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The paper presents a mixed (parametric-non parametric) method to identify the Preisach 
distribution and the mean field parameter of particulate recording media. The algorithm is 
tested on computer generated data. The identification is realized using remagnetisation curves 
and taking into account a linear mean field term and a reversible part of magnetisation on the 
first bisector of the Preisach plane. 
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1. Introduction 
  

The Preisach type models describe the interactions between particles in particulate media 
using a distribution of random interaction fields and a mean field term proportional to the magnetic 
moment of the sample (moving term). The coercive fields of the particles are taken into account by a 
distribution of coercive fields. To use a Preisach model in order to predict the magnetisation processes 
of a particulate medium one needs to identi fy the specific parameters of the model. 
 The generalised ∆M plots (GDM) [1,2,3] use the remagnetisation curves starting from 
different initial reproducible remanent states to build a DCD like curve which has been denoted by 
DCD’ and which replaces the DCD curve in the equation describing the classical ∆M plot (Fig. 1). 
The initial remanent state used to obtain a GDM plot is obtained by positively saturating the sample, 
applying a negative field –Hn and removing the applied field. For different values of -Hn, one obtains 
the generalised ∆M plot corresponding to each initial remanent state. The generalised ∆M plots 
contain all the information needed to extract the Preisach distribution. 
 
 

2. The identification algorithm  
 

The m+ and m- curves (Fig. 1) are the positive and negative remanent magnetisation curves 
starting from the same remanent state on the DCD process.  

-1500 -1000 -500 0 500 1000 1500

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8 m
rs
/m

s

∆ ∆

N
or

m
al

iz
ed

 M
ag

n
et

ic
 M

om
en

t

Applied Magnetic Field (Oe)

 m
+

 m
-

 DCD'
 ∆∆∆∆M

g

 
             Fig. 1. A Generalised ∆M plot and the magnetisation processes used to obtain it, for                
                                            Hn = 650 Oe. ∆=m+(H)-m- (-H)=mrs-mDCD’(-H). 
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Considering no mean interaction field, the remanent positive curve m+ switches the magnetic 
moments corresponding to square zones defined by the applied field in the Preisach plane as described 
in [4] and one may obtain the Preisach distribution by representing the magnetic moments 
corresponding to each zone against the fields which defines it as the limits of critical fields of the 
particles in that zone. When the mean interaction field can not be neglected, this method gives 
significant differences from the experimental curves. In order to determine the Preisach distribution 
by magnetic measurements one has to take into account both the mean interaction field and the 
reversible part of magnetisation which is coupled with the irreversible part of magnetisation.  
The effective field in the sample may be considered as given by the sum of the applied field and the 
mean field described by the moving term. 
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The reversible part of magnetisation may be approximated by using a distribution of step 
operators placed along the first bisector of the Preisach plane [5]. Thus, the reversible magnetic 
moment may be calculated as: 
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In the equation above, S is the saturation irreversible magnetic moment of the sample, and hrσ 

is a parameter. The parameters S and hrσ describing the reversible part of magnetisation may be 
identified on the descending branch of the hysteresis loop in an iterative process making a “ first 
guess”  on the moving parameter. 

The effective field in the major hysteresis loop (MHL) may be written as: 
 

)H(mHH efMHLnef α+−=         (3) 
 
For a given value of the moving parameter, measuring the applied field -Hn and the magnetic 

moment on the MHL one may find the effective applied field.  
Assuming that the total magnetic moment is given by the sum of the reversible part of magnetisation 
described by equation (2) and the irreversible magnetisation, one may write the irreversible variation 
of magnetisation on the major hysteresis loop (MHL) as  
 

 )H(m)H(m)H(m efrevefMHLefri −=     (4) 
 

Thus one may approximate both the effective field corresponding to each value of Hn and the 
magnetic moment irreversibly switched to define the initial remanent state for the remagnetisation 
curves.  

By removing the field Hn, the field H0 becomes zero but the effective field in the sample will  
be given by the mean interaction field produced by the sample itsel f 
 

 )0,H(m)0,H(H nrnef −α=−           (5) 
 
mr is the magnetic moment that one actually measures after the removal of the field -Hn.  

When applying and removing a field in the positive direction, the effective field created, Hef(-
Hn, H), produces an irreversible magnetic moment  
 

 )H,H(m)H,H(m)H,H(m nrevnrnri −−−=−      (6) 
 

One measures the remanent magnetic moment mr(-Hn, H) but to define the irreversible 
variation of magnetic moment one has to obtain the effective applied field in the positive direction in 
an iterative process considering that the magnetic moment of the sample in the presence of the field is 
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given by 
 

),(),(),( HHmHHmHHm nrevnrin −+−=−  

  ),(),( HHmHHHH nnef −+=− α      (7) 

 

Thus one obtains the irreversible magnetic moment and the effective field used to create it for 
all values of the applied field. Considering that the interaction field distribution is symmetric with 
respect to the second bisector of the Preisach plane one needs to obtain the magnetic moments 
corresponding to the area in the forth quadrant, above the second bisector.  

The magnetic moment corresponding to the shaded area in fig. 2 may be written as  
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Fig. 2. To the calculus of the magnetic moment corresponding to the hashed zone. 
 
 

The algorithm described above uses the generalised moving Preisach model (GMPM) [5] 
hypotheses and, in order to test the algorithm, we have generated the remagnetisation curves using the 
GMPM and reobtained the Preisach distribution to study the accuracy of the algorithm for “perfect 
data”. Thus, we have used a reversible part of magnetisation defined by (2), Gaussian distribution of 
interactions, lognormal distribution of coercivities and a mean field term to generate a set of 
remagnetisation curves starting from remanent states obtained for di fferent applied fields in the MHL 
process. Fig. 3 and 4 represent the interaction field distribution and the coercive field distribution 
obtained with the algorithm described using the values of α, S and hrσ that were used to generate the 
original curves. Fig. 5 represents the Preisach distribution obtained with the algorithm.  

The Preisach distribution and the moving parameter are then used as input for the GMPM 
model to simulate the MHL, DC demagnetisation and isothermal remanent magnetisation. Fig. 6 
presents the MHL loops simulated with the GMPM for several different values of the moving 
parameter. The convergence of the method is based on iterating the moving parameter to minimise the 
areas between the experimental and simulated MHL, IRM and DCD. Starting from a minimum value 
of α and increasing it step by step, the parameters are changing continuously to adapt to the new mean 
field term until the minimum area is reached. 
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In Fig. 6 one observes that, for values of the mean field parameter above or below the exact 

value, the parameters obtained using the algorithm produce simulations that do not satisfy the 
minimum area condition. 
 
 

3. Conclusions 
 

The identification method presented allows the obtaining of the Preisach distribution 
characterising the sample and the mean field parameter under the hypotheses used in the GMP model. 
An important advantage of the algorithm is that allows the obtaining of the Preisach distribution 
without making any assumption on the shape of the distribution, which is important when the Preisach 
distribution is not close to the analytical distributions that are normally used to describe it.  
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Fig. 3. The interaction field distribution obtained  
using α = 300. 

 

Fig. 4. The coercive field distribution obtained 
using α = 300. 

 

Fig. 5. The Preisach distribution obtained using the 
algorithm. 

 

Fig. 6. Hysteresis loops obtained for different 
values of the mean field parameter. 

 


