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Simulations of the Transverse Susceptibility (TS) signal for single-domain and for systems of
ferromagnetic particles are presented. When calculating the TS for single domains, details are
provided concerning the uniaxial and cubic anisotropies. For the uniaxial single-domain
particles a 2D critical approach can be used. The TS for cubic anisotropy is essentially a 3D
problem that was sol ved with a micromagnetic Landau-Lifsith-Gilbert algorithm. Sincethe TS
experimental method is extensively used in the laboraories for the anisotropy evauation, the
importance of this study consists in the fact that it offers atool for understanding the problems
and errors in the correct interpretation of the TS curves.
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1. Introduction

The wdl-known experimental method of transverse susceptibility (TS) is a method for direct
determination of the magnetic anisotropy in particulate magnetic systems. Thisis due to the fact that,
as predicted by Stoner-Wohlfarth modd, for non-interacting uniaxia single-domain fine partide
systems, the fidd dependence of transverse susceptibility presents characteristic peaks, located a the
anisotropy and switching fields [1]. The conditions, as uniaxial anisotropy, and single-domain non-
interacting particles, in which the anisotropy can be determined accuratdly using this method might
appear to be very restrictive. In fact, the same conditions that apply to other usua methods for
determining the anisotropy in the case of particulate systems, as single detection point techniques or
rotation hysteresis method, are satisfied in many practical cases. For TS experiments an important
step in this direction was done by advancing the classical modd for TS due to Aharoni [1], by taking
into account the influence of the higher order terms of the uniaxial anisotropy [2][3][4][5][6][7], an
approach that isimportant for many usua magnetic uniaxial materials as e.g. cobalt.

In this paper we present the methods used in the TS evauation for both uniaxial and cubic
single-domain particles.

2. Transverse susceptibility for single-domain particles

The experimental method of transverse susceptibility (TS) is used for direct measurement of
the anisotropy in ferromagnetic systems due to the fact that usually these systems show sharp peaks
located at the anisotropy fidd which makes possible a predise detection and the calculation of these
important physical parameters as it was proven for uniaxia single partides within the coherent
rotation Stoner-Wohlfarth theory in [1]. The series expansion for the magneto-crystalline uniaxial
anisotropy is given by:
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W, =K, sin*8+K,sin* 8 +... 1

where @ isthe angle between the easy axis and the magnetic moment of the particle.
However, this is accurate only when the angle between the easy axis and the magnetic
moment is sufficiently small. In the TS experiment, it was shown that the partides with the easy axis

oriented near 90° to the DC field direction are responsible for the pesks located at +H, , where
H, = [2|K1|/(uOM )] is the anisotropy field. The shape of the TS curveis significantly influenced by

the particles with the easy axis oriented near 90°. For these particles, when the field isnear H, the
angle between their easy axis and the magnetic moment is dose to 90°. Therefore neglecting the
higher order termsinthe TS calculation is a mgor source of errors. For materials with high values of
K, this error is more significant.

Inthe TS experiment one applies to the sampl e a system of two magnetic fieds (see Fig. 1),
one DC fidd that is considered on the Oz direction, and a small amplitude AC fidd, on the Ox
direction in Fig. 1. The material easy axis (EA) orientation is given by the sphericd angles (6,, ¢2)
and, if one can define a single orientation of the sample magnetization, as in the coherent rotation
mode, the orientation of the magnetic moment is given by the radial unit vector in the spherical

coordinates system (UR,UB,U¢). The angle between the totd applied field and the Oz axis at a
certain moment is 6. In the TS experiment, one measures the limit:

8 -0 dH 2

that will bereferred to as the transverse susceptibility in the experimental setup describedin Fig. 1.
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—
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Fig. 1. Transverse susceptibility experiment for an uniaxia single-domain ferromagnetic particle.

When a similar methodology with that in [1] is applied we have found the expression for the
TS when the second term in the series expansion of the anisotropy free energy is dso taken into
account [2]:
sin(Aé?)W
"hpcsing, ©)

cos’
hoe COS8 + cos(2A8) +k, | cos(2A8) —cos(4A8) |
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where  h, =Hy./[2|K,|[/(,M)] is the reduced DC fidd, k,=K,/|K,
Xo = (M )2/3“(1\ and M is the saturati on magnetization of the particle.
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2.1 Critical curve approach for the uniaxial case

The TS evauation is simpler for k, =0 due to the fact that the free energy has only two

minima which can be selected with the well-known SW astroid critical curve. When k, # 0, the free

energy landscape is more complicated. The number of minimais higher and the sdlection of the stable
state in the TS measurement is more complex and the use of the critical curves formalismin this case
is ahepful tool. Using the same strategy as Thiavillein [8] and [9], one expresses the normalized free
energy density as.

w=w, — 2, [, (@)

where w, is the normalized anisotropy free energy, h, = H/[Z\Kl\/(ﬂom )], H is the applied fidd, and

the orientation of the magnetization is given by the unit vector G,, . For a system with uniaxial

anisotropy (essy axis) the applied fidd direction and the magnetic moment direction are in the same
plane. Thus, one can choose the Oz axis direction on the easy axis and one can solve a 2D problem
instead of the initial 3D problem. In spherical coordinates, the anisotropy free energy density can be

expressed as a function of the @ angle only, and U,, = U . The equilibrium and stability conditions
aregiven by:
dw _ dw,

= —2h [, =0 uilibrium condition
dé dé "y [0, (e )
d*w _dw, | - ©
2 & +2h, i, >0 stability condition
d&?  d&° M [0 ( y )
where the following re ations have been used:
dd (6)
—_ uR
U, = —=
dé

Replacing the inequality sign with equal in the stahility condition, one obtains the condition
for the critical field that separates the stable from the unstabl e regime. The critical field vector, ﬁOC is
defined by both equilibrium and critica stability conditions:

M _2h, @, =0 (equilibrium condition)
d29 o
O;;Za + 2R, [, =0 (critical stability condition)

In fact, the first equation givesthe & component of the critical field vector and the second the
radial component. The equilibrium equation in (7) represents in the plane a line perpendicular to the

vector Uy, that is parald to Uy, and the critical stability equation is aline perpendicular to Uy, which
is parald to U, . Thetip of the critical field vector is at the intersection of these two lines (see Fig. 2).
Taking into account this feature, the critical field vector can be written as:
- ldw, . 1dw, _
h()c:_ auﬁ__ 2auR:

2 dé 2 d& 8)

2 2
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where (Gl, 62) arethe unit vectorsin the Cartesian coordinates associated to the same 2D region.

9 PC
critical curve - —
K v

hoc(B) 6

Fig. 2. Critical curve, criticd fidd vector, the equilibrium line (€) and the critical stability line (s).

Thetip of the critical field vector, ﬁOC (0) , givesthe critical curve for a certain expression of

the anisotropy free energy density, which is in agreement with the assumption that the 2D calculus
inallowed. The derivative of the critical fied vector with respect to the angle & gives the direction of
the tangent direction to the criticd curve. Using (6) in the calculus of this derivative one obtains the

expression:
dh, _ 1d d?w,
2o -~ Y w4+ ——2 g
do 2d9[ . d92] : ®

We observethat, for agiven value of the angle &, the tangent to the critical curveis parald to
the direction of the equilibrium orientation of the magnetization given by Uy . The critical curve has a
cusp when the absol ute val ue of the critica field vector has a extremum value. So, using (9), the zeros

of the equation:
2
A [y + 3V g (10
dég d&?

give the 6 angles for which a cusp appears on the critical curve. Since the derivative of the critica
field vector with respect to the 8 anglein cusps is zero (see (9)), and the derivatives signs are opposite
before and after the cusp, one may also say that the critical curve sense, given by the orientation of the
derivative of the critical fidd vector, is adso changing in the cusps. To see how these rules are
working, one can check them on the most simple case, the particle with uniaxia anisotropy, when is
taken into account only the first term in the series expansion of the anisotropy free energy density,
which corresponds to the case k, = 0. In this case, the anisotropy free energy is given by:

w, =sin®@ (11)
and
M _ gin(26)
dé (12)
d?w
7 - 2cos(26)-

Using (12) in (8) and (9), one obtains the expression of the critical fidd vector:

h, (6) = -0, cos’+0,sin® 6
R (0)=-theos 0+, .
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and for the critical fidd vector derivative

dh, ..
¢ =30, sindcosd
do R (14)

The expression of the critica fidd vector, (13), is the parametric formulation of the well-
known astroid curve and the derivative (14) is showing that on the curve there are four cusps, for

0= 0,77/ 2,71 and 377/ 2, as presented on Fig. 3.
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Fig. 3. Critical curve for the uniaxia anisotropy, k; = 0.

When k; is not zero, the anisotropy free energy density is given by:

Wa:sin29+kzsin40 (15)
the derivatives are:

d\/\; = 2sin@cosd + 4k, sin® §cosd

(16)
dZWa _2 1 2 52 i in2 Q)
7 ( —2sin H)+4lgsm H(3—4sm H)
thecritical fied vector is:
ﬁOC(H)=—Ulcos36?(1+6kzsin20)+
17
+0,5n° 61— 4k, + 6k, sin” 6) 4
and the derivative of the critical fidld vector is:
dhy, = 30, sinfcosd (1~ 4k, +10k, sin” 6 (18)

dée

From (18) one can see that supplementary cusps are obtained in comparison with the ones
observed in the k, = 0 case, only if the equation

1-4k, +10k,sin*8=0 (19)

has a solution, that is, if the square of the sinus from & isin the interval [0,1], which condition is
equivalent with:
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< 4k, -1 <1
10k,
If k,O(~(1/6),(1/4)) the critical curve has no supplementary cusp. It can be shown that in

(20)

the case of k, values bigger than (1/4), supplementary pairs of cusps do appear for € =0and 77. For
values smd |l er than —(1/6) such pair of cusps are gppearingin € =77/ 2 and 377/ 2.

To calculate the TS using the critical curves previously calculated it is essentia to find the
stable equilibrium state of the magnetic moment at a certain moment from these curves. In fact, the
critical curve can provide an interval of values for the & angle in which there is only one solution.

Thisis quite simple when k, 0(~(1/6),(1/4)) and the critical curve has only four cusps, but it is not

S0 obvious in the cases with e ght cusps. In thefirst case inside the critical curve, in each point, there
are possible two stable equilibrium states and one of unstable equilibrium. One can say that there are
two energy minima separated by a minimum. Out of the critical curve, in the same case, only one
minimum is possible. The e ght-cusps systems have inside the critical curve regions with more tha
two minima which gives the difficulty in choosing the right one, followed by the magnetic moment in
its dynamic.

. (a.

HH,

-1.5 -1.0 -0.5 0.0 0.5 1.0 15
H/H,

Fig. 4. The stable equilibrium orientation of the magnetization vector (k, = 0.2).

In Fig. 4 one presents the stable equilibrium states for a uniaxial anisotropy single-domain
particle with ko= 0.2. The externa fidd (which inthe TS experiment isthe DC fidd) is applied on the
direction (@b'cd €’f") decreasing from (&) to (f''). One observes that the tangents from the critica
curves correspondi ng to stabl e equilibrium orientations of the magnetization vector are starting for the
fidds (a,b’,c,d") from the region (abcd) on the criticd curve. When the applied fidd passes in the
region (d',€’,f’’) the stable equilibrium states are associated to tangents started from the (ef) region.
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Fig. 5. (Ieft) Thecritical curve for k,=1.0; (right) Detail of the region marked on the I eft figure.
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In Fig. 5 one presents the criticd curve for k, = 1.0. It can be easily observed that the cusp
characterized by 8 = 0 (point b on the critical curve shown in Fig. 4) isin this case transformed in
three cusps. The critica curve follows the path (B:, B,, Bs, Bs, Bs) where B,, B; and B, are the cusp
points. The cusp Bs is now the one for 8 = 0. As shown in [8] it can be found a rule that can be
applied even in these cases to find the stabl e equilibrium orientation for the system.

A systematic analysis have shown that the critical curve approach can be applied for the 2D
case quite efficiently. We have compared the results obtained with this method with the
micromagnetic method, that is presented below, and a good agreement was found in each case.
However, even in the case of uniaxial anisotropy there are cases in which the bi-dimensional imageis
not sufficient. For example, uniaxiad systems K;<0, for different vaues of the k, parameter
corresponds to systems with the easy axes forming a cone (an easy cone). In these cases one observe
in certain conditions jumps from one cusp point to ancther. This is due to the fact that the magnetic
moment can move fredy around the easy cone surface. Especidly due to these cases, the critical
curve approach has a limited va ue in the cd culation of the TS curves. For cubic anisotropy, the 2D
criticd curve can not be used anymore because the applied field direction, the easy axis direction and
the magnetization direction aren’t in the same plane. The cubic anisotropy case is essentialy a 3D
problem that needs a full 3D approach. The complexity of the critical approach presented in [9] and
[10] is an argument in the favor of the micromagnetic method that will be presented in the next
section.

2.2 Micromagnetic algorithm

The micromagnetic model used is based on the Landau-Lifshitz-Gilbert equation[11].

The dynamics of the magnetization vector M of each paticle in the gpplied fidd H is
described by the Landau-Lifshitz-Gilbert (LLG) equation [11]:

d_M:—|y|(M x|:|)+i M x am (21)
dt ‘M‘ dt
where M :‘M ‘ is assumed to be invariable, a is the phenomenological damping constant assumed to

be positive and y is the gyromagneti ¢ factor. With the following notations:

M (22)

dé

—=h h

ar T (23)

dg _ -h, +ah¢

dr sing
with

{ha =h,+h,

h, =h, +h, 24)

and

ha :i Z‘Kl‘ (_10\Naj
MM )\ 200

ha—i Z‘Kl‘ - 1 %
MM )\ 2sing d¢

named equiva ent anisotropy fields, where w, isthe ani sotropy free energy density.

(25)
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Uniaxial anisotropy

For uniaxia anisotropy, if the easy axis orientation is given by the unit vector G,, and the

orientation of the magnetization vector is on the direction of the Uy unit vector (in spherical
coordinates), the anisotropy free energy can be expressed as.

2

w, :sgn(Kl)X[l—(Ua mR)ZPk2 [1—(0a mR)z} (26)

and the equivd ent anisotropy fid ds are given by:
12K}, ~ ~
hay=M{M](uamR)(uamg){sgn(K1)+2k2[1-(uamR)Z]}

HM 27
](u ) (g, H]]¢){sgn(K1) + 2k, [1—(ua mJR)ZJ} :

ha¢ = {2|K1|
HoM
Cubic anisotropy

For cubic anisotropy, the anisotropy free energy density can be expresses as a function of the
relative orientation of the [100], [010] and [001] axes with respect to the magnetization vector. If one

uses the Euler angl es to defi ne the orientation of these axes (¢a, 6,, l/la) , One obtains,

Gi00 = +COSY, (0, cos@, +0,sing, ) +siny, (-0, sin g, cosé, + U, cosg, cosé, +U,sinb,)
Gy = —SiNY, (U, cosg, +0,sing, ) + cosy, (-0, sing, cosd, + U, cosp, cosd, +U,sinb,) (28)
Uooy =0, SNP, SING, —U, cosP, sinb, + U, coso,

where (Ul, U,, Us) are the unit vectors of the Cartesian coordinates of the laboratory system. The free
energy density in these conditionsis given by:

wazsgn(Kl)X[(G[m]ﬁﬁ) (U[om] ) (“[0101 )('j[ool] EER)Z (U[om] )(”[1001 )2}’

' . . 2 29
+k2(u[100] [mR) (”[0101 [mR) (u[oo1] [mR) -

Using (29) in (25) one obtai ns the equival ent anisotropy fid ds.

[010]
11 1
057 "5 [111]
z 0] Z B g
05 L
. [001]
i
» - L T
YD.51 705 - y 0™l ¢

Fig. 6. The free energy surfaces for uniaxia (left) and cubic (right) anisotropies.
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The TS process was simulated by a sequence of fields, identical to those gpplied in the
experiment. At each step, the LLG equation is integrated until the motion of the magnetic moments
can be neglected.

3. Simulates TS curves

In Figs.7-11 one show results obtained with the LLG agorithm for single-domain and for
systems of particles. InFigs. 7-8the TS curves are for uniaxia single-domain particlesandin Figs. 9-
10 for cubic anisotropy with K, = -5.0 10 J/m®, k, = -0.5 (Nickd)). One observes that the differences
between the uniaxial and cubic anisotropies are increasingly significant with the angle between the
[111] axis and the applied DC fidd. This is quite understandable if one takes into account the
differences of the free energy surface in the two cases. One can mention that in order to systematicaly
study the TS of a single-domain ferromagnetic particle with cubic anisotropy, the number of distinct
situations is much higher that in the uniaxial case. Due to the posshility to use the criticd curve
approach, the uniaxia case is a very important tool for testing the micromagnetic model. However,
our analyses have shown that in certain cases the sensitivity of the micromagnetic agorithm to factors
like the AC fidd amplitude, is much higher that usua. The discussion of these cases is out of the
objectives of this paper.

For an assembly of non-interacting single domain particles the TS response is given by the
integral of the transverse susceptibility of each particle over the easy axis distribution. Fig. 11 displays
the results obtained for a randomly oriented system for different val ues of the second order anisotropy
parameter, k.. The effect of k, on the TS curve of the ensemble can be observed especially on the
peaks position. The other parameters, like the orientation distribution, influence the shape of the TS
curve.
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Figs. 10. Comparison between TS signal for cubic and uniaxia single-domain particles:

6[111] =89°, q)a: 90° (Ieft) and 6[111] =90°, q)a: 90° (right).
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Fig. 11. The TS signal for asystem of non-interacting, randomly oriented uniaxia particles.

5. Conclusions

In the this paper we have presented a systemati ¢ illustration of the micromagnetic calculation
of the TS for uniaxial and cubic single-domain particles. The results are important for understanding
the shape of the TS dgnd for systems of singleedomain particles distributed as a function of
orientation.
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