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Simulations of the Transverse Susceptibility (TS) signal for single-domain and for systems of 
ferromagnetic particles are presented. When calculating the TS for single domains, details are 
provided concerning the uniaxial and cubic anisotropies. For the uniaxial single-domain 
particles a 2D critical approach can be used. The TS for cubic anisotropy is essentially a 3D 
problem that was solved with a micromagnetic Landau-Lifsith-Gilbert algorithm. Since the TS 
experimental method is extensively used in the laboratories for the anisotropy evaluation, the 
importance of this study consists in the fact that it offers a tool for understanding the problems 
and errors in the correct interpretation of the TS curves. 
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1. Introduction  

 
The well-known experimental method of transverse susceptibility (TS) is a method for direct 

determination of the magnetic anisotropy in particulate magnetic systems. This is due to the fact that, 
as predicted by Stoner-Wohlfarth model, for non-interacting uniaxial single-domain fine particle 
systems, the field dependence of transverse susceptibility presents characteristic peaks, located at the 
anisotropy and switching fields [1]. The conditions, as uniaxial anisotropy, and single-domain non-
interacting particles, in which the anisotropy can be determined accurately using this method might 
appear to be very restrictive. In fact, the same conditions that apply to other usual methods for 
determining the anisotropy in the case of particulate systems, as single detection point techniques or 
rotation hysteresis method, are satisfied in many practical cases. For TS experiments an important 
step in this direction was done by advancing the classical model for TS due to Aharoni [1], by taking 
into account the influence of the higher order terms of the uniaxial anisotropy [2][3][4][5][6][7], an 
approach that is important for many usual magnetic uniaxial materials as e.g. cobalt.  

In this paper we present the methods used in the TS evaluation for both uniaxial and cubic 
single-domain particles. 
 
 

2. Transverse susceptibility for single-domain particles 
 

The experimental method of transverse susceptibility (TS) is used for direct measurement of 
the anisotropy in ferromagnetic systems due to the fact that usually these systems show sharp peaks 
located at the anisotropy field which makes possible a precise detection and the calculation of these 
important physical parameters as it was proven for uniaxial single particles within the coherent 
rotation Stoner-Wohlfarth theory in [1]. The series expansion for the magneto-crystalline uniaxial 
anisotropy is given by: 
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2 4
1 2sin sin ...aW K Kθ θ= + +

                                                         
where θ  is the angle between the easy axis and the magnetic moment of the particle.  

However, this is accurate only when the angle between the easy axis and the magnetic 
moment is sufficiently small. In the TS experiment, it was shown that the particles with the easy axis 
oriented near 90° to the DC field direction are responsible for the peaks located at KH± , where 

( )1 02 /kH K Mµ=
� �� �  is the anisotropy field. The shape of the TS curve is significantly influenced by 

the particles with the easy axis oriented near 90°. For these particles, when the field is near KH  the 
angle between their easy axis and the magnetic moment is close to 90º. Therefore, neglecting the 
higher order terms in the TS calculation is a major source of errors. For materials with high values of 

2K  this error is more significant. 
In the TS experiment one applies to the sample a system of two magnetic fields (see Fig. 1), 

one DC field that is considered on the Oz direction, and a small amplitude AC field, on the Ox 
direction in Fig. 1. The material easy axis (EA) orientation is given by the spherical angles (θa, ϕa) 
and, if one can define a single orientation of the sample magnetization, as in the coherent rotation 
model, the orientation of the magnetic moment is given by the radial unit vector in the spherical  

coordinates system ( )Ru ,u ,uθ ϕ
�����

. The angle between the total applied field and the Oz axis at a 

certain moment is θh. In the TS experiment, one measures the limit:  
 

h

x
t 0

x

dM
lim

dHθ →
χ =

                                                                     
  

that will be referred to as the transverse susceptibility in the experimental setup described in Fig. 1. 
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Fig. 1. Transverse susceptibility experiment for an uniaxial single-domain ferromagnetic particle. 
 
 

When a similar methodology with that in [1] is applied we have found the expression for the 
TS when the second term in the series expansion of the anisotropy free energy is also taken into 
account [2]: 

( ) ( ) ( )
( )2

2 2
0

2

sin3 cos
cos sin

2 sincos cos 2 cos 2 cos 4
T a a

DCDC hh k

θθχ χ ϕ ϕ
θθ θ θ θ

� �
∆

	 	
= −

 �� 


+ ∆ + ∆ − ∆
	 	� �� �

               

 
where ( )1 02 /DC DCh H K Mµ= � �� �  is the reduced DC field, 2 2 1/k K K= , aθ θ θ∆ = − ,  

( )2

0 0 13M Kχ µ=  and M is the saturation magnetization of the particle.  

(1) 

(2) 

(3) 
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2.1 Critical curve approach for the uniaxial case 
 

The TS evaluation is simpler for 2 0k =  due to the fact that the free energy has only two 

minima which can be selected with the well-known SW astroid critical curve. When 2 0k ≠ , the free 
energy landscape is more complicated. The number of minima is higher and the selection of the stable 
state in the TS measurement is more complex and the use of the critical curves formalism in this case 
is a helpful tool. Using the same strategy as Thiaville in [8] and [9], one expresses the normalized free 
energy density as: 

 
02a Mw w h u= − ⋅
� �

   
where wa is the normalized anisotropy free energy, ( )0 1 02 /h H K Mµ=

� �� � , H is the applied field, and 

the orientation of the magnetization is given by the unit vector Mu� . For a system with uniaxial 
anisotropy (easy axis) the applied field direction and the magnetic moment direction are in the same 
plane. Thus, one can choose the Oz axis direction on the easy axis and one can solve a 2D problem 
instead of the initial 3D problem. In spherical coordinates, the anisotropy free energy density can be 
expressed as a function of the θ  angle only, and M Ru u=

���
. The equilibrium and stability conditions 

are given by: 

 

0

22

02 2

2 0 ( )

2 0 ( )

a

a
R

dwdw
h u equilibrium condition

d d

d wd w
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d d

θθ θ

θ θ

�
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= + ⋅ >	�
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where the following relations have been used:  

 

R

R

du
u

d
du

u
d

θ

θ

θ

θ



= −���
�

=��

�
�

�
�

.  

 
Replacing the inequality sign with equal in the stability condition, one obtains the condition 

for the critical field that separates the stable from the unstable regime. The critical field vector, 0ch�  is 

defined by both equilibrium and critical stability conditions: 
 

 

0

2

02
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c R
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In fact, the first equation gives the θ  component of the critical field vector and the second the 

radial component. The equilibrium equation in (7) represents in the plane a line perpendicular to the 
vector uθ
�

, that is parallel to Ru� , and the critical stability equation is a line perpendicular to Ru� , which 

is parallel to uθ
�

. The tip of the critical field vector is at the intersection of these two lines (see Fig. 2). 

Taking into account this feature, the critical field vector can be written as: 

 

2

0 2

2 2

1 22 2

1 1

2 2

1 1
sin cos cos sin

2 2

a a
c R

a a a a

dw d w
h u u

d d
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(4) 

(5) 

(6) 

(7) 

(8) 
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where ( )1 2,u u
���

 are the unit vectors in the Cartesian coordinates associated to the same 2D region. 
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 Fig. 2. Critical curve, critical field vector, the equilibrium line (e) and the critical stability l ine (s). 

 

The tip of the critical field vector, ( )0ch θ
�

, gives the critical curve for a certain expression of 

the anisotropy free energy density, which is in agreement with the assumption that the 2D calculus 
inallowed. The derivative of the critical field vector with respect to the angle θ gives the direction of 
the tangent direction to the critical curve. Using (6) in the calculus of this derivative one obtains the 
expression: 

  

2
0

2

1

2
c a

a R

dh d wd
w u

d d dθ θ θ

� �

= − +
� �
� �

	
	

  
We observe that, for a given value of the angle θ, the tangent to the critical curve is parallel to 

the direction of the equilibrium orientation of the magnetization given by Ru
 . The critical curve has a 
cusp when the absolute value of the critical field vector has a extremum value. So, using (9), the zeros 
of the equation: 

 

2

2 0a
a

d wd
w

d dθ θ

� �

+ =

 �
� �

  
give the θ angles for which a cusp appears on the cri tical curve. Since the derivative of the critical  
field vector with respect to the θ angle in cusps is zero (see (9)), and the derivatives signs are opposite 
before and after the cusp, one may also say that the critical curve sense, given by the orientation of the 
derivative of the critical field vector, is also changing in the cusps. To see how these rules are 
working, one can check them on the most simple case, the particle with uniaxial anisotropy, when is 
taken into account only the first term in the series expansion of the anisotropy free energy density, 
which corresponds to the case k2 = 0. In this case, the anisotropy free energy is given by: 
 

and 

2sinaw θ=
   

 

( )

( )
2

2

sin 2

2cos 2

a

a
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d

d w
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θ

θ
θ
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=��
�
�

=�� .  

Using (12) in (8) and (9), one obtains the expression of the critical field vector: 
 

 
( ) 3 3

0 1 2cos sinch u uθ θ θ= − +
� � �

  
 

 

(10) 

(11) 

(12) 

(13) 

(9) 
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and for the critical field vector derivative 

 

0 3 sin cosc
R

dh
u

d
θ θ

θ
=

�
�

  
 
The expression of the critical field vector, (13), is the parametric formulation of the well-

known astroid curve and the derivative (14) is showing that on the curve there are four cusps, for           
θ = 0,π / 2,π  and 3π / 2, as presented on Fig. 3. 
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                                            Fig. 3. Critical curve for the uniaxial anisotropy, k2 = 0. 

 
 

When k2 is not zero, the anisotropy free energy density is given by: 
 

 

2 4
2sin sinaw kθ θ= +

  the derivatives are: 

 ( ) ( )
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the critical field vector is: 
 

 

( ) ( )
( )

3 2
0 1 2

3 2
2 2 2

cos 1 6 sin

sin 1 4 6 sin

ch u k

u k k

θ θ θ

θ θ

= − + +

+ − +

� �

�
  

 
and the derivative of the critical field vector is: 

 
( )20

2 23 sin cos 1 4 10 sinc
R

dh
u k k

d
θ θ θ

θ
= − +

�
�

  
 

From (18) one can see that supplementary cusps are obtained in comparison with the ones 
observed in the k2 = 0 case, only if the equation 
 

 

2
2 21 4 10 sin 0k k θ− + =

   
has a solution, that is, if the square of the sinus from θ  is in the interval [0,1], which condition is 
equivalent with: 

(14) 

(17) 

(18) 

(19) 

(15) 

(16) 
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If ( )2 (1/ 6),(1/ 4)k ∈ −  the critical curve has no supplementary cusp. It can be shown that in 

the case of k2 values bigger than (1/4), supplementary pairs of cusps do appear for 0 andθ π= . For 

values smaller than –(1/6) such pair of cusps are appearing in / 2 3 / 2andθ π π= . 
To calculate the TS using the critical curves previously calculated it is essential to find the 

stable equilibrium state of the magnetic moment at a certain moment from these curves. In fact, the 
critical curve can provide an interval of values for the θ  angle in which there is only one solution. 
This is quite simple when ( )2 (1/ 6),(1/ 4)k ∈ −  and the critical curve has only four cusps, but it is not 

so obvious in the cases with eight cusps. In the fi rst case inside the critical curve, in each point, there 
are possible two stable equilibrium states and one of unstable equilibrium. One can say that there are 
two energy minima separated by a minimum. Out of the critical curve, in the same case, only one 
minimum is possible. The eight-cusps systems have inside the critical curve regions with more that 
two minima which gives the difficulty in choosing the right one, followed by the magnetic moment in 
its dynamic. 
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Fig. 4. The stable equilibrium orientation of the magnetization vector (k2 = 0.2). 

 
In Fig. 4 one presents the stable equilibrium states for a uniaxial anisotropy single-domain 

particle with k2 = 0.2. The external field (which in the TS experiment is the DC field) is applied on the 
direction (a’b’ c’d’e’ ’ f’ ’ ) decreasing from (a’ ) to (f’ ’ ). One observes that the tangents from the critical  
curves corresponding to stable equilibrium orientations of the magnetization vector are starting for the 
fields (a’ ,b’ ,c’ ,d’ ) from the region (abcd) on the critical curve. When the applied field passes in the 
region (d’ ,e’ ’ ,f’ ’ ) the stable equilibrium states are associated to tangents started from the (ef) region. 
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Fig. 5. (left) The critical curve for k2=1.0; (right) Detail of the region marked on the left figure. 
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In Fig. 5 one presents the critical curve for k2 = 1.0. It can be easily observed that the cusp 
characterized by θ = 0 (point b on the critical curve shown in Fig. 4) is in this case transformed in 
three cusps. The critical curve follows the path (B1, B2, B3, B4, B5) where B2, B3 and B4 are the cusp 
points. The cusp B3 is now the one for θ = 0. As shown in [8] it can be found a rule that can be 
applied even in these cases to find the stable equilibrium orientation for the system. 

A systematic analysis have shown that the critical curve approach can be applied for the 2D 
case quite efficiently. We have compared the results obtained with this method with the 
micromagnetic method, that is presented below, and a good agreement was found in each case. 
However, even in the case of uniaxial anisotropy there are cases in which the bi-dimensional image is 
not sufficient. For example, uniaxial systems K1<0, for different values of the k2 parameter 
corresponds to systems with the easy axes forming a cone (an easy cone). In these cases one observe 
in certain conditions jumps from one cusp point to another. This is due to the fact that the magnetic 
moment can move freely around the easy cone surface. Especially due to these cases, the critical 
curve approach has a limited value in the calculation of the TS curves. For cubic anisotropy, the 2D 
critical curve can not be used anymore because the applied field direction, the easy axis direction and 
the magnetization direction aren’ t in the same plane. The cubic anisotropy case is essentially a 3D 
problem that needs a full 3D approach. The complexity of the critical approach presented in [9] and 
[10] is an argument in the favor of the micromagnetic method that will be presented in the next 
section.  

2.2 Micromagnetic algorithm 

 
The micromagnetic model used is based on the Landau-Lifshitz-Gilbert equation[11]. 

The dynamics of the magnetization vector M� of each particle in the applied field H
�

 is 
described by the Landau-Lifshitz-Gilbert (LLG) equation [11]: 

 

 
( )dM dM
M H M

dt dtM

αγ

� ����

= − × + ×
� �	�

� ���
� �

� �
��� �
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where M M= �  is assumed to be invariable, α is the phenomenological damping constant assumed to 

be positive and γ is the gyromagnetic factor. With the following notations: 
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and using spherical co-ordinates, equation (21) can be written as: 
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named equivalent anisotropy fields, where wa is the anisotropy free energy density. 

(21) 

(22) 

(23) 

24) 

(25) 
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Uniaxial anisotropy 
 

For uniaxial anisotropy, i f the easy axis orientation is given by the unit vector au� , and the 

orientation of the magnetization vector is on the direction of the Ru
�

 unit vector (in spherical  
coordinates), the anisotropy free energy can be expressed as: 

 

 
( ) ( ) ( )

22 2

1 2sgn 1 1a a R a Rw K u u k u u
� ��� �

= × − ⋅ + − ⋅� ��� ���� �	�
   

and the equivalent anisotropy fields are given by: 
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Cubic anisotropy 

 
For cubic anisotropy, the anisotropy free energy density can be expresses as a function of the 

relative orientation of the [100], [010] and [001] axes with respect to the magnetization vector. If one 

uses the Euler angles to define the orientation of these axes ( ), ,a a aϕ θ ψ , one obtains, 
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where ( )1 2 3, ,u u u
$%$&$

 are the unit vectors of the Cartesian coordinates of the laboratory system. The free 

energy density in these conditions is given by: 
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Using (29) in (25) one obtains the equivalent anisotropy fields. 
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Fig. 6. The free energy surfaces for uniaxial (left) and cubic (right) anisotropies. 
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The TS process was simulated by a sequence of fields, identical to those applied in the 
experiment. At each step, the LLG equation is integrated until the motion of the magnetic moments 
can be neglected.  

 
 
3. Simulates TS curves 

 
In Figs.7-11 one show results obtained with the LLG algorithm for single-domain and for 

systems of  particles. In Figs. 7-8 the TS curves are for uniaxial single-domain particles and in Figs. 9-
10 for cubic anisotropy with K1 = -5.0 10-3 J/m3, k2 = -0.5 (Nickel). One observes that the differences 
between the uniaxial and cubic anisotropies are increasingly significant with the angle between the 
[111] axis and the applied DC field. This is quite understandable if one takes into account the 
differences of the free energy surface in the two cases. One can mention that in order to systematically 
study the TS of a single-domain ferromagnetic particle with cubic anisotropy, the number of distinct 
situations is much higher that in the uniaxial case. Due to the possibility to use the critical curve 
approach, the uniaxial case is a very important tool for testing the micromagnetic model. However, 
our analyses have shown that in certain cases the sensitivity of the micromagnetic algorithm to factors 
like the AC field amplitude, is much higher that usual. The discussion of these cases is out of the 
objectives of this paper. 

For an assembly of non-interacting single domain particles the TS response is given by the 
integral of the transverse susceptibility of each particle over the easy axis distribution. Fig. 11 displays 
the results obtained for a randomly oriented system for different values of the second order anisotropy 
parameter, k2. The effect of k2 on the TS curve of the ensemble can be observed especially on the 
peaks position. The other parameters, like the orientation distribution, influence the shape of the TS 
curve. 
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Figs. 7. TS signal when θa=89°, ϕa=0° (left) and θa=45°, ϕa=0° (right) for a uniaxial single-domain 

particle. 
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Figs. 8. TS signal when θa=90°, ϕa=90°  (left) and θa=45°, ϕa=90°  (right) for a uniaxial single-domain 

particle. 
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Figs. 9. Comparison between TS signal for cubic and uniaxial single-domain particles:  

θ[111] = 10°, ϕa = 90°  (left) and θ[111] = 45°, ϕa = 90° (right).  
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Figs. 10. Comparison between TS signal for cubic and uniaxial single-domain particles:  
θ[111] = 89°, ϕa = 90°  (left) and θ[111]  = 90°, ϕa = 90°  (right). 
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Fig. 11. The TS signal for a system of non-interacting, randomly oriented uniaxial particles. 
 
 
 

5. Conclusions 
 

In the this paper we have presented a systematic illustration of the micromagnetic calculation 
of the TS for uniaxial and cubic single-domain particles. The results are important for understanding 
the shape of the TS signal for systems of single-domain particles distributed as a function of 
orientation.  
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