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A new method for the calculation of switching field values in Fe77.5Si7.5B15 amorphous 
microwires with large and positive magnetostriction is presented. The approach used is based 
on the nucleation at coercivity process. The anisotropy constants that enter the energy 
balance are calculated starting from internal stresses induced during preparation. 
Experimental values of the switching field are used to validate the theoretical results. 
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 1. Introduction 
  

Ferromagnetic amorphous glass-covered wires, also called amorphous microwires, consist of a 
metallic core with diameters ranging from several micrometers to 30 µm covered by a glass insulator 
with a thickness of several micrometers up to 25 µm. They are prepared from magnetostrictive alloys 
(e.g. Fe77.5Si7.5B15 with λS = 25 × 10-6, Co80Si10B10 with λS = -4 × 10-6, and Co68.15Fe4.35Si12.5B15 with λS 
= -1 × 10-7) in a one step process called glass-coated melt spinning, an improved method of the original 
Taylor technique. The high quenching rates involved in this process along with the presence of the glass 
coating are responsible for large internal stresses induced during preparation. 

The magnetoelastic anisotropy that arises from the coupling between internal stresses and 
magnetostriction is the anisotropy that determines the magnetic behavior of these materials. It has been 
previously shown that the magnetic behavior of microwires is strongly dependent on their dimensions - 
metallic core diameter, Φm, glass coating thickness, tg, and their ratio [1]. 

Amorphous microwires with large and positive magnetostriction display a bistable magnetic 
behavior, i.e. the magnetization jumps from negative to positive remanent state when the sample is 
subjected to a positive applied field larger than a certain value called switching field, and usually 
denoted H*. 

 
 
2. Model and discussion 
 
The aim of this paper is to propose a general method for the calculation of switching field 

values in positive magnetostrictive microwires having different dimensions of the metallic core and 
glass coating. The calculated values of the switching field are then checked against experimentally 
determined ones. 

Axial magnetoelastic anisotropy, KZ, characterizes most of the volume of amorphous 
microwires with large and positive magnetostriction, like Fe77.5Si7.5B15 ones. Only a small volume 
towards the surface displays a different anisotropy direction, i.e. radial. This is the reason for the 
bistable behavior at low fields. 

Let us denote the volume of the microwire’s metallic core characterized by axial anisotropy as 
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axial core (AC). Magnetization switching should be treated as a nucleation at coercivity process, since 
the most suitable approach is to consider magnetization reversal as the formation of some region of 
reversed magnetization, which can then expand in the volume of the AC. Thus, nucleation implies the 
formation of a domain wall. The reversal process is in this way controlled by the balance of three 
energy terms: wall energy, magnetostatic energy variation, and Zeeman energy, since the whole process 
is caused by an applied field. This energy balance results in the following expression for the nucleation 
field [2], which in this case is the actual switching field: 
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*                           (1) 

where γW is the wall surface tension, µ0 the magnetic permeability of vacuum, MS the saturation 
magnetization, V the volume of the reversed nucleus driving the reversal process, and Neff a 
phenomenological coefficient which contains the effect of local magnetostatic fields over the space 
occupied by the nucleus. α is another phenomenological parameter, that reflects the existence of an 
anisotropy distribution instead of constant anisotropy. 
 Estimations of Neff for ‘conventional’  amorphous wires showed that its values for samples with 
different diameters are almost equal to N, the demagnetizing factor of the samples, calculated at 
remanence or for reverse applied fields smaller than the switching field [3]. Using the same method for 
the calculation of N, i.e. by approximating the cylindrical metallic core of the microwire with a prolate 
spheroid whose major axis is much larger than the minor one, for a 1 cm long typical microwire with 
the diameter of the metallic core of 7 µm, we found N = 2.56 × 10-6 and a corresponding demagnetizing 
field of 3.3 A/m. The value of N is one order of magnitude smaller than in ‘conventional’  amorphous 
wires, and the resulting demagnetizing field is very small as well, allowing us to neglect in a first 
approximation the second term of (1). 
 The wall surface tension is expressed as: 

ZW KAβ=γ                                             

(2) 
where β is a coefficient that depends on the wall shape, A is the exchange constant, and ZK  is the 

mean axial magnetoelastic anisotropy constant. We will use β = 2, a reasonable value that has been 
also employed for ‘conventional’  wires [3]. For A we employed the value of the exchange constant for 
Fe, i.e. A = 1.5 × 10-11 J/m. 

In order to evaluate ZK , it is necessary to know the magnetoelastic anisotropy distribution, 

that requires first the calculation of internal stress distribution. Calculation of internal stress 
distributions for microwires with different dimensions were performed by considering only the diagonal 
components of the stress tensor. The fully developed mathematical formulation of stress calculation is 
presented in a previous work [4]. 

We have calculated the radial distribution of internal stresses for Fe77.5Si7.5B15 microwires with 
the metallic core diameter ranging between 7 and 41 µm and the glass coating thickness of 5 to 20.6 
µm. All the obtained stress distributions are qualitatively similar. The values of stresses display large 
variations with the microwire dimensions. The maximum axial tensile stress - that dominates on over 
90% of the microwire’s radius starting from its center - decreases from 1.66 GPa for a microwire with 
Φm = 7 µm and tg = 15 µm to 0.58 GPa for one with Φm = 25 µm and tg = 5.5 µm. The maximum 
circumferential compressive stress - that dominates toward the surface - decreases from 2.79 GPa for a 
microwire with Φm = 7 µm and tg = 5 µm to 1.51 GPa for one with Φm = 25 µm and tg = 15 µm. 

After the stress distribution is known, the next step is to see which component is dominant in 
each point on the microwire radius (radial, axial, or circumferential). This is because of the tensorial 
character of stresses, which determines the formation of an easy axis of anisotropy as a result of the 
coupling between magnetostriction and the largest component of the stress tensor [5]. It is also 
important to know the radial distribution of smaller stress components, since they play an important 
role in establishing the anisotropy axis when the dominant component and magnetostriction constant 
have different signs. 

Fig. 1 illustrates the radial distribution of the dominant stress components for the microwire 
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with Φm = 25 µm and tg = 5.5 µm. The existence of two main regions of stress dominance - one in the 
microwire’s inner part, in which axial tensile stresses are dominating, and another one near the surface, 
in which circumferential compressive stresses are dominating - is a general feature for all the calculated 
cases. 
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Fig. 1. Distribution of dominant stresses in an FeSiB microwire. 

 
Between these regions, there is a small intermediate one in which radial tensile stresses are 

dominating. Once the dominant stress components have been identified, we can proceed to the next step, 
and to calculate the magnetoelastic anisotropy distribution on the radial direction. The magnetoelastic 
anisotropy constant is given by: 

iiSK σλ=
2
3

                                        (3) 

where σii is the dominant stress component and λS the saturation magnetostriction constant. 
Fig. 2 shows the radial distribution of the magnetoelastic anisotropy constants for the 

Fe77.5Si7.5B15 microwire with Φm = 25 µm and tg = 5.5 µm, having λS = 25 × 10-6. One observes a large 
region of axial anisotropy in the inner region, which occupies about 95% of the metallic core radius. 
The axial easy axis of anisotropy results from the coupling between axial tensile stresses and positive 
magnetostriction. Immediately near the region with axial anisotropy, there is a small region of radial 
anisotropy that originates in the coupling between radial tensile stresses (positive) and the positive 
magnetostriction. In the remaining part, near the surface of the microwire, the easy axis of anisotropy is 
radial as well, but it results from the coupling between circumferential compressive stresses (negative) 
and positive magnetostriction. Here, the resulting anisotropy axis has to be perpendicular to the 
circumferential direction, so it will be either axial or radial. Since axial stresses in this region are also 
compressive and large, but radial ones are the smallest and positive (tensile), the resulting direction of 
the anisotropy axis is radial. We have to emphasize the rather large values of the anisotropy constants 
(the axial one, KZ, reaches a maximum of about 2.2 × 104 J/m3 in the inner region of the microwire, 
while the radial one, Kr, reaches to 6 × 104 J/m3 near the surface). 
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Fig. 2. Anisotropy distribution in an FeSiB microwire. 
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 As concerns the axial magnetization process of microwires with λS > 0, the anisotropy 
distribution from Fig. 2 is consistent with the bistable behavior at low fields. The degree in which 
remanence reaches close to saturation is proportional to the volume of the region with axial anisotropy. 

Since stresses display a radial distribution, the axial magnetoelastic anisotropy constant KZ also 
exhibits a radial distribution. Thus, in (2) it is necessary to employ a weighted mean of KZ’s in order to 
characterize the axial magnetoelastic anisotropy of the microwire. 

Let us evaluate next the volume of the reversed nucleus, V. One should not limit the transverse 
dimensions of the nucleus to the cross section area of the AC only, since it is reasonable to consider 
nucleation as starting in regions with lower and even not axial anisotropy, which are located outside the 
AC. Obviously, the propagation following nucleation is a different aspect. Therefore, it is plausible to 
consider in a first approximation that V is given by an axial dimension of the order of the wall 
thickness, δW, and by transverse dimensions proportional to the cross section area of the microwire’s 

metallic core, 2
mRπ . Thus, V should be proportional to WmR δπ 2 . On the other hand, the volume of the 

nucleus should depend on the anisotropy distribution. The most important parameter related to the 
anisotropy distribution is the ratio between the radius of the microwire’s metallic core, Rm, and the 
glass coating thickness, tg, denoted in the following as η = Rm/tg. Thus, we can consider that the radial 

dimension of the nucleus is ηRm, its cross section area being 22
mRπη . It is difficult to estimate the actual 

shape of the reversed nucleus, but since for η > 1 the cross section of a cylindrical nucleus would 
exceed the cross section of the metallic core, one should imagine the nucleus as having a different 
shape, i.e. its margin being either as an ellipse that is oblique to the core’s cross section under different 
inclination angles (larger for larger values of η), or as a paraboloid with a large enough surface. Even 
so, for simplicity, the volume of the reversed nucleus can be expressed as an equivalent cylindrical 

volume: 22
mW RV ηπδ= . 31V  becomes: 

 

( ) 3123231
mW RV πδη=                              (4) 

 
Here, the factor containing η reflects the contribution of the anisotropy distribution, so it can 

be assimilated to α from (1). By taking 321 η=α , ZW KAπ=δ , and considering (2), (4), and the 

above made assumptions,  expression (1) for the switching field becomes: 
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that includes all the constant parameters. With µ0MS = 1.6 T one obtain the value of the constant      C: 
C = 1.44 × 10-4. 
 Thus, we achieved a general method for the calculation of switching field values for microwires 
with positive magnetostriction having different dimensions. 

Table 1 illustrates the measured and calculated values of the switching field for several 
Fe77.5Si7.5B15 samples with different dimensions. The calculations were performed using (5). 
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Table 1. Measured and calculated switching field values for FeSiB microwires. 
 

Sample 
no. Φm [µm] tg [µm] ZK  

[×104 J/m3] 
H*

measured [Oe] H*
calculated [Oe] 

1. 7.2 13.4 4.233 22.17 22.47 

2. 10.8 20.6 3.594 15.52 15.63 

3. 17.0 8.5 2.770 4.43 3.98 

4. 25.0 5.5 2.196 2.00 1.52 

5. 41.0 10.5 2.076 1.44 1.17 

6. 32.6 5.3 1.687 0.38 0.87 

 
 One observes a quite reasonable agreement between the calculated and measured values of the 
switching field. The differences are due to the deviations of the real samples from the ideal calculated 
cases, that assume perfectly cylindrical microwires. 

 
 
3. Conclusion 
 
Summarizing, a general method that allows the calculation of the switching field as function of 

the sample dimensions has been achieved. Although the agreement between calculated and measured 
switching field values is far from perfect, the method could find use in selecting samples with 
appropriate dimensions for sensor applications based on the bistable magnetic behavior of amorphous 
microwires with positive magnetostriction.  
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