the local information on the angle between 2β
r

and the z axis. Coming back to the differences between 
Eq. (14) and Eq. (17), an important point is the sign of Ω . In the reflection experiment it is always 
negative, while in the refraction experiment it depends on the sign of θ2-θ1 , which is fixed by the 
Snell law (see Eq. 8). As a result if D2>D1  , then θ2>θ1 and consequently Ω >0, while if D2<D1 then 
Ω <0. The sign of Ω helps to discriminate one case from the other. The knowledge of Ω allows to 
calculate the refraction angle θ2 by solving Eq.(17) as follows 
 

( )[ ]112 arctg θθθ Ω+=      (18) 
 

As an example we report the results obtained with the setup shown in Fig. 6. An Ar laser 
illuminates a flat solid sample (medium 1) not far from one edge. The pump beam modulated in time, 
is focused by a cylindrical lens only in the z direction so to have a line source 6mm wide along x and a 
few microns wide along z. A probe He-Ne laser collinear with the pump Ar laser is placed in air 
(medium 2) close to the sample edge. A rotation stage allows the movement of the sample in the xz 
plane, so to change the orientation of the edge. The pump and the probe are fixed. As a consequence 
the incidence angle θ1 is changed by the rotation stage. In Fig. 7 the amplitudes of both ~Φx , ~Φz  are 
shown vs θ1 for a semiconductor wafer of InP.  From these experimental data one calculates the ratio 
Ω, and eventually, by using Eq. (18), the refraction angle θ2. Finally by plotting the quantity sin(θ2) vs 
sin(θ1), one has the most appealing proof of the Snell law; in fact a straight line is expected, with the 
slope equal to 12 DD  (see Eq. 8). 
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Fig. 7. The amplitude of the deflection signal (µV) is plotted versus the incidence angle 
(degree). The sample is a InP wafer. The pump power is 800mW, while the modulation 
frequency is f = 16Hz.  In  the  plot  (�)  is  for  the  component along  x,  while  (+)  is  for  
the  
                                                               component along z. 

 
 

In Fig. 8 this procedure is reported for two materials: one less diffusive than the air (Invar �) 
and the other more diffusive (InP +). Note that in the first case the linear behaviour is broken around 
θ1≈30°, which corresponds to the limit angle ( )21lim DDarcsin=θ . Beyond the limit angle Eqs. 
(8) and (18) become useless and, as a consequence, the experimental points measured for θ1>30°, for 
the invar sample only, are meaningless. By using the least square method to calculate the slopes (see 
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full lines in Fig. 8) one obtains the diffusivity ratios airInP DD =2.2 ± 0.1 and airvarin DD =0.25 ± 
0.02 which  
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Fig. 8. The quantity sin(θ2) is plotted vs sin(θ1) for two different materials. The symbols are 
for the experimental results on a invar sample (�), and on a InP semiconductor wafer (+). The  
                                         full lines are given by the least square method. 

 
lead to the values DInP=0.44 cm2/s, and Dinvar=0.05 cm2/s , when one assumes Dair=0.2 cm2/s, in 
perfect agreement with the values given in the literature [18]. Has been here introduced a new 
methodology to determine the thermal diffusivity of materials? Reasonable question, but difficult to 
answer! We limit to underline three points:  
(a) This method based on the Snell law allows to determine the thermal diffusivity of one medium if 

the other’s one is well known. 
(b) This method works wherever is the heating source, whether in the first or in the second medium: 

therefore it is suitable even for measuring the diffusivity of non absorbing materials. 
(c) Preliminary results indicate that this method guarantees the same accuracy than the other well-

known methods [19-22]. 
 
 

2.4  Inhomogeneous thermal wave 
 

The Snell law for thermal waves establishes that D1  plays the same role of the refractive 
index for electromagnetic waves. Due to this analogy, a simple question may be asked: is it also 
analogous of the total reflection also for thermal waves? The answer is in the refracted thermal field 
when the incidence angle is θ1 >θlim. One may expect that the refracted thermal wave is still plane, but 
no more homogeneous, as one can see from the expression [8,9] 
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where B is a constant, and ρ, ζ  are respectively the variables parallel and vertical to the interface. In 
Eq. (19) two different solutions are included depending on the sign ± in the exponential term. Both of 
them satisfy the wave equation Eq. (6), but the solution +2

~T  may seem to be physically meaningless 
in the space ζ >0, because it is amplified in the direction ζ . To clarify this point it is helpful to study 
the amplitude of the field ~T  for a simple system made of air and a low diffusivity material (invar). 
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The air is in the half space ζ >0, while the invar is for ζ <0. The heating source is an oblique line 
inside the material; the line begins from the origin O , and forms the angle θ1 with ζ =0. The 
amplitude of the field ( )ζρ,~T , calculated by a numerical simulation, is reported in the contour plots 
of Figs. 9 for two different values of the angle θ1 chosen to induce homogeneous (see Fig. 9a) or 
inhomogeneous (see Figs. 9b,c) refracted thermal waves. In particular in Fig.9a the incidence angle is 
θ1=20°<θlim =30°. Note that plane thermal waves depart from the heating line inside the material, as it 
is pointed out by the arrows. The wave propagating towards the air-invar interface is partially 
reflected back and refracted in air. As a consequence a thermal interference occurs just below the 
surface, where the incident and reflected wave are superimposed, as it is revealed by the strong 
distortion of the wave front. In air the refracted plane thermal wave changes direction according to the 
Snell law (θ2=43°), as pointed out by the arrows in Fig. 9a. Of course the refracted field is far to be a 
plane wave close to the origin O, due to the finite dimensions of the heating source, but these 
boundary effects vanish within a thermal diffusion length l 2 [23]: in other words the refracted wave 
becomes plane at a suitable distance ρ> 2l .  

ρ

2 2l

ζ

A

air

invar

− l  /22
4 2l

heating line-2  2 l
 

Fig. 9a. Numerical simulations for the amplitude of the thermal field. The countour plots of 
the amplitude of ~T  are calculated as a function of the coordinates ρ, ξ when an invar sample 
with  
                               D1=0.05 cm2/s is heated by an oblique line source: θ1=20° 

 
 

A different case is reported in Figs. 9b,c where θ1=70°>θlim=30°. As the incident wave 
approaches the air-invar interface it is reflected back giving rise to the usual interference 
phenomenon. In air the thermal field  is now far to be a plane wave (see Fig. 9b). However it is still 
possible to recognise a restricted region, close to the interface, where the amplitude tend to maintain a 
plane wavefront (see the arrows in Fig. 9c). In such a region the unstable solution +2

~T takes place 
instead of −2

~T and, as a consequence, the amplitude locally really increases with the height ζ. The 
physical reason is that in this zone the main heat flux comes from the higher air layers rather than 
from the inside material (see the arrows in Fig. 9c). Unfortunately one could observe this 
inhomogeneus wave far from the origin (ρ>6 2l ) where the wave is too weak to be detected. 
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Fig. 9b. Same numerical simulation of Fig. 9a. The sample is now heated by an oblique line  
                                                                source at θ1=70°. 

ρ
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Fig. 9c. Extension of the contour plots of Fig. 9b for 22 126 ll << ρ . 

 
 

3. Thermal wave interferometry 
 
 Thermal wave interferometry is commonly used for the nondestructive evaluation of the 
thickness in layered materials [3,7,24]. The basic principle is to illuminate an opaque specimen with a 
wide laser beam, periodically chopped at the frequency f, so to generate a plane thermal wave at the 
surface. This wave, travelling in the layered structure, is subjected to a multiple reflection 
phenomenon. As a conclusion, in the generic ith layer the following thermal wave interference takes 
place 
  

( ) [ ] [ ]iiiii zBzAzT ll expexpˆ ⋅+−⋅= ,    (20) 
 
where fDii π=l  is the thermal diffusion length of the ith layer, and the coefficients Ai and Bi 
should be determined by the boundary conditions at each interface (see Thermal wave in layered 
materials). To simplify the discussion, we consider now a two-layers system: an opaque thin coating 
over a substrate (see Fig. 10).  
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Fig. 10. Schematic set-up for the detection of the thermal wave interference in a two-layer 
system. 

 
The plane wave is generated at the surface, propagates in the coating, approaches the rear 

interface (bulk) and is partially reflected back, then reaches the front surface (air) and is again 
partially reflected back, and so on, giving rise to a thermal wave interference. The surface temperature 
is (see Thermal wave in layered materials) [7,25] 
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=2  respectively are the reflection coefficients at the front 

surface and at the rear interface, ec/b/air is the coating/bulk/air thermal effusivity, L is the coating 
thickness, cl  is the coating thermal diffusion length, I is the thermal power deposited per unit area. 
The expression of the surface temperature in Eq. (21) may be seen as the product of two factors: the 
first represents the surface temperature of a “thick coating”, without any interference effect; the 
second, in the square brackets, is the correction due to the thermal wave interference in the coating, 
which may enhance (constructive interference) or reduce (destructive interference) the surface 
temperature. This phenomenon is clearly seen in the damped oscillations of surfT̂ , for both amplitude 
and phase, by simply changing the modulation frequency f that drives the normalized thickness 

cc DfLL π=l and consequently the interference pattern. One fundamental quantity, in thermal 
wave interferometry, is the phase contrast ∆φ  that compares the phase of Eq.(21) with the reference 
phase without interference (i.e. for infinite normalized thickness), as follows 
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In Fig. 11 the phase contrast is plotted as a function of the normalized thickness for different 

values of the reflection coefficient R2. It is worth noting the following points: 
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Fig. 11. Phase contrast ∆φ vs the normalized thickness cc DfLL π=l  for different  
                 values of the reflection coefficient coating/bulk, according to Eq. (22). 

 
(a) The phase contrast is subjected to the damped oscillations due to the interference; however only 

the first oscillation may be clearly seen and experimentally used. This happens when the coating 
thickness is not larger than the coating thermal diffusion length. 

(b) The first oscillation of the phase contrast is positive for a negative value of R2 and vice versa for 
symmetry. The oscillation increases with the absolute value of the reflection coefficient |R2| up to 
the limit  ∆φ=±45° obtained for 12 m=R . 

 
 

3.1 Thickness or thermal diffusivity measurements 
 

The oscillation of the phase contrast may be exploited to measure the ratio cDL  as well as 
the reflection coefficient R2 [24,26]. In practice one measures the phase ϕ  of the radiometric signal in 
a wide frequency range. At high frequency, the interference phenomenon becomes negligible, and the 
phase tends to a constant value that may be assumed as the reference phase refϕ . 

The phase contrast is thus obtained as ∆φ= refϕϕ − . Finally the experimental ∆φ  should be 

compared with the theoretical one given by Eq.(22), frequency by frequency, where  cDL  and R2 
represent simply fit parameters. 

As an example we applied this procedure on a single thin layer: a 200 µm thick Inox sample. 
In Fig. 12 the phase contrast ∆φ  is plotted as a function of f ; the square symbols represent the 
experimental data by photothermal radiometric technique, while the full lines represent the theoretical 
values, according to Eq. (22), where L = 200µm, 121 == RR , and the only fit parameter is therefore 
the Inox thermal diffusivity DInox which for the three curves is chosen to be 0.04, 0.046 or 0.06 cm2/s. 
Simple inspection shows that the theoretical curve for DInox=0.046 cm2/s fits very well the 
experimental data for f>10Hz. What happens for f<10Hz? For low frequencies, when the thermal 
diffusion length becomes comparable with the pump beam size, the geometry of the wavefront of the 
thermal waves, supposed to be plane, bends as happens for a spherical thermal wave. As a 
consequence the 1D model (Eq. 5), which describes the temperature field as only z-dependent, 
becomes inadequate and should be replaced with a 3D model.  
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Fig. 12. Phase contrast ∆φ vs the frequency square root: ( ) experimental data for 200µm 
thick Inox sample; curves (1), (2) and (3) are obtained by Eq. (22) respectively for DInox=0.06,  
                                                           0.046, and 0.04  cm2/s. 

 
In Fig. 13 we tried to fit even the data for f<10Hz by using a 3D model which takes into 

account the Gaussian pump beam size d [15,27,28]. The full lines represent the theoretical values for 
different spot-sizes (d = 1mm, 2.3mm, 5mm), for the most probable diffusivity found in Fig. 12 
(DInox=0.046 cm2/s); The curve for d=2.3mm fit now the data in the whole frequency range.  
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Fig. 13. Phase contrast ∆φ vs the frequency square root: ( ) experimental data for 200µm 
thick Inox sample; curves (1), (2) and (3) are obtained  respectively  for  the  pump  spot  sizes  
                         d=1, 2.3, and 5 mm. The diffusivity is kept to DInox=0.046 cm2/s. 
 
Obviously in order to perform a systematic research of the best fit, we must report the 

standard deviation of the phase contrast (see Fig. 14) as a function of diffusivity (curve 1), and as a 
function of the spot-size (curve 2). Curve 1 allows to determine the most probable value of diffusivity 
together with its uncertainty DInox=0.046 ± 0.005 cm2/s; this value of diffusivity has been kept 
constant during the second fit (curve 2) which determines the most probable spot-size together with its 
uncertainty  d=2.3±0.4mm. 
 



Thermal waves physics 

 

794 

0

0.5

1.0

0.02 0.03 0.04 0.05 0.06

St
an

da
rd

 d
ev

ia
tio

n,
 d

eg
.

Thermal diffusivity,  cm2/s

Spot size,  mm
1                 1.5                2                 2.5                3                3.5

(1)

(2)

 
Fig. 14. Standard deviation of the phase contrast, for the data in Figs. 12 and 13. 
curve 1: the standard deviation is plotted vs the Inox thermal diffusivity. 
curve 2: the standard deviation is plotted vs the pump spot sizes for DInox =0.046 cm2/s. 

 
Another procedure to determine cDL  and R2 uses the property of the so-called thermal 

reflectivity Γ defined as the ratio between the backward and the forward thermal wave (see Thermal 
wave in layered materials) [29]. In this case it is helpful to refer to the quantity ( )fTf surfˆ⋅ , which 
has the main advantage to be non-vanishing at high frequency. According to Eq.(21), in fact, 
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, and consequently the surface thermal reflectivity surfΓ  may 

be expressed as a combination of the quantity  ( )fTf surf
ˆ⋅  as follows [29,30] 
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Both the logarithm of amplitude and the phase of surfΓ , when plotted as a function of f , exhibit a 

linear behaviour with same linear slope 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

cD
L

π2  from which cDL  is immediately worked 

out. The other parameter R2 may be worked out by the difference [ ] ( ) [ ]2lnargln Rsurfsurf =Γ−Γ . We 

have applied this procedure to the previous example of the 200µm thick Inox sample. In Fig. 15 both 
logarithm of amplitude and the phase of the surface thermal reflectivity are plotted vs f . From the 
linear slope one obtains DInox=0.049cm2/s that is a little larger than the previous measurement; this 
small error is due to the finite spot-size which produces 3D effects unpredicted by Eq.(23). Note also 
the small difference between the curves in Fig. 15. According to Eq. (23) this may be wrongly 
interpreted as if R2 1≠ , but, on the opposite, once again it is due to the 3D effects. This possible 
misunderstanding has deep roots in the general following consideration: on one side, the 3D spherical 
effect due to the finite spot-size, reduces the efficiency of the thermal wave interference with respect 
to the plane case, and consequently limits the oscillation of ∆φ. If one refers to the theoretical curves 
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of Fig. 13, in which 121 == RR , it is evident that as the spot-size d decreases even the oscillation 
decreases.  
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Fig. 15. The thermal reflectivity is plotted vs the frequency square root for the experimental 
data in Fig. 13. The symbols  ( ) represent the phase (radian)  of  the  reflectivity; the 
symbols  
                                               ( ) represent the logarithm of the amplitude. 

 
On the other side, even a non-perfect thermal reflection between coating and bulk ( )12 ≠R  is 

able to reduce the efficiency of the thermal wave interference with respect to the thermal wave mirror 
case ( )12 =R . This limits the oscillation of ∆φ exactly as in the other case. The evidence is provided by 
the analogy between the curve for 6.02 =R  in Fig. 11, and the curve for d=1mm in Fig. 13. As a 
conclusion the interference efficiency is reduced due to thermal energy anyhow lost, whether in the 
lateral x,y direction for the spherical wave effect, or in the longitudinal z direction for the transmission 
in the bulk. Moreover, for simplicity, we haven’t considered other secondary thermal energy losses, as 
for example the losses due to the heat convection in air or the infrared emission at the surface. 
Consequently the estimate of R2 is a nontrivial task, when mainly the spot-size, but also the surface 
conductance, are not exactly known. 
 

 
4.  Thermal wave resonator 
 
Although the thermal wave interferometry has been applied for long time in order to measure 

the thickness or the thermal diffusivity of solids, the thermal-wave resonator has been introduced 
only in 1995 [31]. Basically the physical process which takes place in a thin film periodically heated 
at one side is absolutely the same that occurs to a thermal wave resonant cavity: that is the 
interference between thermal waves propagating in opposite directions. One difference is the number 
of independent variables (degrees of freedom) available to observe the interference [32]. In other 
words if one applies the thermal wave interferometry to investigate the thermal thin film properties, 
the interference phenomena may be observed only by changing the frequency f of the periodical 
heating (i.e. thermal wavelength). In a thermal wave resonant cavity the number of degrees of 
freedom increases; in fact one may adjust the cavity length as well as the frequency f (i.e. thermal 
wavelength). Roughly speaking a plane thermal wave resonator is a cavity, whether open or closed, 
filled with air or any gas, delimited at least by two solid samples, with plane facets acting as thermal 
wave mirrors (see Fig. 16).  
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  Fig. 16. Schematic representation of the plane thermal-wave resonator; the in situ  
             photothermal deflection technique measures the gas thermal diffusivity. 
 

 
In principle no special care should be required in the choice of the material for the thermal 

wave mirrors. In fact it has been already pointed out that any solid layer, even if extremely thin (see 
Fig. 3), naturally behaves as a thermal wave mirror with a thermal reflection coefficient ( )99.0−≈R  
large enough to set-up the thermal wave resonator. On the contrary, in reality, a special care must be 
taken to build-up the first thermal wave mirror, which plays an active role in the thermal energy 
pumping. It is made of a thick glass slab coated by an optically opaque thin layer (see Fig. 16). In 
such a way a wide pump laser beam may pass through the glass, but is totally absorbed by the 
optically opaque thin layer. As a consequence the heat periodically induced in this layer generates 
plane thermal waves travelling in the cavity. Finally the thermal field in the cavity may be monitored 
by photothermal deflection technique, using a probe laser beam travelling in the gas at an adjustable 
distance from the active mirror.  

 
 
4.1  General properties of a thermal wave resonator 

 
In order to evaluate the properties of the resonator, we analyse some thermal features when 

the thermal wave cavity is working (case a), and when the second mirror is removed (case b). In 
particular we wish to compare the thermal field, the thermal energy, and the heat flux in the two cases. 
Concerning the thermal field in the gas for both cases one may write [32] 
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where 121 ≈≈ RR  are the absolute values of the thermal reflection coefficients of the two mirrors, 
e1, e2 the mirror’ effusivity, L the cavity length, z the distance from the active mirror. Note that in case 
b), the temperature simply decreases with z (distance from the source), while in case a), thermal wave 
interference takes place in the gas. We compare both thermal fields in three significant points: on the 
first mirror for z=0, in the cavity centre for z=L/2, and on the second mirror for z=L. The amplitude 
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ratio between case a) and b) vs the normalized cavity length gasL l is plotted in Fig. 17, curve (a) for 
z=0, curve (b) for z=L/2, while for z=L the ratio is zero everywhere. It is worth nothing that: 
(a) the temperature field on the first mirror is constant, has the same value as when the second mirror 

is absent and depends only on the heat directly deposited: therefore it is insensitive to the 
interference phenomenon. 

(b) the temperature field on the second mirror is zero (destructive interference) because there is no 
direct heat deposition, and, moreover, the thermal wave in the gas is nor able to heat the mirror 
(no relevant transmission). 

(c) the temperature field in the cavity centre changes by varying the cavity length which is a typical 
effect of  interference, but there is not any relevant thermal gain to justify the use of a resonator 
for this scope. 

Another fundamental feature to be analysed is the thermal energy stored in the gas, which obviously 
oscillates at the same frequency of the temperature. This quantity may be defined as 

( )∫ ⋅=
gasV

gasgasgas dVTcE ˆˆ ρ  and may be calculated for the temperature in Eq. (24) as follows  
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It is worth noting that, in both cases a) and b), the energy stored in the gas is extremely small 

with respect to the total available energy that is ωjP . For example, in case b), the fraction of energy 
in the gas is ( ) %5.021 1 <− R . Why? The physical reason is due to the extremely low gas heat 
capacity, so that even if the gas temperature is relevant (see Eq. 24), there is no significant energy. 
Where is the remaining 99.5% of energy? In the heated solid (active mirror). Although gasÊ  is very 
low, one may compare the gas energy in cases a) and b), by plotting their energy ratio vs the 
normalized cavity length gasL l (see curve (c) in Fig. 17). The amplitude ratio is always smaller than 

1.2, from which one deduces that the use of the thermal wave cavity does not allow any relevant 
increase of the energy level in the gas.  

Last fundamental feature to be analysed is the heat flux. A good estimate of such a quantity is 
provided by the photothermal deflection angle, which is proportional to both the thermal gradient and 
the heat flux, as already pointed out in Eq. (12). By combining Eqs. (12) and (24) one obtains for the 
deflection angle in the two cases 
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As usual we may compare the deflection angle in case a) and in case b), in three significant points of 
the resonator: on the first mirror for z=0, in the cavity centre for z=L/2, and on the second mirror for 
z=L. The amplitude ratio vs the normalized cavity length gasL l is plotted in Fig. 17, curve (d) for 
z=0, curve (e) for z=L/2, curve (f) for z=L.  The ratio of the heat fluxes or of the thermal gradients, 
for the two cases a) and b) gives exactly the same results as the amplitude ratio for deflections, which 
thus has general validity. By a first inspection of curves d,e,f, one may see that the amplitude ratio 
may reach very high values for a short cavity. In fact if 0, →Lz , the amplitude ratio tends to the 
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value ( )2112 RR−  which may be extremely high. As a conclusion, in a short thermal wave cavity, 
the heat flux, the thermal gradients and the beam deflection are magnified and amplified with respect 
to the standard case. There are at least two physical explanations for this:  
(a) it has been shown that the temperature on the active mirror is constant, let’s say T1, while the 

temperature on the second mirror is kept to zero. Therefore the effective thermal gradient is 
LTdzdT 1=  which may become a huge value if 0→L . 

(b) Generally on a mirror there is a destructive interference for the temperature, but a constructive 
interference for the thermal gradient. In other words the use of one mirror doubles the existing 
(incident) thermal gradient. The use of two mirrors, at short distance, may reinforce farther the 
thermal gradient. 

As a conclusive remark the use of a thermal wave resonator may amplify any quantity related 
to the thermal gradient; in particular the use of a thermal wave resonator may increase the sensitivity 
of the photothermal deflection technique in the measurements of the thermal diffusivity of gases, due 
to the signal amplification. In principle the gain of such a device could be very high ( )2112 RR− . 
Unfortunately in reality the gain is limited by the 3D spherical effect related to the pump beam finite 
spot-size a. In fact the spherical thermal waves produced on the first mirror, propagates not only along 
the cavity but also in undesired directions out of cavity. This reduces the thermal wave interference 
pattern and causes the loss of the ideal amplification. In practice values of 10-20db may be easily 
obtained. 
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Fig. 17. The thermal properties in the cavity and without the cavity are compared. The ratio 
between case a) and case b) is plotted vs gasgas DfLL π=l (normalized cavity length) 

for temperature, thermal energy, and deflection: curves (a), (b) are the temperature ratios on 
the first mirror and in the cavity centre; curve (c) is the thermal energy ratio, curves (d),(e) 
and  
                         (f) are the deflection ratios respectively for z=0, z=L/2, z=L. 

 
4.2  Experimental evidences on the thermal wave resonator 

 
Let us consider a plane thermal wave open resonator in which the active mirror is a thick glass 

layer coated by a thin pump-absorbing film (1µm Silicon), and the second plane mirror is a     20 µm 
thick aluminium foil. In the open cavity there is air in standard conditions of pressure and 
temperature. The pump beam is a 250 mW Ar laser, heating the thin silicon film with a 1 mm spot-
size. The cavity length may be adjusted from 0.1mm to 2mm, by moving the second mirror. The 
mechanical chopper may adjust the working frequency in the range 1-1500 Hz. The probe beam is 
coming from a 633 nm He-Ne laser. The beam travels in x direction, at a adjustable distance z from 
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the active mirror, and is deflected in the z direction. Its probe beam deflection is detected by a position 
sensor, and processed by a lock-in amplifier. 

An experimental evidence of the thermal wave interference effect in air is given in Fig. 18 
where the phase of the deflection signal is plotted vs the frequency square root (i.e. the normalized 
cavity length airDfL π ) for three different probe beam positions in the cavity (z ≈ 0, z=L/2 and z 
≈ L) (case a). In the same figure for comparison, the measurement has been repeated for z ≈ 0, 
removing the second mirror (case b). The effect of the thermal wave resonator is clearly seen in the 
differences between case a ( ) and case b (+). It is worth noting that the difference exist only for 
f<25Hz because: 
(a) if f<25Hz the thermal waves induced on the first mirror have a long thermal wavelength. These 

long waves are subjected to a weak attenuation, but are able to reach the second mirror, “feel” if 
the mirror is removed or not. Consequently take part, or not to the interference in the cavity.  

(b) If f>25Hz the induced thermal waves have a short thermal wavelength. In this case they are 
subjected to a large attenuation, do not reach the second mirror, and cannot anyway interfere in 
the cavity, in case there is a cavity! In this regime the difference between case a) and case b) is 
only potential. 
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Fig. 18. Phase (radian) of the deflection signal vs the frequency square root (Hz1/2) measured  
         in different points: ( ) for z=0, (∆) for z=L/2, (◊) for z=L, (+) for z=0 without cavity. 

 
 

4.3 Gas thermal diffusivity measurements 
 

In order to increase the sensitivity of the photothermal deflection technique for thermal 
diffusivity measurements of non-absorbing gases, one may exploit the deflection amplification effect 
in a thermal wave resonator [32,33]. As one may see from the expression of the photothermal signal 
(see Eq. 26a), there are three free parameters to be adjusted: the cavity length L, the probe beam 
position z, and the frequency f (i.e. gasl ). Therefore one may perform the measurements keeping 
constant two parameters, and varying the third one. In principle one may choose one of the following 
three procedures: a cavity length scan, a probe beam scan, or a frequency scan. In all cases is possible 
to see the interference effect in the resonator, and to measure the gas thermal diffusivity by fitting the 
data with the theory.  

As an example we applied the cavity length scan method to measure the air thermal 
diffusivity in an open thermal wave resonator. In Fig. 19 both logarithm of amplitude and phase are 
plotted vs the cavity length in the range from 100µm to than 1400 µm. The other two parameters are 
kept constant: the probe beam has been placed at 70µm from the first mirror and the mechanical 
chopper frequency worked at f = 36Hz. Note the typical oscillation of both phase and amplitude due 
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to the thermal wave interference. Note also that for short cavity length there is an amplitude 
amplification larger than 10db. From the fit with the theory, one obtains the value 

scmDair /205.0 2= . Instead of such nonlinear fit for phase and amplitude, one may perform an 
easier linear fit for thermal reflectivity (see Eq. 23). In fact, the deflection in Eq.(26a), can be seen as 
the sum of two terms which refer to the forward and backward plane thermal waves. It is well know 
that the ratio between the backward and the forward wave, called thermal reflectivity, has an easy 
single-exponential expression useful for linear fit. But is it possible, starting from the sum of the two 
quantities mixed together in Eq.(26a) to calculate its ratio? The answer is positive only if an 
additional information is provided, as for example the value of the forward wave when the backward 
is absent, for instance when the cavity length L tends to infinity. It is easy to demonstrate that the 
thermal reflectivity Γ may be obtained as follows [32] 
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Fig. 19. Deflection signal as a function of the cavity length L (mm). The frequency is fixed to 
f=36Hz, The spot size is 1mm wide. The  thermal  wave resonator works in air: ( ) 
Logarithm  
                                        of amplitude (db), (+) phase contrast (radian). 

 
 

Note that both the logarithm of amplitude and the phase of the reflection coefficient have the 
same linear behaviour in the three variables L, z f . By the linear slopes of both phase and logarithm 
of amplitude of Γ, the diffusivity can be worked out by one of the two relationships 
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where the corrective factor NL has also been introduced, to take into account the 3D spherical effect 
due to the spot-size a. In Fig. 20 the results of a numerical study on the factor NL is presented.  
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Fig. 20. Numerical analysis of the factor NL ,  due to the finite spot size of the pump beam. In 
abscissa is a/ gasl . The curves refer to different formula (phase and amplitude) and to 

different thermal diffusivity between gas and sample Dratio: amplitude formula; (curve 1) 
Dratio=0.2; (curve 2)  Dratio=0.5;  (curve 3) Dratio= 5; phase formula;  (curve 4) Dratio= 0.2; 
(curve  
                                                     5) Dratio=0.5;  (curve 6) Dratio=5. 

 
 

The NL values for both amplitude and phase formula are plotted as a function of the parameter 
gasa l , for different diffusivity ratios between gas and active mirror Dgas/D1 (0.2 - 0.5 - 5). For 

large gasa l  all the curves tend to 1, but in a different way, so that the amplitude formula in 

Eq.(28a) is normally preferred. From a experimental point of view we calculate the thermal 
reflectivity from the data in Fig. 19, by using Eq.(27) and taking for ( )∞Φzˆ  the zΦ̂  value obtained 
for the longest cavity length (0.14mm). In fact this distance is enough to inhibit the thermal waves 
from doing a complete round trip in the resonator. In Fig. 21 both phase and logarithm of amplitude of 
Γ  are plotted vs the cavity length L. The expected linear behaviour is present for the first 500 µm. For 
larger distances the interference between the damped forward and backward waves becomes 
ineffective. Looking at the linear slopes and using Eqs.(28) one may calculate the air thermal 
diffusivity. 
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Fig. 21. Thermal reflectivity  vs the cavity length L (mm) : ( ) phase contrast (radian); (+)  
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                                                             logarithm of amplitude. 
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Fig. 22. Air thermal diffusivity vs the cavity length L (mm). 
 

In this case a small distortion from linearity occurs to both phase and logarithm of amplitude. 
This effect can be related to a variable value of the air diffusivity. In fact with 250mW pump beam 
power, by changing the cavity length of the resonator the d.c. temperature rise inside it, could reach 
several tens of degree which are able to increase the air thermal diffusivity of several percents. By 
applying Eqs.(28) locally, one obtains the calculated profile of air thermal diffusivity as a function of 
the cavity length  (see Fig. 22). For cavity lengths larger than 450µm the effect of the d.c. temperature 
rise seems negligible so that the diffusivity decreases to the standard value of about 0.205 cm2/s at the 
room temperature of 20 C [18]. 
 
 

5. Thermal waves in layered materials 
 
  In this section we only want to provide some useful tool to solve the heat conduction equation 
in periodical regime for layered materials [29,30,34-40]. One basic problem, as previously discussed 
in thermal wave interferometry, is to find a suitable algorithm to calculate the thermal field in a 
layered material periodically heated at the surface, assuming to know the thickness, the thermal 
effusivity and the thermal diffusivity of each layer [29,41-43]. In the generic ith layer the temperature 
field may be written as the superposition of a forward and a backward plane thermal wave as follows 
[29,30] 
 

( ) [ ] [ ]zBzAzT iiiii β⋅+β−⋅= expexpˆ ,     (29) 
 
where ii Djωβ =  and Di  respectively are the wavevector and the thermal diffusivity of the ith 
layer, and Ai , Bi  are the unknown quantities to be determined from the boundary conditions (see Eq. 
6). In practice there are 2 equations at each interface between two different layers, because both 
temperature and heat flux must be continuous functions. In case of N  layers one has to solve a linear 
system of 2N equations (boundary conditions) and 2N unknown quantities (A and B for each layer) by 
the means of the usual algebraic methods. An alternative faster method uses the thermal reflectivity, 
defined as the ratio between the backward and the forward plane thermal waves in the ith layer as 
follows ( ) [ ]zABz iiii β2exp=Γ . This method is recursive and allows one to calculate Γ, layer by 
layer starting from the last, back to the first, as it will be clear later. The procedure is based on the 
four following steps: 



R. Li Voti, G. L. Liakhou, S. Paoloni, C. Sibilia, M. Bertolotti 

 

803

1- Description of the thermal reflectivity discontinuity at the interface z=zi  between the ith and (i+1)th 
media. The boundary conditions for FT ~,~

 may be written as follows [29,30] 
 

[ ] ( )[ ] [ ] ( )[ ]
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βωβω

ββ
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By dividing the two expressions in Eq.(30) one for the other, one obtains 
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and after some algebra one finally finds the useful relationship 
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where  
1
1

1,
+

+
+ +

−
=

ii
ii

ii ee
eer  is the interface thermal reflection coefficient (see Eq.9).  

2- Description of the thermal reflectivity attenuation inside the ith layer. The thermal reflectivity, in 
this case, is a continuous function of z, subjected to a double exponential decay with respect to the 
thermal wave’s one. In particular if the value ( )ii zΓ  at the interface z=zi is known, the value ( )1−Γ ii z  
at the other interface z=zi-1  may be easily calculated as follows 
 

( ) ( ) ( )[ ]11 2exp −− −−⋅Γ=Γ iiiiiii zzzz β .    (33) 
 
3- Description of the initial condition at infinity. The last layer (usually air) is supposed to be semi-
infinite, so that the thermal reflectivity is everywhere  
 

( ) ( ) 01 =Γ=∞Γ −NNN z ,     (34) 
 
because there is not any backward wave. 
4- Description of the surface condition. 
  The value of the thermal reflectivity in the first layer ( )0Γ=Γsurf  is strictly related to the 
surface temperature, by the heat flux condition at z = 0 as follows 
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and after some algebra 
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where one may assume 1,1 ≈airr  for the reflection coefficient between air and the surface. In 
synthesis, if one starts from Eq. (34), combining iteratively Eqs. (32) and (33), finding the surface 
thermal reflectivity, by using Eq. (36) the surface temperature is eventually determined. 

6. Thermal wave back scattering 
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 In this section a new method is developed to describe the 1D heat diffusion process in 
inhomogeneous materials with thermal conductivity k(z) and heat capacity ( )zcρ  both functions of 
depth. In such a case the Fourier heat diffusion equation (1) becomes 

 

( ) ( ) ( ) ( ) 0ˆˆ
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⎢
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⎡
zTzcj

z
zTzk

z
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∂

∂
∂   , (z>0)   (37) 

 
being T independent on x,y. By introducing the heat flux, Eq.(37) may be written as a pair of coupled 
first order differential equations as follows [44,45] 
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subjected to the boundary condition at the surface ( ) IF ≈0ˆ  (see Eq.35). For a homogeneous layer 
the solution of Eq. (38) may be expressed as a superposition of a forward exponential term and a 
backward one, as follows 
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It is worth noting that both quantities FT ~,~

have similar expressions; the only differences are 
in the opposite sign of the backward term and in the factor ( ){ }ωjze . In fact the sign of the heat flux 
contains the information on the directionality of the thermal wave, that is clearly opposite for the 
forward and backward terms, while the factor ( ){ }ωjze  represents the ratio between heat flux and 
temperature for a single thermal wave, and depends only on the effusive property of the layer. The 
question is now: how is it possible to extend these considerations to an inhomogeneous sample? 
Indeed an inhomogeneous sample, described by the quantities k(z) and D(z) both  function of depth, 
may be modelled as a stack of homogeneous thin layers. Obviously in each layer Eq. (39) is still 
valid, with the appropriate A and B to be found. Since A and B depend on the specific layer, they may 
be considered complicate functions of depth. This consideration legitimates to search the solution of  
Eq. (38) in the following  form 
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where fT~  and bT~  respectively are the forward and the backward fields, and represent the 

generalisation of Eq. (39). Obviously the proposed solutions in Eq. (40) must fulfil the condition in 
Eq. (38), which gives rise to the following first order coupled differential equation system [44,45] 
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and after some algebra 
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 The system Eqs. (42) is still coupled and difficult to be solved. A fundamental simplification 
comes when the thermal reflectivity Γ  is introduced as the ratio between the backward and the 
forward fields fb TT ~~=Γ . The first derivative of Γ  may be written as 
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which combined with Eq.(43), may be written as follows [30,44,45] 
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subjected to the boundary condition to infinity, 

( ) 0lim =Γ∞→ zz ,     (45) 
and the final condition at the surface 
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ωje
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surf .    (46) 

By a first inspection, Eq.(44) is a first order nonlinear differential Riccati-type equation, which may 
be solved more easily than the second order differential Fourier Eq.(37). As a conclusion Eqs. 
(44),(45) and (46), found without any approximation, suggest an easy procedure to calculate the 
surface temperature. But the main problem is that, in the general case, Eq.(44) has no analytical 
solution and should be computed by using the standard numerical methods. However in many cases, 
the sample exhibits a slowly varying effusivity profile e(z), which is limited in a range 

( ) maxmin ezee << . In such a case, if the range is not too large, the amplitude of the thermal 

reflectivity Γ is much smaller than 1, and the nonlinear term 2Γ  in Eq. (44) may be neglected 
(Rayleigh approximation); the validation of the previous approximation may be given by the 

condition ( ) [ ]
2

ln, minmax eefz ≤Γ «1, which provides a strong criterion to establish the limit of 

validity of the following model. The suppression of the nonlinear term in Eq. (44) leads to a first-
order linear differential equation whose solution may be always put in a close form as follows 
[30,44,45] 
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Before going on, it is worth to notice that Eq.(47) has a clear physical meaning. The thermal 
wave is generated by a laser at the surface, then it propagates along z, and is partially reflected back 
when finds some effusivity inhomogeneity which acts exactly as backscattering centre. The total 
amount of the thermal wave reflected back is therefore given by the integral over the whole volume 
(dz) of all the back-scattering contributions. Eq.(47) is in fact a back-scattering integral where the 
logarithmic term plays the role of the source for the scattering field, while the exponential term 
represents the attenuation of a thermal wave travelling two times the distance between the surface and 
the scattering centre at the depth z (one trip to reach the inhomogeneity, plus one trip back to the 
surface after reflection): note that the thermal wave round trip occurs in a inhomogeneous medium, as 
taken into account in the diffusivity integral inside the bracket. According to this explanation the heat 
diffusion model based on Eq.(47) may be reasonably called thermal wave back-scattering theory 
(TWBS).  

Now the question is “which is the range of validity of TWBS?”. In order to test the validity of 
the thermal wave scattering model, one may compare the surface temperature obtained by Eqs.(46) 
and (47), with the exact solution, for a significant type of profile [46-50]. As an example we refer to 
the linear conductivity depth profile for which an exact solution exists, if the heat capacity is constant. 
The inhomogeneous specimen under test is therefore given by the following conductivity profile 
[46,47] 
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where L is the size of the inhomogeneous behaviour, and ksurf , kbulk are the conductivity values for z=0 
and for z>L. Obviously a useful parameterization is requested to eliminate some unessential 
parameters. In analogy with the thermal wave interferometry (see Fig. 11) we refer to the only 
independent quantities: the normalized thickness bulkbulk DfLL π=l , and the effective thermal 

reflection of the structure
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= . In Fig. 23 the phase contrast for 

surface temperature is plotted vs the normalized thickness for different values of R. The curves 1,2,3 
represent the exact solution for R=0.2, 0.4, 0.6, while curves 4,5,6 correspond to the thermal wave 
backscattering solution (TWBS solution). It is worth noting that: 
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Fig. 23. Phase contrast vs the normalized thickness ( )bulkbulk DfLL π=l  for the 
linear conductivity profiles in Eq.(48): curves (1),(2),and (3) are the exact solution for R = 
0.2,  
                    0.4, 0.6; curves (4), (5), and (6) are the TWBS solution for R=0.2, 0.4, 0.6. 
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(a) the phase contrast exhibits one oscillation only, instead of the damped oscillations of the two-

layers system (see Fig.11). Such oscillation happens when bulkL l≈  and increases with the 
effective thermal reflection R, just a little less with respect to the two-layers system. This means 
that the thermal wave backscattering is less efficient than the thermal wave reflection.  

(b) The difference between the exact solution and the TWBS solution is seen only for high values R, 
when the nonlinear term in the Riccati Eq.(47) cannot be neglected without a remarkable error. 

In Fig. 24 the absolute value of the error of the TWBS solution is plotted vs the normalized 
thickness for the standard values of R  (curves 1,2,3 correspond to R=0.2, 0.4, 0.6). The error has a 
maximum in the low frequency regime, which may be predicted by the theory considering that 
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which is plotted as a function of R, in fig.25. Of course this is the error in the worse case at very low 
frequency and the validity of TWBS solution in the whole frequency spectrum is much wider. As a 
conclusive remark, although TWBS is an approximated model, it is very useful because it establishes 
a clear relationship between effusivity profile e(z), diffusivity profile D(z) and surface thermal 
reflectivity ( )f,0Γ . Such simple relationship may be used to solve a typical inverse problem called 
photothermal depth profiling which consists in the retrieval of the diffusivity profile D(z) in 
inhomogeneous materials, as described in the next paragraph. 
 

0.01%

0.1%

1%

10%

100%

0.01 0.1 1 10

Er
ro

r, 
  %

Normalized thickness

(2)

(1)

(3)

 
 
 
Fig. 24. Error between TWBS and exact solutions vs the normalized thickness thickness 
( )bulkbulk DfLL π=l  for the linear conductivity profiles in Eq.(48): curve (1) 
R=0.2;  
                                                curve (2) R=0.4; curve (3) R=0.6. 
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Fig. 25. Maximum error (Eq. 49) vs the reflection coefficient R for the linear conductivity  
                                                            profiles in Eq. (48). 

 
 

6.1  Photothermal depth profiling 
 

Photothermal depth profiling is usually applied to materials subjected to thermal (such as 
hardening) [47,51], mechanical (such as grinding) [52] or chemical treatments of the surface which 
exhibit a depth dependence of the thermal conductivity k(z) and diffusivity D(z), due to the structural 
modifications in near-surface layers. Photothermal depth profiling allows to reconstruct the thermal 
conductivity and/or diffusivity depth profiles by monitoring the photothermal signal (photothermal 
radiometry or photothermal deflection) in the following situations:  
(a) depth profiling in frequency domain: the specimen is illuminated by a wide pump laser beam 

modulated at an adjustable frequency f. The photothermal radiometric signal is measured vs the 
frequency. 

(b) depth profiling using lateral scan: the specimen is illuminated by a focused pump laser beam 
modulated at some frequency f. The photothermal deflection signal is measured as a function of 
the distance from the heating point.  

(c) depth profiling in time domain: the specimen is illuminated by a wide pump pulsed laser beam. 
The photothermal radiometric signal is measured as a function of the time delay from the pulse. 

          The general idea is to generate at the surface thermal waves (cases a,b) or a thermal pulse (case 
c) by periodical, or pulsed, laser heating. The thermal waves, or the pulse, penetrate inside the sample, 
are subjected to a backscattering phenomenon due to the thermal effusivity changes, and come back 
towards the surface. The surface temperature, resulting from the superposition between the main field 
and the backscattered field, is eventually detected by photothermal radiometry [7] or by photothermal 
deflection technique [13-15]. Therefore the photothermal signal contains the information on the 
thermal depth profiles, which may be reconstructed by simply comparing theory with experiment, for 
the surface temperature Tsurf or for any related photothermal signal.  

     The theoretical value of Tsurf may be provided by different models of heat diffusion in 
inhomogeneous materials, when k(z) and D(z) are known (direct problem). Unfortunately many 
rigorous models allow calculating Tsurf by using recursive or numerical algorithms, in which a clear 
relationship between Tsurf  and the thermal parameters is lost. Consequently the depth profile 
reconstruction (inverse problem) consists of a huge set of attempts for fitting Tsurf  by trying all the 
reasonable profiles. Several procedures have been introduced in the past to optimize such heuristic 
fitting procedure:  
(a) in the frequency domain H.G.Walther et al use a stepwise least squares fit to reconstruct a 

polygonal best approximation to the conductivity profile [47,51,53], C.Glorieux et al use a neural 
network approach to find the best fit [54], J.Fivez et al use an inverse procedure to find the 
Taylor expansion parameters of the conductivity profiles [55], J.F.Power et al use an inverse 
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Green’s function method [56,57], A.Mandelis et al use a Hamilton/Jacobi based model useful for 
weak scattering [42,58], and Kolarov et al use a thermal wave impedance based model [50]. 

(b) in the spatial domain H.J.Vidberg applied the inverse scattering method to reconstruct both 
thermal conductivity and heat capacity depth profiles [59], and H.G.Walther et al use the 
conjugate gradient method to optimize the fit [60]. 

(c) in the time domain J.C.Krapez et al reconstruct the effusivity depth profile [61,62], and C. 
Glorieux et al use the neural network approach to find the best fit [63]. 

In the following we refer to an inversion procedure based on the thermal backscattering  
model of heat conduction well described by Eqs.(46) and (47) [30, 64-67]. Without loosing generality 
we restrict our study to the case (a). In this case the specimen is illuminated by a wide pump laser 
beam, which is modulated at the frequency f so to generate a plane thermal wave useful to investigate 
the internal thermal properties. In particular the frequency f, drives the penetration depth 

fD π=l of the thermal waves (D is the thermal diffusivity): for high frequency the induced 
thermal waves have a short penetration and may investigate the surface thermal properties; on the 
contrary, for low frequency, the thermal waves have a high penetration, and may investigate deeper 
layers. Obviously the whole thermal depth profile may be reconstructed by considering the 
photothermal signal in the whole frequency range. According to the thermal wave backscattering 
theory (TWBS) a clear direct relationship between the effusivity profile e(z) and the photothermal 
radiometry frequency spectrum S(f) may be found as follows.  
(a) By inverting Eq.(46), for the inhomogeneous sample under test, one obtains 
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(b) If one repeats the same experiment on a reference homogeneous sample keeping constant the 

fluency I, the reference surface temperature should be ωjeIT refref =
~ , where eref is the 

effusivity of the reference sample 
(c) If one combines the two previous formula, obtains 
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      which is a simple differential expression made not containing the fluency I. 
(d) by assuming the photothermal radiometry frequency spectrum S(f) proportional to the surface 

temperature, and by using a normalization for the frequency spectrum as follows 

( ) ( )
( ) ref
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ref
norm e

e

fS
fSfS = , therefore Eqs.(47) and (51) become 
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which is the desired relationship between Snorm(f) and e(z). The integral in Eq.(52) may be simplified 
by replacing the real depth z with the reconstruction depth zrec, fulfilling the condition 

( ) ( )∫=
z

rec
rec D

Ddzz
0 δ

δ  with Drec a constant. Thus Eq.(52) is transformed into 

 
( )
( )

( ) ( )∫
∞

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−=

+
−

0
12exp

2
)(ln

1
1

rec
rec

rec
rec

rec
norm
norm dz

D
fzj

dz
zed

fS
fS π   (53) 

 
It is worth noting that any inversion procedure from Eq. (53) may only reconstruct the thermal 
effusivity depth profile e(zrec) as a function of zrec which unfortunately differs from z. However in 
many applications one may assume the heat capacity constant, so to establish a link between 
effusivity, conductivity and diffusivity depth profiles. In such a case, once e(zrec) is calculated from 
Eq. (53), one may obtain the function z(zrec) by solving ( ) recrecrec ezedzdz = , and consequently, 
combining e(zrec ) with z(zrec) the real effusivity profile e(z) is worked out. The main problem is now 
the inversion of the integral in Eq. (53). If one measures the thermal reflectivity for N different 
frequencies, and consider for the thermal effusivity profile the number L of reconstruction depths zrec , 
the integral in Eq. (53) may be replaced by the summation and finally reduced to a linear system. The 
problem of reconstruction consists now in solving such ill-posed system of 2N equations (one set for 
the real and another set for the imaginary part of Γ) in L unknown quantities by the help of the 
Singular Value Decomposition mathematical tool (SVD). SVD analyses the matrix Lx2N in terms of 
eigenvectors and relative eigenvalues, and uses just a few of them for the inversion. In fact the use of 
the lower eigenvalues generally leads to a clear instability in the reconstruction. The criterion of 
selection consists in the definition of a threshold eigenvalue λth, and is given by using for the 
inversion only eigenvalues larger than this threshold. On one hand this procedure allows to 
reconstruct stable profiles, but on the other hand it limits the spatial resolution in reconstruction which 
strongly depends on the choice of λth.  

As a theoretical example we report the results of some numerical simulation on a sample 
made of two layers: film + bulk. The diffusivity of the film is D=0.09cm2/s, while for the bulk 
D=0.2cm2/s. We have chosen a  “step” profile just to test the performance of TWBS. This is the worse 
profile to be reconstructed for any inversion procedure, and is useful to check the limit of validity of 

Eq.(52). In Fig. 26 the ratio 
( )
( ) 1

1
+
−

fS
fS

norm
norm  is shown as a function of frequency. 
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Fig. 26. thermal reflectivity (log scale) vs frequency square root for many noise levels (10-2, 

10-3, 10-5, 10-10). 
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The curves refer to different levels of Gaussian noise. The ideal curve for noiseless data must 
be a straight line in the log plot. The presence of noise reduces the information content of the curve, 
damaging definitively the high frequency regime. The corresponding thermal diffusivity 
reconstructions are shown in Fig. 27. As the noise level increases, some oscillations appear in the 
reconstruction. In fact the loss of information seen in Fig. 26 must reflect the loss of spatial resolution 
in Fig. 27.  

Depth,  cm
0.00 0.02 0.04 0.06 0.08 0.10 0.12

D
iff

us
iv

ity
 p

ro
fil

e,
  c

m
2 /s

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

noise  level 

 
Fig. 27. Thermal diffusivity reconstructions by SVD for the same different levels of noise of  
                                                   Fig. 1 (10-2, 10-3, 10-5, 10-10). 
  
As a experimental example of the depth profiling in frequency regime, we may show some 

experimental results on hardened steel materials. The hardening process is a thermal cycle made of a 
heating process to reach the complete austenization of the steel, and a very fast cooling to obtain the 
martensitic structure, which exhibits a higher hardening property. In many industrial applications the 
hardening process allows to increase the hardening of the steel, transforming into martensite the 
surface layers up to a suitable depth L in the millimeter range (hardening depth), depending on the 
applications. Since martensite has lower thermal conductivity than austenite, the hardened steels are 
macroscopically thermally inhomogeneous and may be described by a thermal conductivity depth 
profile k(z) corresponding to the in-depth hardening process.  

Concerning the other thermal parameters, the heat capacity has no significant changes from 
austenite to martensite, and therefore may be assumed constant: this means that both conductivity and 
diffusivity profiles are proportional one to each other.  

We show photothermal radiometric signals measured for three samples:  
(a) One hardened steel sample thermally inhomogeneous;  
(b) The same sample of case a, after the cut of a 140µm-thick surface layer. In practice it may be 

considered as a new inhomogeneous sample. 
(c) One homogeneous steel sample used as a reference.  

The photothermal radiometric signals of cases a,b should be normalized to the case c; the 
normalization is a standard step for the inversion as described below, and moreover allows to reduce 
the systematic errors in the measurement. The normalized signals ( )fSnorm  of case a (+) and case b 
(�) are plotted vs the frequency square root: the amplitude ratio is in Fig. 28a, while the phase 
contrast is in Fig. 28b. It is worth noting that for both cases a and b, the phase contrast is positive, 
corresponding to the condition bulksurf kk < , as expected in any hardening process. By using the 
SVD procedure, the normalized signals in Figs. 28 may be inverted in order to reconstruct the best 
diffusivity depth profiles for both cases a and b as plotted in Fig. 29.  Since for both cases a and b the 
sample is the same, if one shifts appropriately the reconstructed depth profiles of 140 µm (as it is done 
in Fig. 29), the two profiles should superpose. The slight differences visible on the figure give a 
quantitative information of the error of the procedure. As a further validation note in Figs. 28 the good 
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quality of the fit between the experimental data (symbols) and the continuous curves corresponding to 
the profiles in Fig. 29. As a conclusive remark one may observe that the hardening process 
corresponds to a change of diffusivity from Dbulk=0.2cm2/s to Dsurf=0.08cm2/s. 
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Fig. 28a. Amplitude of the radiometric signal vs frequency square root. The symbols represent 
the experimental data: (+) hardened steel sample; (�) the same hardened steel sample, after 
the cut of a 140µm-thick surface layer; (full lines) best fit  by  SVD corresponding to the 
depth  
                                                                profiles in Fig. 29. 
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Fig. 28b. Phase difference (deg.) vs frequency square root: the symbols represent the 
experimental data: (+) hardened steel sample; (�) the same hardened steel sample, after the 
cut of a 140µm-thick surface layer; (full lines) best  fit  by  SVD  corresponding  to  the  depth  
                                                              profiles in Fig. 29. 
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Fig. 29. Diffusivity depth profiles from the radiometric data in Fig. 28. The reconstruction is 
performed by using the TWBS theory, and the SVD algorithm: (+) hardened steel sample;  
(�)  
                 the same hardened steel sample, after the cut of a 140µm-thick surface layer. 

 
 

7. Conclusions 
 

In this paper we have reviewed the basis of the thermal wave physics, focusing the attention 
not only on many theoretical aspects but also on the main applications for the nondestructive material 
testing. 
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