RESEARCH PAPER

SEMIEMPIRICAL RELATION BETWEEN NON-LINEAR SUSCEPTIBILITY (REFRACTIVE INDEX), LINEAR REFRACTIVE INDEX AND OPTICAL GAP AND ITS APPLICATION TO AMORPHOUS CHALCOGENIDES

H. Tichá, L. Tichý^a

University of Pardubice, 532 10 Pardubice, Czech Republic ^aJoint Laboratory of Solid State Chemistry of the Academy of Sciences of Czech Republic and the University of Pardubice, 532 10 Pardubice, Czech Republic

Using generalized Miller's rule and linear refractive index (n), simple relation is suggested for estimation of the non-linear susceptibility $(\chi^{(3)})$ and non-linear refractive index (n_2) . This relation provides reasonable agreement between the calculated and experimental $\chi^{(3)}$, n_2 values for more than 90 glassy oxides $(\chi^{(3)})$ and also for 22 optical crystals (n_2) . Prediction of $\chi^{(3)}$ and n_2 values for chalcogenide glasses indicates that non-linear susceptibility can reach up to $\chi^{(3)} \cong 2x10^{-10}$ esu for some telluride glasses. Simple semiempirical correlation between n_2 and the optical gap is suggested.

(Received April 15, 2002; accepted May 15, 2002)

Keywords: Amorphous chalcogenides; Non-linear refractive index

1. Introduction

Amorphous (a) chalcogenides posses interesting optical properties: (i) high refractive index $n(a-GeS_2) \cong 2.2$ [1], $n(a-As_2Te_3) \cong 3.6$ [2], (ii) photoinduced changes manifested by blue or red (bleaching, darkening) shift of the optical gap (E_g), e.g. [3], (iii) photoinduced crystallization, e.g. [4], (iv) photoinduced anisotropy, e.g. [5]. Amorphous chalcogenides are also transparent in the midinfrared spectral region. For example bulk selenide glasses show good transparency up to 11 µm if the content of oxygen impurities is of order ppm or less, see e.g. [6,7]. Various sulphide and selenide glasses are promising hosts of rare-earths for photonic applications as fibre lasers, optical amplifiers and upconvertors, see e.g. [8,9]. There are some experimental indications that amorphous or glassy chalcogenides have rather high non-linear optical susceptibility, see e.g. [10-14], and, hence, these materials are promising candidates as non-linear optical elements. The experimental determination of the non-linear optical properties of a material requires rather an elaborate technique, for example Z scan method [15], four-wave mixing [16] or optical third harmonic generation [10]. These methods are not common in most of laboratories, and, hence, of interest are empirical or semiempirical relations to predict non-linear refractive index (n₂) or non-linear optical susceptibility ($\chi^{(3)}$) from some linear optical constants of a material.

In this brief communication we shall use some simple semiempirical relations relating $\chi^{(3)}$ to n in oxide glasses for prediction of $\chi^{(3)}$ and n_2 in amorphous chalcogenides.

2. The choice of semiempirical formula and its application

Several semiempirical formulas were suggested for calculation of $\chi^{(3)}$ or n₂ [17-25]. Among formulas presented here [17-25], most widely used in the field of oxide glasses seems to be the formula (38) introduced by Boling et al. [23] which relates n₂ to linear refractive index (n) and to the Abbe number. Important is the formula (7) introduced in [25] which relates n₂ to the optical gap

 $(n_2 \sim E_g^{-4})$ and which can predict n_2 values for both the wide-gap dielectrics and semiconductors, too. Hajto et al.[26] used Boling's formula (38), see Ref. [23], for estimation of n_2 values in some chalcogenide glasses. Subsequently, Petkov and Ewen [27] discussed in more detail application of "Boling's" formula with the Wemple and DiDomenico single oscillator model (W-D) for linear refractive index dispersion and showed that in this case n_2 can be related to some structural parameters of a glass. Independently, Tichý et al. [28] used Miller's generalized rule [20] in combination with linear refractive index and W-D for estimation of $\chi^{(3)}$ values in some As-Se and Ge-As-Se glasses. For our purposes – a rough estimation of $\chi^{(3)}$ in amorphous chalcogenides and comparison of $\chi^{(3)}$ and n_2 values of various oxide glasses and single crystals, we shall combine Miller's generalized rule [20] and low-frequency linear refractive index estimated from Wemple-DiDomenico single effective oscillator model [29]. The reason is that:

(i) Miller's generalized rule is very simple $(\chi^{(3)} \cong A(\chi^{(1)})^4$, this one is physically based, and it gives quite good agreement between predicted and measured $\chi^{(3)}$ values [19, 30];

(ii) Most of relevant experimental data for amorphous chalcogenides (linear refractive index dispersion measured in visible and/or near infrared spectral region) are in literature interpreted using W–D;

(iii) The parameters of W–D, the dispersion energy (E_d) and the energy of effective oscillator (E_0) are related to a "chemistry" of a material that is - E_d is related to an ionicity, anion valency, coordination number, and E_0 is related to some bond energy or "bond gap", or band gap [31]. Within W–D, the linear refractive index dispersion is given by relation [29]:

$$\mathbf{n} = \left[1 + \frac{E_0 E_d}{E_0^2 - (\hbar\omega)^2}\right]^{1/2},\tag{1}$$

where $E_d = \beta N_c N_e Z_a$. For covalent solids $\beta = 0.34 \pm 0.04$ eV, for ionic solids $\beta = 0.27 \pm 0.04$ eV, N_c is the coordination number of the nearest neighbour cation to the anion, N_e is the total number of valence electrons per anion, and Z_a is the formal chemical valency of the anion.

The linear optical susceptibility for isotropic medium, the case of chalcogenide glasses in the first approximation, is given by relation:

$$\chi^{(1)} = (n^2 - 1)/4\pi , \qquad (2)$$

and from (1) and (2) we obtain:

$$\chi^{(1)} = \frac{E_{d}E_{0}}{4\pi(E_{0}^{2} - (\hbar\omega)^{2})},$$
(3)

which in the limit $\hbar \omega \rightarrow 0$ (n= n₀) gives:

$$\chi^{(1)} = \frac{E_d / E_0}{4\pi} \,. \tag{4}$$

Using generalized Miller's rule: $\chi^{(3)} = A(\chi^{(1)})^4$ [19,20] we obtain:

$$\chi^{(3)} = A/(4\pi)^4 (E_d/E_0)^4 = A/(4\pi)^4 (n_0^2 - 1)^4.$$
(5)

To estimate whether relation (5) gives reasonable result if applied to experimental $\chi^{(3)}$ and n_0 values we selected 97 experimental values of $\chi^{(3)}$ and n_0 of various oxide glasses tabulated in [32]. In Fig.1 the plot log $\chi^{(3)}$ versus log ($n_0^2 - 1$) indicates reasonable correlation of experimental $\chi^{(3)}(n_0)$ values within the relation (5) with the slope 4. Estimated A value is $A = 1.7 \times 10^{-10}$ (for $\chi^{(3)}$ in [esu]) which corresponds with A values obtained by Wang [19] for some ionic crystals: $0.6 \times 10^{-10} < A < 2.5 \times 10^{-10}$. Adair et al. [33] reported nonlinear refractive index for a large number of optical crystals (oxides and halogenides) measured at near one micrometer using nearly degenerate three-wave mixing method. Using both, the relevant E_d , E_0 values taken from [29] and eq. (5), we calculated n_2 values assuming for simplicity [34]:

$$\mathbf{n}_2 = 12\pi \chi^{(3)} / \mathbf{n}_0. \tag{6}$$

Fig. 1. The dependence of $log(\chi^{(3)})$ versus $log(n^2-1)$. Full symbols-experimental values for oxide glasses [30], open symbols - experimental values for chalcogenide glasses [11], solid line- calculated according to Eq.(3).

Following recommendation suggested by Górski et al. [35] we multiplied the n_2 values reported in [33] by a factor of about 2.3. In Fig.2 are shown calculated values of n_2 : $n_2[esu] = 2.6 \times 10^{-13} (E_d/E_0)^4/n_0 = 2.6 \times 10^{-13} (n_0^2 - 1)^4/n_0)$ versus experimental (2.3 n_2) values [33]. In the same figure also experimental n_2 values for some chalcogenide glasses recently reported [12] and n_2 values calculated from experimental $\chi^{(3)}$ values , see [11], using Eq.(6) are shown for reader's convenience. Taking into consideration four order scale of n_2 values the correspondence between the experimental and calculated values is quite good.

Fig. 2. Calculated n_2 values (Eq.(6)) versus experimental n_2 values, in log-log coordinates. Full symbols, see [31], open symbols - chalcogenide glasses: below line, see [11], above line and CS₂, see [12].

In Table 1 are summarized chemical compositions and parameters of W-D single oscillator model for some typical chalcogenide thin films. We selected chemical compositions in rather broad interval in linear refractive index to show possible scale of $\chi^{(3)}$ values which could be expected for amorphous chalcogenides. From Table 1, it is evident that calculated $\chi^{(3)}$ values are comparable with experimental $\chi^{(3)}$ values, see Fig.1 and [10,11]. Hence, using equation (5), the non-linear optical susceptibility can be estimated from linear refractive index (n₀) and/or from average oscillator energy (E₀) and dispersion energy (E_d) of the Wemple-Di Domenico single oscillator model. Table 1. Chemical composition and the values of the single oscillator energy (E₀), the dispersion energy (E_d), the linear refractive index (n₀), relevant references, calculated non-linear susceptibility ($\chi^{(3)}$) and non-linear refractive index (n₂), resp., for various amorphous chalcogenides. [n₀ = (E_d/ E₀ + 1)^{1/2}; $\chi^{(3)}$, calc., see Eq.(5); n₂, calc., see Eq.(6)].

Chemical	F _o [eV]	F ₁ [eV]	no	Ref [No]	$\gamma^{(3)}$ calc	na calc
composition			110	Ref.[10]		$[\rho_{2}]$, calc.
	5.2	01.0	2.26	26	[CSU]	$2.2(-10^{-11})$
A\$ ₃₈ \$ ₆₂	5.3	21.8	2.26	36	1.96×10 ¹²	3.26x10
$As_{40}S_{60}$	6.0	25.2	2.28	37	2.13×10 ⁻¹²	3.51×10 ⁻¹¹
Ge ₄ As ₃₆ S ₆₀	6.5	25.7	2.23	37	1.67×10 ⁻¹²	2.83×10 ⁻¹¹
$Ge_{15}As_{25}S_{60}$	6.5	26.4	2.25	37	1.86×10 ⁻¹²	3.11×10 ⁻¹¹
$Ge_{25}As_{15}S_{60}$	6.4	26.8	2.28	37	2.1×10^{-12}	3.47×10 ⁻¹¹
$Ge_{36}As_4S_{60}$	6.3	27.4	2.31	37	2.44×10 ⁻¹²	3.98×10 ⁻¹¹
As41Se59	3.59	23.0	2.72	28	1.15×10 ⁻¹¹	1.59×10 ⁻¹⁰
$As_{40}Se_{60}$	4.7	28.0	2.64	37	8.6×10 ⁻¹²	1.23×10 ⁻¹⁰
$Ge_{10}As_{30}Se_{60}$	4.5	23.2	2.48	37	4.83×10 ⁻¹²	7.33×10 ⁻¹¹
$Ge_{22}As_{18}Se_{60}$	4.44	22.2	2.45	37	4.27×10^{-12}	6.57×10 ⁻¹¹
Ge ₃₆ As ₄ Se ₆₀	4.6	24.2	2.50	35	5.23×10 ⁻¹²	7.88×10 ⁻¹¹
$Ge_{40}Se_{60}$	3.7	16.0	2.31	37	2.39×10 ⁻¹²	3.9×10 ⁻¹¹
$Ge_{10}Sb_{30}Se_{60}$	3.5	20.2	2.60	37	7.58×10 ⁻¹²	1.1×10 ⁻¹⁰
$Ge_{25}Sb_{15}Se_{60}$	4.10	23.3	2.59	37	7.12×10^{-12}	1.04×10 ⁻¹⁰
$Ge_{35}Sb_5Se_{60}$	3.8	20.4	2.52	37	5.67×10 ⁻¹²	8.47×10 ⁻¹¹
$Ge_{50}S_{50}$	4.12	23.4	2.58	38	7.11×10 ⁻¹²	1.04×10^{-10}
Ge ₃₃₃ S _{66.6}	5.45	19.76	2.15	39	1.18×10^{-12}	2.07×10 ⁻¹¹
As ₁₆ Te ₈₄	2.07	27.04	3.75	2	1.99×10^{-10}	2.0×10 ⁻⁹
As ₃₀ Te ₇₀	2.25	28.22	3.68	2	1.68×10^{-10}	1.72×10 ⁻⁹
$As_{40}Te_{60}$	2.325	28.05	3.61	2	1.45×10 ⁻¹⁰	1.51×10 ⁻⁹
Te	2.3	27	3.43	40	1.30×10 ⁻¹⁰	1.42×10 ⁻⁹

3. The correlation between n_2 and the optical gap

It was suggested by Wemple and DiDomenico [29] and by Ke. Tanaka [41] that W-D effective oscillator energy (E₀) relates to the optical gap (E_g). According to W-D the relation between E_g and E₀ can be expressed in the form E₀ $\approx 1.5 \text{ E}_t$, where E_t is the lowest direct band gap. According to Ke. Tanaka for amorphous chalcogenides it is approximately valid E₀ $\approx 2 \text{ E}_g$. For a broad interval in E_g values: 0.18 (InSb) $\leq E_g$ (eV) ≤ 13.6 eV (LiF) we examined the empirical correlation between E_g and E₀, see Fig. 3.

Fig. 3. The empirical corelation between E_g values and E_0 values for various solids. Full symbols- experimental values, full line - empirical correlation: $E_g = 0.8E_0 - 1.2$. The E_0 values were taken from Refs.[29,40], the E_g values were taken from Refs.[42,43].

From this figure it is evident that within examined scale of E_g , E_0 values, the correlation $E_0(E_g)$ can be expressed in the form: $E_0 = 1.25 (1.2 + E_g)$, and hence really $E_0 \sim E_g$. Using this proportionality and relations (5,6) one obtains approximately $n_2 \sim B/E_g^4$. Fortunately the errors introduced by neglecting the E_d changes with the chemical composition and taking simple proportionality $E_0 \sim E_g$ cancels each other and consequently the correspondence between n_2 and E_g^{-4} shown in log n_2 versus log E_g coordinates in Fig.4 is quite reasonable. The full line in Fig.4 corresponds to the semiempirical relation $n \sim B/E_g^4$ for $B = 1.26 \times 10^{-9}$ [esu eV⁴] where n_2 is in esu units and Eg is in eV units. The region of predicted and also measured n_2 , E_g values for chalcogenide glasses is marked by shaded eclipse.

Fig. 4. $log(n_2)$ versus $log(E_g)$ dependence. The n_2 values multiplied by 2.3, see text, taken from Ref.[33] are marked by +, the n_2 values calculated using Eqs.(5,6) are marked by \Box , the full line with the slope = 4 corresponds to $n_2 \cong B/E_g^4$. The E_g values are taken from Ref. [43]. The shaded eclipse indicates the region of amorphous chalcogenides.

4. Conclusion

Simple semiempirical relation based on generalized Miller's rule allows an estimation of non-linear susceptibility ($\chi^{(3)}$) and non-linear refractive index (n_2) from linear refractive index and/or from the dispersion energy and the energy of effective oscillator of the Wemple-Di Domenico model. For a number of various glasses and optical crystals suggested relation indicates reasonable correspondence between calculated and experimental $\chi^{(3)}$ and n_2 values. Its application to chalcogenide glasses confirms that these materials could reach, in agreement with experimental results [10-14], rather high $\chi^{(3)}$, n_2 values. For a broad range of n_2 and E_g values the semiempirical relation was found in the form $n_2(esu) \cong B/E_g^4$. Amorphous and glassy chalcogenides have rather high values of n_2 and, hence, they are very interesting materials for some non-linear optical applications.

Acknowledgements

Supported partly by projects: MSM 253100001, Key project ASCR 2050602.

References

- [1] G. Lucovsky, J. P. Neufville, F. L. Galeener, Phys. Rev.B 9, 1591 (1974).
- [2] M. Závětová, B. Velický, V. Vorlíček, Solar Energy Materials 8, 33 (1982).
- [3] Ke. Tanaka, Rev. Solids State Sci., 4, 641 (1990).
- [4] K. Weiser, R. J. Gambino, J. A. Reinhold, Appl. Phys. Lett. 22, 48 (1973).
- [5] R. Grigorovici, A. Vancu, L. Ghita, J. Non-Cryst. Solids 59-60, 909 (1983).

- [6] M. D. Rechtin, A. R. Hilton, D. J. Hayes, J. Electron. Mater. 4, 347 (1975).
- [7] M. Vlček, L. Tichý, J. Klikorka, A. Tříska, J. Mater. Sci. 4, 2508 (1989).
- [8] B. G. Aitken, R. S. Quimby, J. Non-Cryst. Solids 213-214, 281(1997).
- [9] P. Němec, B. Frumarová, M. Frumar, J. Oswald, J. Phys. Chem. Solids 61, 1583 (2000).
- [10] H. Nasu, Y. Ibara, K. Kubodera, J. Non-Cryst. Solids 110, 229 (1989).
- [11] H. Nasu, K. Kubodera, M. Kobyashi, M. Nakamura, K. Kaniya, J. Amer. Cer. Soc. 73, 1794 (1990).
- [12] T. Cardinal, K. A. Richardson, H. Shin, A. Schutte, R. Beatty, K. L. Foulgoe, C. Meneghini, J. F. Viens, A.Villeneuve, J. Non-Cryst. Solids 256/257, 353 (1999).
- [13] F. Smektala, C. Quemard, V. Couderac, A. Barthélémy, J. Non-Cryst. Solids 274, 232 (2000).
- [14] C.Quémard, F. Smektala, V. Ceudere, A. Barthélémy, J. Lucas, J. Phys. Chem. Solids 62, 1435 (2001).
- [15] M. Sheik-Bahae, A. A. Said, E. W. van Stryland, Opt. Letters 14, 955 (1989).
- [16] D. W. Hall, N. F. Borelli, W. H. Dumbaugh, M. A. Newhouse, D. L. Weldman, Proc. Symp. Nonlinear. Opt., Troy, p.293, 1988
- [17] J. Phillips, J. van Vechten, Phys. Rev. 183, 709 (1969).
- [18] B. Levine, Phys. Rev. Letters 22, 757 (1969).
- [19] C. Wang, Phys. Rev. B 2, 2045 (1970).
- [20] J. J. Wyne, Phys. Rev. 178, 1295 (1969).
- [21] W. Harrison, Phys. Rev. B 8, 4487 (1973).
- [22] J. Fournier, E. Snitzer, IEEE J. Quantum Electron. 10, 473 (1974).
- [23] N. Boling, A. Glass, A. Owyoung, IEEE J. Quantum Electron. 14, 601(1978).
- [24] G. Agrawal, C. Cojan, C. Flytzamic, Phys. Rev. B 17, 776 (1978).
- [25] M. Sheik-Bahae, D. J. Hagan, E. W. Stryland, Phys. Rev. Letters 65, 96 (1990).
- [26] E. Hajto, P. J. S. Ewen, A. E. Owen, J. Non-Cryst. Solids 164-166, 901 (1993).
- [27] K. Petkov, P. J. S. Ewen, J. Non-Cryst. Solids 249, 150 (1999).
- [28] L. Tichý, H. Tichá, P. Nagels, R. Callaerts, R. Mertens, M. Vlček, Mater. Letters 39, 122 (1999).
- [29] S. H. Wemple, Di Domenico, Phys. Rev. B 3, 1338 (1971).
- [30] H. Nasu, J. D. Mackenzie, Opt. Eng. 26, 102 (1987).
- [31] I. Umezu, K. Miyamoto, N. Sakamoto, K. Maeda, Jpn. J. Appl. Phys. 34, 1753 (1995).
- [32] V. Dimitrov, T. Komatsu, J. Non-Cryst. Solids 249, 160 (1999).
- [33] R. Adair, L. L. Chase, S. A. Payne, Phys. Rev. B 39, 3337 (1989).
- [34] W. L. Smith, in M. J. Weber (Ed.), Handbook of Laser Science and Technology, Chemical Rubber Co., Boca Raton, 1986, Vol.3, part 1, p.259.
- [35] P. Górski, M. Kin, W. Kucharczyk, Phys. Status Solidi (b) 197, 265 (1996).
- [36] L. Tichý, H. Tichá, K. Handlíř, J. Mater. Sci. 23, 229 (1988).
- [37] E. R. Skordeva, J. Optoelectron. Adv. Mat. 1, 43 (1999).
- [38] I. Gregora, B. Velický, M. Závětová, Phys. Status Solidi (b) 104, K95 (1981).
- [39] E. Marquez, A. M. Bernal-Oliva, J. M. Gonzales-Leal, R. Prieto-Alcón, J. C. Navarro, D. Minkov, Phys. Scripta, 60, 90 (1999).
- [40] S. H.Wemple, J. Chem. Phys. 67, 2151 (1977).
- [41] Ke. Tanaka, Thin Solid Films, 66, 271 (1980).
- [42] T. S. Moss, Phys. Status Solidi (b), 131, 415 (1985).
- [43] W. H. Strehlow, E. L. Cook, J. Phys. Chem. Ref. Data, 2(No1), 163 (1973).