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DESIGN OF PHOTONIC CRYSTAL SLAB STRUCTURESWITH ABSOLUTE
GAPSIN GUIDED MODES

C. G. Bostan, R. M. de Ridder

Lightwave Devices Group, MESA™ Research I ngtitute, University of Twente,
P.O.Box 217, 7500 AE Enschede, The Netherlands

Both symmetric and asymmetric photonic crystal slabs with non-circular holes have been
investigated. An absolute band gap was found for a triangular lattice of hexagond holes in
both symmetric and asymmetric dabs, but a square lattice of square holes has an absolute
bandgap only in symmetric slabs. The band gap could be maximized by optimizing the
angular orientation of the holes with respect to the lattice, leading to a larger gap than can be
obtained with circular holes. The dab thickness was found to be an important tuning
parameter for obtaining an absolute bandgap, and the sensitivity of the gap size to this
parameter is shown.
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1. Introduction

Photoni ¢ crystals (PhCs) have been the subject of intensive research for thelast 15 years.

These are artificialy made materids with spatially periodic distribution of dieectric
permittivity. What makes PhCs specid is their ‘photonic bandgap’ (PBG) property — a frequency
range in which the éectromagnetic waves propagation is forbidden, regardl ess the wavevector and
polarization state. Stated differently, a PhC is an omnidirectional optical isolator for frequencies
insidethe PBG, but only if the periodicity is 3D.

Defects can be introduced in PhCs by locally breaking the translational symmetry. They
create states inside the PBG that are spatialy localized in the defect regions. This fact has important
applications for integrated-optical devices, in reducing their size and increasing the packaging density.
A point defect can be a wavd ength-scal e resonant cavity with small modal volume and high quality
factor [1]. A line defect can represent a waveguide that transfers light around sharp corners with high
efficiency [2].

Anyway, the defects need to be shidded from the outside world to prevent radiation losses.
Perfect shid ding requires PhCs with full 3D PBGs.

However, it is dtill very difficult to integrate 3D PhCs with the existing planar technol ogy.
Instead, the goa of 3D control of light propagation can be accomplished by using quasi-2D PhCs,
known aso as ‘photonic crystal slabs (PCS)’. A typica PCS structure consists in a high-refractive
index plate (e.g. Si, GaAs) perforated with a 2D periodic lattice of air holes and having a thickness
around half-wavel ength. The plate is sandwiched between two semi-infinite regions that can be either
homogeneous or patterned. There are two coexisting confinement mechanisms in a PCS: in-plane
confinement-given by the PBG effect- and vertical confinement-given by refractive index contrast
between the PCS and its claddings.

Because of its finite thickness, a PCS supports guided modes. If the slab has mirror-symmetry
with respect to its horizontal middle plane, a gap between guided modes of certain symmetry can be
opened [3]. For example, a PCS with triangular lattice of circular holes has alarge gap in even modes.
There are severa reasons for which an absolute gap, independent of mode symmetry, would be a
desirabl e feature. First, coupling between modes of oppaosite symmetry is possible in real structures;



922 C. G. Bostan, R. M. de Ridder

because of fabrication intrinsic imperfections, the boundaries are neither smooth nor straight;
roughness-i nduced scettering a the boundariesisimportant in a PCS where the number of boundaries
is large. Second, a reasonable coupling efficiency between PCS and a ridge waveguide would need
careful control over the polarization state. Third, the condition of mirror symmetry leads to an
increase in the complexity of the fabri cation processin certain cases (for example, when using silicon-
on-insulator —SOI wafers).

To the best of our knowledge, a PCS with a significant absolute gap in guided modes was
discussed only recently [4]. The example considered in this reference is the familiar triangular | attice
of air holesin a PCS with mirror symmetry. In this paper we present and compare two new structures
based on silicon-on-insulator (SOI) substrates, having large, absolute gaps in guided modes. We
present a design procedure and computations of dispersion diagrams. Fully-vectoria e genmodes of
Maxwdl’s equations with periodic boundary conditions were computed by preconditioned conjugate-
gradient minimization of the block Rayleigh quotient in a planewave basis, using a fredy available
software package [5]. Limits imposed by the lithography accuracy are considered.

The paper is organized as follows. In section 2 we discuss the band diagrams of sd ected 2D
PhCs with large, absolute PBGs. These 2D PhCs aretranslated into their PCS-type brethren in section
3 and dispersion curves of guided modes are calculated. In section 4 conclusions are drawn and
further possible devd opments are highlighted.

2. Two-dimensional PhCs

A PCSisobtained from its 2D PhC counterpart by truncating the infinite thickness down to a
fraction of the lattice constant. The modes of the PCS-structure have alower effectiveindex, resulting
in ashift of its band diagrams towards higher frequencies. Then, if theinitial 2D PhC has an absolute
(that is polarization-independent) PBG, this may be preserved in the PCS, depending on its thickness.
On the other hand, one can infer that a 2D PhC that does not have a PBG in either TE or TM
polarizations can be discarded for practical purposes, since the resulting PCS will not have a gap in
guided modes.

Therefore, calculations of 2D PhCs provide a good starting point in sdecting promising
structures for PCSs. Moreover, the calculation time is orders of magnitude shorter than that for 3D
structures.

Optimization of the PBG is very difficult, because it involves solving a multiparametric
inverse problem. There are countless combinations of |attice symmetry, scattering object shape, filling
factor and refractive index contrast, but it is impossible to say which one gives the largest absolute
PBG. A systematic algorithm is still lacking, and the design is based on several rules of thumb. It is
known that absol ute PBGs are favored in PhCs that satisfy the following criteria:

« Réfractiveindex contrast is as high as possible;

« Brillouin zoneis closeto acircle

e Shape of scattering objects matches the symmetry of Brillouin zone [6];

e The PhC is comprised of isolated didectric islands connected by narrow veins (this
implies ahigh filling-factor for the low-index material)

Wang at a [6] recently performed a study on band diagrams of a broad range of 2D PhCs.
They showed that an effective way of overlapping the TE and TM bands is by rotating noncircular 2D
rods around their vertical (infinite) axis. The non-circular scattering objects introduce an additional
degree of freedom (i.e. rotation angle); this leads to an increased flexibility in the design, but also
makes the optimi zation even harder.

Cdculations of band diagrams are presented in many papers [7-10]. Sometimes, the authors
considered ‘exotic’ materias (e.g tellurium [10]) or extreme filling factors.

Both approaches pose serious chall enges to the technol ogy for PCS.

In the design of a fabrication process for PCSs one usudly starts from the available
technology and high refractive index materials. Lithographic accuracy puts a lower boundary on the
achievabl e thi ckness of the veins and this should be accounted for when performing cal culations.
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Our 2D calculations are targeted to PCS design using SOI, having a PBG centered at the
telecom wavelength A =1.55um. Therefore, we consider only PhCs consisting of air holes

etched vertically in asilicon slab (ng =3.45).

In this section we discuss the band diagrams of sd ected 2D geometries that are shown to have
large absolute PBGs:

i) triangular lattice of hexagonal holes
ii) sguarelattice of square holes;

Wewill refer to these briefly as  hexagon-type' and ‘ square-type, respectivdy.

The band diagrams were studied as a function of two geometrical parameters: size of air rods
and their angular orientation with respect to the lattice. The air holes filling factor should be high
enough, consequently the size of holes varies over alimited range. In our design procedure we fix the
size and vary the rotation angle, aiming at maximizing the PBG. Optimum results were obtained for

the hexagon's side R=0.5a and the square's side d =0.8a, respectively, where a is the lattice
constant. These values will be assumed from now on in this paper.
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Fig. 1. Gap overlap as a function of rotation angle for a hexagon-type 2D PhC of air holesin a
silicon background, hexagon side R=0.5a; (right hatched: gap for TE polarization; cross-

hatched: absolute band gap-coincides with gap for TM). The solid line shows the normalized
vein thickness Xpe/a versus rotation angle.

In Fig. 1 we present the gaps for TE and TM polarizations and ther overlap, as well as the
veins thickness, as function of rotation angle, in hexagon-type geometry.
Thevens thicknessin thetriangular latticeis given by an andytical formula:

X =@asin(60°+a)-2Rsin60° (@)

For a =0°the corners of nearest-neighbor hexagons touch one ancther. The gap for TE is
very large, completdy enclosing the TM gap, so that the PBG coincides with the gap for TM. It is
apparent that the maximum PBG is reached for a = 9°. The band diagrams for this rotation angle are
shown in Fig. 2. The PBG is between (0.4045---0.4679)(a/A), with the center frequency

0.4362(a/A) and normalized width of 14.5%.
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Fig. 2. Band diagrams for hexagon-type 2D PhC (shown in inset), with hexagon side
R=0.5a and rotation angle ad =9°; solid and dash lines are bands for TE and T™M

polarizations, respectively; the PBG is shaded grey (width 14.5%).

In Fig. 3 we present the gaps for TE and TM polarizations and their overlap, as well as the
veins' thickness, as function of rotation angle, in square-type geometry.
Thethickness of veinsin the square latticeis:

X, =acosa —d )

The absol ute PBG opens up for a = 24.5° and its size increases monotonicaly as a function of
rotation angle until o = 32°. The gap width dependence on a for square-type is more pronounced
than that for hexagon-type Band diagrams for g =30° are shown in Fig. 4. An absolute gap exist
between (0.4030---0.4463) (a/A) , with the center frequency 0.4246(a/A) and normalized width of
10.2%.

Nomalized frequency

Rotation angle (deg)

Fig. 3. Gap overlap as a function of rotation angle for a square-type 2D PhC of air rods in a

silicon background, square side d =0.8a; (right and left hatched are gaps for TE and TM

polarizations, respectively; cross - hatched: absolute band gap). Thesolid line shows the
normalized vein thickness xy/a versus rotation angle.



Design of photonic crystal slab structures with absolute gaps in guided modes 925

Normalized frequency

Normalized wavevector

Fig. 4. Band diagrams for square-type 2D PhC (shown in inset), with square side d =0.8a

and rotation angle @ =30°; solid and dash lines are bands for TE and TM polarizations,
respectively; The PBG is shaded grey (width 10.2%).

3. Band diagrams of photonic crystal slabs

Up to now, the most studied PCS geometry has been the mirror-symmetric slab with a
triangular lattice of circular air holes. This configuration is known to have alarge gap in guided even
modes and a smaller gap for odd guided modes. Under certain circumstances [4], these gaps can be
made to overlap, leading to an absol ute gap of about 8.5%.

In this section we show that large absolute gaps are achievable in both hexagon-type and
square-type mirror-symmetric PCSs. Moreover, an absol ute gap of more than 4% can be obtained in
an asymmetric hexagon-type PCS.

The computational method requires a periodic cel. The PCSis patterned with a 2D periodic
lattice and, in order to ensure 3D periodicity, we take a sequence of dabs periodica in the vertical
direction (supercell) [3]. The period of the latter should be large enough so that the coupling among
guided modes in adjacent dabsis negligible.

The light cone divides the omega-k plane into two regions. Modes situated be ow the light-
cone are confined in the slab and decay exponentiadly in the claddings. Modes above the light-cone
are leaking into the claddings and they are interacting with one ancther. Consequently the modes’
frequencies caculated by the supercdl method are fase and we omit them from the graphical
representation.

During the numerica experiments we observed that, when slab thickness (h) is varied, the
frequencies of odd modes are shifting at a higher rate than the frequencies of the even modes. Thus,

h can be used for optimizing the absol ute gap size.

We proceed now to calculating dispersion curves in PCSs, usng the optimum geometry
parameters (R or d; a) for air holes in silicon, as obtained in sec. 2. These optima might shift when
moving from the purdy 2D case to the slab geometry, possibly alowing further optimization, which
has not been pursued in this work.

Depicted in Fig. 5 are band diagrams of guided modes in a hexagon-type symmetric PCS with
air claddings and optimum thickness h =0.59a. The absolute PBG is bounded by the second and
third odd modes and the light cone and has 10.2% width. The tolerance of gap width with respect to

h isaddressedin Fig. 6: for h =(0.575---0.608) a, the gap width is larger than 8%. Considering the

midgap frequency for A =1.55pum, weget a =777nm, R=388nm, h=458nm, X, =52nm.
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Fig. 5. Band diagrams of guided modes in a symmetric hexagon-type PCS with ar claddings
(shown in inset); parameters. R=05a, a=9°, h=059a; (centrd frequency of the

absolute gap: f, =0.5018a, gap width: 10.2%).
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Fig. 6. Gap width vs dab thickness in a hexagon-type PCS with air claddings,
parameters: R=0.5a, a=9".
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Fig. 7. Band diagrams of guided modes in an asymmetric hexagon-type PCS with an air
upper-cladding and a silicon dioxide bottom-cladding both with thickness 4a; the other
parameters are the same as in Fig. 5; the air holes are penetrating the bottom-cladding; the
light cone is determined by the first TM band of the bottom-cladding regarded as 2D PhC;
(central frequency of the absolute gap:  f, = 0.4785a, gap width: 4.1%).
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When the hexagon-type PCS is asymmetric, with ar and deeply etched silicon-
dioxi de(nSioz =1.45) upper and bottom claddings, respectively, the holes need to be etched through,

deeply into the SIO; in order to maximize the bandgap. The resulting PBG for this case is reduced to
4.1%, as shown in Fig. 7. This happens because the light cone is shifted towards lower frequencies,
which are determined by the first TM band of the 2D PhC bottom cladding.

Results for symmetric and asymmetric square-type PCS are shown in Fig. 8 and Fig. 9,
respectively.
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Fig. 8. Band diagrams of guided modes in a symmetric square-type PCS with ar claddings
(shown ininset); parameters: d =0.8a, a = 30° h =0.6a; (central frequency of the absolute

gap: f, =0.4534a, gap width: 8.88%).
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Fig. 9. Band diagrams of guided modes in an asymmetric square-type PCS with an air upper-

cladding and a silicon dioxide bottom-cladding both with thickness 4a; the other parameters

are the same as in Fig. 8; the air holes are penetrating the bottom-cladding; the light cone is

determined by the first TM band of the bottom - cladding regarded as 2D PhC; thereisno
bandgap present.

While the symmetric PCS with air cdaddings has a PBG of 8.88% width for the optimum
thickness h=0.6a, the asymmetric one does not show any PBG. This time, an extremely small

departure from the optimum thickness makes the gap disappear; so, the fabrication of a square-type
PCSwould beavery critical process.
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When the midgap frequency is chosen A =155um, it follows a=703nm, d=562nm,
h=422nm, Xy =46nm.

4. Discussion

We have presented the design of two PCS structures, labd ed as ‘ hexagon-type and ‘ square-
type respectively. Both can have large, polarization independent gaps in guided modes, in case of
vertical mirror-symmetry and air daddings.

It turned out that ‘hexagon-type’ PCS has better performance than the ‘square-type': @) its
absol ute gap is less sensitiveto variations of geometrica parameters; b) the gap in even modesisvery
large (then, the probability of obtaining an overlap with the gap for odd modes is higher); ¢) the
absol ute gap is still present even in asymmetric PCSs.

When the PBG is absolute the mirror symmetry is no longer a crucia factor; this opens the
possibility of reducing complexity of the technologica process when using common SOI wafers
| eading to devices that are both mechanically and thermally more stable

The design presented hereis the basis of a fabrication process that is currently under way. The
experimental results will be presented in afollowing paper.

Phatonic crystd slabs with polarization independent gaps will form a platform for integration
of ‘ defect-based’ components (e.g. line defects, bends).
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