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Electronic state calculations based on the tight-binding approximation are performed for 
si licon (Si) nanostructures, in order to elucidate the essential features of light-emitting Si. We 
take into account two types of models; the first model is Si nanostructure devoid of point-
group symmetries, and the second model is amorphous Si nanostructure. By studying the band 
gaps and radiative recombination rates for these systems, we propose that the second model, 
amorphous Si nanostructure, is a good candidate for Si-based l ight-emitting devices. 
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1. Introduction 
 
Silicon (Si) is a dominant material in the present-day microelectronics technology. However, 

because of its indirect band structure and band gap of 1.1 eV in the infrared region, it has not been 
possible to use it in light-emitting devices. 

This situation might change in the near future, since in 1990, efficient, visible, and room 
temperature photoluminescence (PL) from porous [1] and nanocrystalline [2] Si was discovered. This 
discovery is remarkable from a technological point of view, because it opens the possibil ity to the use 
of Si in l ight emitting devices compatible with Si-based optoelectronic integrated circuits [3]. Because 
of its potential importance as light-emitting devices, the phenomenon has been extensively studied 
throughout the world, and much work has been performed on the topic. However, a detailed 
understanding of the exact origin and mechanism of this phenomenon has not yet been reached by 
now [3]. 

The phenomenon is also interesting from a physical point of view, since the essential 
mechanism has not yet been clarified for the appearance of the eficient light emission as a result of a 
drastic reduction of size and dimensionality of Si all the way down to the order of nanometers [3]. 

It is believed that the eficient luminescence in porous Si can be assigned to its nanostructures, 
whose band gap is blue-shifted because of the quantum confinement (QC) effect. For this reason, it is 
necessary to understand in detail the electronic states and optical properties of Si nanostructures in 
order to clarify the mechanism of the efficient luminescence. To this end, there have been a number of 
calculational studies on Si nanostructures, focused on the effects that the change in size bring about    
[4, 5, 6, 7, 8]. 

Previous studies have been performed on Si nanostructures with special symmetries. For 
example, most work on zero-dimensional systems have assumed a spherical shape with Td point-
group symmetries. This assumption greatly simplifies the calculations, but is not appropriate in real 
physical systems. In order to elucidate the essential physics of light-emitting Si, it is necessary to 
study Si nanostructures with a wide variety of realistic structures. 
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In this work, we study Si nanostructures with various atomic conffigurations. Among others, 
we investigate two types of nanostructures; 1. Si nanostrucuture with no point-group symmetries [9], 
and 2. amorphous Si nanostructures [10, 11]. For each structural model, electronic state calculations 
based on the tight-binding (TB) approximation are performed, and the radiative recombination rate is 
calculated. From these calculations, we extract the essential aspects of realistic light-emitting Si. 
 
 

2. Calculational method 
 

In this section, we briefly describe the calculational method we use in this work. We perform 
electronic state calculations based on the TB method, which allows us to treat many types of 
nanostructures of various sizes. Since the experimental data are in fact the average value of physical  
quantities from many equivalent-size nanostructures of di.erent atomic configurations, the 
calculational accuracy for a particular atomic configuration is rather unimportant. The important point 
is to study numerous di fferent nanostructures, and study the tendency of their behaviors as a whole. In 
this respect, it is best to use the TB method, which is far more e.cient than first-principle electronic 
state calculations, and accordingly, allows us to treat a large number of different nanostructures. Since 
we are interested in optical properties, we need such a TB scheme as can accurately describe the 
conduction band of Si. In order to fulfill this requirement, we use several types of TB schemes, such 
as the three-center integral scheme of Ref. [12] and the sp3s*d5 reported in Ref. [13]. 

The “optical property”  we calculate in this work is the radiative recombination rate, defined 
by the following equation [14]: 
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where n0 is the refractive index (we choose the value of n0 = 1.2 in this work, the experimental value 
of porous Si [5]), p is the momentum operator, α is the fine structure constant, c and �  have their usual  
meanings, i.e., the light velocity and the Planck constant divided by 2π, and Ev and Ec are the eigen 
values corresponding to valence band v and conduction band c, respectively. By expanding the wave 

function of band b, where b being either c or v, as µ=∅ µµ� iab
iib |, where i is the site index and µ is 

the angular momentum, we can write the matrix element in Eq. (1) as 
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Since experiments are usually performed at room temperatures, we evaluate the thermal 

average of the radiative recombination rate by the following equation: 
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Here, kB is the Boltzmann constant, T is the temperature, n and n' represent conduction and 
valence bands, respectively, and the other symbols are the same as described in the above. Equation 
(3) is a good approximation if the carriers are in thermal equilibrium prior to recombination, which is 
the case for Si nanostructures [4]. 

 
 
3. Si nanostructure without point-group symmetry 
 
In this section, we study Si nanostructures devoid of point-group symmetries [9]. Here, one-

dimensional systems, or quantum wires, are studied, in which periodic boundary condition is assigned 
for one direction (the [001] direction in this work) for a given unit cell. 
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As mentioned in the Introduction, previous studies have adopted model structures with high 
pointgroup symmetries. An example of such model structures is shown in Fig. 1 (a). This unit cell is 
the so-called N ×N wire (13×13 in this case), and is constructed by cutting the four equivalent { 110}  
planes of bulk Si. The N ×N quantum wire has 24mp  symmetry [6]. Dangling bonds are passivated 
by hydrogen atoms. An N ×M unit cell can be made in an analogous fashion. 
 Fig. 1 (b) is an example of the model atomic configuration newly introduced in our work. 
These atomic configurations are constructed by randomly adding an arbitrary number of Si atoms on 
the surface of the structure in Fig. 1 (a). The number of Si atoms added are chosen so that it exceeds 
the number of initial surface bonds. Dangling bonds which inevitably appear after this procedure are 
passivated by hydrogen. The particular configuration shown in Fig. 1 (b) is a system with 182 Si 
atoms and 100 H atoms. We assume that the local crystall ine configuration is preserved in all cases. In 
order to make the model more realistic, it is possible to energetically relax a structure such as shown 
in Fig. 1 (b). In seperate papers (Ref. [15, 16]), we show that the effects of structural relaxation are 
not significant in the case studied here. 

 
Fig. 1 Examples of the unit cell for a quantum wire model; (a) an N × N wire and (b) a low-
symmetry wire. The particular structure shown is (a) 13×13 and (b) 182 Si atoms and 100 H 
atoms. The  fil led circles represent Si atoms, while the white circles  represent H atoms.  Other  
                                               structures can be made in the same manner. 

 
In Fig. 2 (a), the optical band gap is plotted against the size (linear dimension) of the model 

structures. The results are shown for the high-symmetry and low-symmetry wires, i.e., wires with and 
without pointgroup symmetry, respectively. From Fig. 2 (a), we observe that Eg shifts to the blue as 
the system size becomes smaller, reflecting the QC effect [4, 5, 6, 7, 8]. It is not surprising that we 
obtain results consistent with the QC hypothesis even for the low-symmetry systems. The interesting 
feature in Fig. 2 (a) is that Eg is slightly larger for the low-symmetry wires than for the high-
symmetry wires in all sizes. This result implies that the blue-shift of the band gap is induced not only 
from the QC effect, but also from the reduction in the degree of symmetry in nanocrystals. It must be 
noted, however, that this difference is not substantial. From Fig. 2 (a), we conclude that the band gap 
of a quantum wire is mainly governed by the QC effect, with some modifications coming from 
symmetry properties. The physical meaning of the slight blue-shift can be understood in terms of the 
effective coordination number of the Si atoms. For the high-symmetry wires, the effective 
coordination number is high (although much lower than the bulk value of four), while for the low-
symmetry wires it is lower. Therefore, when compared to the high-symmetry wires, the band width is 
narrower for the low-symmetry wires, which leads to a larger band gap. 

We show in Fig. 2 (b) the thermally-averaged radiative recombination rate
τ
1

 (at 300 K) plotted 

against the PL emission energy EPL for the high- and low-symmetry wires. The experimental results 
for porous Si, reproduced from Ref. [17], are also shown for comparison. 
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The relation between
τ
1

 and EPL was studied in previous works for the high-symmetry 

structures, and it was shown that 
τ
1

 increases as EPL increases [3, 5, 4]. It was pointed out that 
τ
1

 

decreases rather rapidly as EPL decreases, and is inconsistent with experiments at low (<2.0 eV) 
energies [3, 5, 4].  

We see from Fig. 2 (b) that the results for the low-symmetry unit cell wires are qualitatively 
as well as quantitatively di fferent from the results of the high-symmetry wires. The results for the 

high-symmetry wires show that 
τ
1

 is systematically lower than the experimental data. In particular, 
τ
1

 

decreases rapidly as EPL decreases, and is inconsistent with experiments at lower energies. On the 

other hand the results for the low-symmetry wires show a slower decrease in 
τ
1

, and are consistent 

with experiments at all energy range. 
Our results show that symmetry changes the radiative recombination rate considerably for 

these wires, especially for low-energy transitions. The physical meaning of this consequence is 
explained as follows.  

Firstly, in the case of bulk Si, both the conduction and valence bands have p-symmetry, which 
leads to zero oscil lator strength. Secondly, for the high-symmetry wires, the translational symmetry of 
bulk Si is broken, and mixing between p and s states occur at states near or at the band edge. This 
leads to a finite oscillator strength. But since the symmetry of the atomic configurations and wave 
functions is still high, many of the terms in the summation in Eq. (2) cancel out in pairs. Finally, for 
the low-symmetry wires, there is no symmetry in the atomic configurations and wave functions, and 
all the terms in the summation in Eq. (2) effectively contribute to the oscillator strength. For this 
reason, the low-symmetry wires give the larger values for the oscil lator strength than the high-
symmetry wires. 

Fig. 2. (a) Band gap Eg plotted against the size of the unit cell. The open circles represent the 
results for the high-symmetry wires, while the filled circles represent the results for the low-
symmetry wires. (b) The thermally-averaged radiative recombination time plotted against the 
PL emission energy  EPL  for the low- and high - symmetry  wires.  The results  of  PL decay  
                      measurements are shown by solid l ines, reproduced from Ref. [17]. 

 
 

4. Amorphous Si nanostructures 
 

In the previous section, we have calculated Si nanostructures without point-group symmetries 
but the local crystalline structure is preserved. In this section, we deal with the case in which the local  
crystalline structure is not preserved, namely, the case of amorphous Si (a-Si) nanostructures. 

We calculate a-Si quantum dots (QD) with diameters smaller than 2.4 nm. In this size region, 
the dominant recombination process comes from direct recombination [10, 11] instead of radiative 
tunneling [18, 19]. This allows us to use the same theoretical tools used in the previous section. 
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Our calculation procedure is as follows. We cut out 2000 ell ipsoids from the CRN models 
generated by Barkema [20] for every set of axes (2a, 2b, 2c), where (2a, 2b, 2c = 2.4, 2.0, 1.6, and    

1.2 nm). We define diameter as 3 abcD ≡ . We terminate the surface dangling bonds with terminators 
to sweep out the surface states from the band gap [10, 11]. For comparison, the QD version of the 
model structure of section 3 (both with and without point-group symmetry), which will hereafter be 
referred to simply as crystalline- (c-) Si, is also calculated. 

We show in Fig.3 (a) the size dependence of the emission peak energy of a-Si QD. The 
de.nition of the emission peak energy is described in Ref [10, 11]. We also plot the experimental data 
for PL peak energy obtained by Park et al. [21]. The size sensitive PL peak energy can not be 
explained by the radiative tunneling scheme in which luminescence peak energy show size insensitive 
logarithmic behavior [19]. On the other hands, the emission peak energy of our model shows a good 
agreement with the peak energy of the experimental PL. The agreement of theory with experiment 
indicates that the dominant process of the PL is the direct recombination. The emission energy of c-Si 
QDs (with point-group symmetry) increases more rapidly than the peak energy of a-Si QDs as the 
diameter decreases. This result indicates that the quantum confinement effect has much influence on 
the regularl y arranged structure compared with the disordered structure. 

We show in Fig. 3 (b) the correlation between emission energy and recombination rate for         
a- and c-Si QDs without point-group symmetry [10, 11]. The recombination rate of a-Si QDs is higher 
than that of c-Si QDs. The recombination rate of c-Si QDs decreases rapidly as decreasing emission 
energy (increasing diameter), which indicates that the electronic states of c-Si QDs changes to bulk         
c-Si type in which dipole transition is forbidden. 

The high luminescence efficiency and tunability of emission energy which covers from red- 
to blue-color are appealing that a-Si QD is a good candidate for the realization of Si-based light 
emitting devices. 

  
Fig. 3. (a) The size dependence of the emission peak energy of a-Si QD (open triangles) and 
the emission energy of c-Si QD with point-group symmetry (open circles). The experimental 
results of Ref. [21] are shown by fil led triangles. The solid line is the least-square fit to the 
peak energy of a-Si QD, Eem = 1.25+2.37/D1.47, and the dashed l ine is the least-square fit to 
the emission energy of c-Si QD, Eem = 0.31 + 4.87/D0.96. (b) The correlation of the emission 
energy and the radiative  recombination  rate.  The open triangles are results for a-Si QDs, and  
                         the filled circles are results for c-Si without point-group symmetry. 

 
 

5. Conclusion 
 
In this work, we calculated two types of non-conventional Si nanostructures, 1. model 

structures without point-group symmetry, and 2. amorphous Si nanostructures. We found that the 
radiative recombination rate is enhanced, compared to the previously-studied, high-symmetry Si 
nanostructures, in both cases, and that the enhancement is larger for amorphous Si nanostructures. 
From the results obtained, we assert that inclusion of disorder is important in studying the radiative 
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recombination rate of light-emitting Si, and that amorphous Si nanostructures are good candidates for 
realistic Si-based opto-electronic devices. 

 
 
References 

 
  [1] L. T. Canham: Appl. Phys. Lett. 57, 1046 (1990). 
  [2] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri: Appl. Phys. Lett. 56, 
        2379 (1990). 
  [3] D. J. Lockwood: in Light Emission in Silicon: From Physics to Device (ed. D. J. Lockwood,   
         Academic Press, 1998). 
  [4] C. Delerue, G. Allan, M. Lanoo: Phys. Rev. B 48, 11024 (1993). 
  [5] A. J. Read, R. J. Needs, K. J. Nash, L. T. Canham, P. D. J. Calcott, A. Qteish: Phys. Rev. Lett. 
        69, 1232 (1992). 
  [6] M. S. Hybertsen, M. Needels: Phys. Rev. B. 48, 4608 (1993). 
  [7] J. K

�
ga, K. Nishio, H. Ohtani, T. Yamaguchi, F. Yonezawa: J. Phys. Soc. Jpn. 69, 

        2188 (2000). 
  [8] K. Nishio, J. K

�
ga, H. Ohtani, T. Yamaguchi, F. Yonezawa: J. Non-Cryst. Solids 293-295,    

        705 (2001). 
  [9] J. K

�
ga, K. Nishio, T. Yamaguchi, F Yonezawa: J. Phys. Soc. Jpn. 70, 3143 (2001). 

[10] K. Nishio, J. K
�
ga, H. Ohtani, T. Yamaguchi, F. Yonezawa: to be published in J. Non-Cryst. 

        Solids. 
[11] K. Nishio, J. K

�
ga, H. Ohtani, T. Yamaguchi, F. Yonezawa: in preparation. 

[12] Y. M. Niquet, C. Delerue, G. Allan, M. Lanoo: Phys. Rev. B 62, 5109 (2000). 
[13] J. M. Jancu, R. Scholz, F. Beltram, F. Bassani, Phys. Rev. B. 57, 6493 (1998). 
[14] C. H. Henry, K. Nassau: Phys. Rev. B 1, 1628 (1970). 
[15] J. K

�
ga, K. Nishio, T. Yamaguchi, F Yonezawa: J. Non-Cryst. Solids 293-295, 630 (2001). 

[16] J. K
�
ga, K. Nishio, T. Yamaguchi, F Yonezawa: J. Phys. Soc. Jpn. 70, 2478 (2001). 

[17] Y. H. Xie, W. L. Wilson, F. M. Ross, J. A. Mucha, E. A. Fitzgerald, J. M. Macaulay, 
        T. D. Harris: J. Appl. Phys. 71, 2403 (1992). 
[18] D. J. Dunstan, F. Boulitrop: Phys. Rev. B 30, 5945 (1984). 
[19] R. B. Wehrspohn, J. -N. Chazalviel, F. Ozanam, I. Solomon: Eur. Phys. J. B 8, 179 (1998). 
[20] G. T. Barkema, N. Mousseau: Phys. Rev. B 62, 4985 (2000). 
[21] N. -M. Park, C. -J. Choi, T. -Y. Seong,  S. -J. Park: Phys. Rev. Lett 86, 1355 (2001). 
 
 
 
 
 
 
 
 
 
 


