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The effect of the second anisotropy constant K1 in the series expansion of the uniaxial 
magneto-crystalline free energy on the transverse susceptibility is analysed. A generalized 2D 
Stoner-Wohlfarth model and a micromagnetic 3D model based on the Landau-Lifshitz-Gilbert 
equation approach are used in this analysis. The effect of K2 on the transverse susceptibili ty is 
discussed for particle distributions. 
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1. Introduction 
 

The well-known experimental method of transverse susceptibility (TS) is used for direct 
measurement of the anisotropy in ferromagnetic systems. This is due to the fact that usually these 
systems show sharp peaks located at the anisotropy which makes possible a precise detection and the 
calculation of these important physical parameters 0, 0. This was proven for non-interacting uniaxial 
single particles systems by Aharoni et al. 0 within the coherent rotation Stoner-Wohlfarth theory. 
When applied to real systems a number of systematic errors are observed due to the disregard of some 
complex phenomena which occur in real systems, like inter-particle interactions 0,0 and relaxation 
0,0. 

In this paper one analyses a problem which should be carefully considered in order to 
correctly exploit the TS experimental data. The series expansion for the magneto-crystalline 
anisotropy usually taken into account in the calculus of the TS curve is: 

2 4
1 2sin sin ...kW K Kθ θ= + +      (1)  

where θ  is the angle between the easy axis and the magnetic moment of the particle; only the first 
term is introduced in the calculus, as in 0. However, this is accurate only when the angle between the 
easy axis and the magnetic moment is sufficiently small. In the TS experiment, it was shown that the 
particles with the easy axis oriented near 90° to the DC field direction are responsible for the peaks 
located at KH±  0, 0, where KH  is the anisotropy field; the shape of the TS curve is significantly 
influenced by the particles with the easy axis oriented near 90°. For these particles, when the field is 
near KH  the angle between their easy axis and the magnetic moment is close to 90º. Therefore 
neglecting the higher order terms in the TS calculation is a major source of errors. For materials with 
high values of 2K  this error is more significant (see also 0, 0, 0) 
 
 

2. TS experiment 
 

In the TS experiment one applies simultaneously to the sample two fields: a DC field, DCH , 

and a very small amplitude AC field, ACH , perpendicular to the DC field direction. Maintaining the 
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DC field and the amplitude of the AC field constant, with an appropriate coils system, one detects the 
variation of the total magnetic moment projection on the AC field direction.  
 If the easy axis of the single-domain particle orientation in this system is given by the 

spherical coordinates ( ),K Kθ ϕ  and the orientation of the magnetic moment is given by ( ),M Mθ ϕ , 

using the same methodology as presented in 0 one obtains after simple but straightforward approach 
the following expression for the TS: 
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where ( )1/ 2 /DC DC sh H K M=  is the reduced DC field, 2 2 1/k K K= , and M Kθ θ θ= − . The TS 

evaluation is simpler for 2 0k =  due to the fact that the free energy has only two minima which can be 

selected with the well-known SW astroid critical curve. When 2 0k ≠ , the free energy landscape is 
more complicated. The number of minima is higher and the selection of the stable state in the TS 
measurement is more complex and the use of the critical curves formalism in this case is a helpful tool  
0. However, the 2D critical curve could be misleading for the minima selection and a 3D model  
should be used.  
 Due to the di fficult use of the 3D Stoner-Wohlfarth critical surfaces approach, developed by 
Thiaville 0, we preferred to use a micromagnetic model based on the Landau-Lifshitz-Gilbert 
equation 0. 
 
 

3. The micromagnetic model. Results of simulations 
 

 The dynamic of the magnetisation vector M� of each particle in the applied field H�  is 
described by the Landau-Lifshitz-Gilbert (LLG) equation 0. 
  The TS process was simulated by a sequence of fields, identical with those applied in the 
experiment, applied to a system of a few thousand particles. In this paper we present the results for a 
non-interacting system of identical particles. The results obtained in this way are, in fact, identical  
with those calculated for one particle. The program allows the calculation of the TS response for 
systems of interacting particles. These results will be published in a further paper. However, one can 
mention that the comparison between the “one particle”  results obtained with the LLG program and 
calculated with the generalized SW approach described here is a test for the micromagnetic program. 
 Using both the 2D critical curves and the micromagnetic LLG model, a systematic analysis 
has been performed for positive and negative 1K  and 2K . 

In Fig. 1 one presents the hysteresis loop and the TS curve in a complex case ( 1 0K > , 

2 0.45k = − , 77Kθ = ° ). With lines are represented the results calculated with the critical curve 
approach and with points the LLG simulation. One observes the excellent agreement between the two 
models. The random errors, which can be noticed on the LLG/TS simulation, are due to numerical  
round off errors. These errors are increasing if the amplitude of the AC field is decreased in the 
simulation. As the amplitude of the AC field decreases, the modification in the equilibrium state of 
the magnetic moment in comparison with that calculated when only the DC field is applied becomes 
smaller and more difficult to calculate with accuracy. So, in the simulations we have used an AC field 
amplitude which was sufficiently high to avoid the increase of the round off errors in the calculation 
of the equilibrium state variation due to the AC field. The TS curve shape is changing dramaticall y 
with the modification of the value of 2k  for both positive and negative 1K . In certain cases, 
supplementary peaks in the TS curves appear. Combination of measurements could be used to 
evaluate the 1K  and 2k  for non interacting systems of identical particles. For an assembly of non-
interacting single domain particles the TS response is given by the integral of the transverse 
susceptibil ity of each particle over the easy axis distribution. Fig. 2 displays the results obtained for a 
randomly oriented system for different values of 2k . The well-known TS curve, with anisotropy 

peaks located at 1h = ±  and switching field peak located at 0.5h = −  is replaced by a curve with a 
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more complicated shape. The anisotropy peaks are located now at ( ) ( )2 21 2h k k= ± +  and the 

switching peak location and height depends on 2k value. 

             
  Fig. 1. (left) Hysteresis loop and TS curve for           Fig. 2 (right).  The  mean  TS  of  an  assembly  of  

          1 0K > , 2 0.45k = − , 77Kθ = ° .                          randomly oriented monodomain particles, having an  

                                                                                               uniaxial  anisotropy  energy  with  01 >K ,  and 

     different values for 2k . 
 

 
Fig. 3. Calculated hysteresis loops (top panels) and corresponding TS curves (bottom panels) for 1 0K > , 

2 0.2k =  (a) and 1 0K > , 2 1.0k =  (b) for different orientations Kθ  of the static applied field DCH . 
 

 
 
 Fig. 4. Calculated hysteresis loops (top panels) and corresponding TS curves (bottom panels) 

for 1 0K > , 2 0.4k = −  (a) and 1 0K > , 2 1.0k = −  (b) for different orientations Kθ  of the  

                                                          static applied field DCH . 
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Fig. 5. Calculated hysteresis loops (top panels) and corresponding TS curves (bottom panels) 

for 1 0K < , 2 0.4k =  (a)  and 1 0K < , 2 1.0k =  (b)  for  different  orientations Kθ  of  the  

                                                          static applied field DCH . 

 

4. Conclusions 
 
 In this paper we used a micromagnetic approach based on LLG equation in order to calculate 
the TS of uniaxial ferromagnets, taking into account the first two order anisotropy constants, 1K  and 

K2. Neglecting 2K  could be the origin of significant systematic errors in the anisotropy constants 
deconvolution from TS experiments (see also Figs. 3-5). In conclusion, this generalized approach of 
TS makes possible the expansion of the range of applicability of TS experiments as a method for 
determining the anisotropy in magnetic materials. The micromagnetic program described in this paper 
will provide an analysis tool for studying the effect of interactions on the TS curves.  
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