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EFFECT OF LOSS AND PULSE WIDTH VARIATION ON SOLITON
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Part |. Fundamentals of soliton propagation
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In this work, the propagation of solitons in single-mode optica fibers has been investigated
theoreticaly by using the nonlinear Schrodinger equation. This equation combines the effects
of group velocity dispersion and self-phase modul ation present in optical fibers and also takes
into account the loss of optica fiber. The nonlinear Schrodinger equation has been solved
numerically by using the split-step Fourier transform technique. In particular, soliton solutions
of this eguation are obtained. Computer simulations depicting the propagation of solitons
having picosecond pulse widths, over several tens of kilometersin optical fibers with |osses
are presented. The results obtained for solitons in the lossless case demonstrate the shape-
preserving property of the first order soliton and periodicity, splitting and compression
properties of higher order solitons. Computer simulations show that the optical loss broadens
the pulse width of solitons and increases the soliton period. However, this broadening in the
pulse width is directly proportional to the optical loss unlike broadening effect of dispersion. It
has found that the use of solitons in optical communication systems can improve the bit-rate
over the same distance of propagation compared to normal optical communication systems
even if no precaution is taken against the pulse broadening effect dueto loss.
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1. Introduction

In the early stage of optical fiber development, much of the effort was devoted to decreasing
the loss which attenuates the optical signal after a certain propagation length to a value beow the
detection limit of detectors and hence puts an upper limit to the distance that the signal can be
transmitted without repegaters. These efforts led to the redlization of the low-loss single-mode silica
fiber, which has a minimum attenuation at 1.55 um [1]. However, a critical obstacle in achieving the
full bandwidth capacity of opticd fiber communication systems is pulse spreading which arises from
the dispersive nature of the fiber material [2]. Dispersion, which is the manifestation of the
wavd ength dependence of the mode group veocity (group velocity dispersion), causes the pulses
spread out and eventudly overlap to such an extent that all information has been lost. In digita
transmission, this places an upper limit, for a given transmission distance, on the rate a which pulses
can be sent. The combined effects of dispersion and loss have thus far made it possible to use only a
small fraction of the tremendous bandwidth of optical fiber. In single-mode fibers, thetotal dispersion
is the sum of material dispersion caused by the dispersive properties of the waveguide material and
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waveguide dispersion caused by the guidance effects within the fiber structure [3]. The tota
dispersion can be negative or positive depending on working wavdength. In silica based fibers, the
tota dispersion passes through zero around 1.3 um and it is negative (anomalous dispersion) for the
wavelength greater than 1.3 um[4].

In 1973, Hasegawa and Tappert [5,6] modeled the propagation of coherent optical pulses in
optical fibers by nonlinear Schrodinger equation (NLS). They showed theoretically that generation
and propagation of shape-preserving pulses called solitons, in optical fibers, are possible by balancing
the dispersion of optica fibers with the small non-linearity of the fiber's intensity-dependent
refractive index. Hasegawa and Tappert numerically solved the NL S equation. This equation has an
exact solution for an initial pulse shape of Nsech(t) where N is any integer 21, known as the order of
the soliton [7,8]. The first order soliton is a sdf-maintaining pulse, whereas higher order solitons split
and narrow, recovering ther initial shape at the end of a period which is 12 in the normalized
coordinate axis. This period is known as the soliton period and is a function of pulse width, dispersion
and wave ength. Hasegawa and Tappert [5,6] showed that the pulses can be convex upward (bright
solitons) or concave upward (dark solitons) depending on the sign of the dispersion. If dispersion is
negative (anomalous dispersion), the solution of the NLS equati on supports bright solitons since they
consist of a stable intense pulse of light moving against a dark background. If dispersion is positive
(normal dispersion), dark solitons are generated since they consist of an illuminated background
supporting an intense propagating hole. The possibility of the generation of both types of salitons has
been shown by Hasegawa and Tappert, and later by other researchers [9-11]. The following properties
of solitons make them attractive for optical communi cation systems:

1. pulse shape, the width and speed are preserved in the absence of |oss;

2. solitons are stable against small perturbations;

3. they collide with each other without changing their shape and speed;

4. they can beview as the common asymptotic state of completdy different initial pulses.

At present, soliton propagation is the only method, which can diminate dispersion: induced
broadening of pulses in fiber-optic transmission. This important discovery of Hasegawa and Tappert
stimulated extended research towards shape-preserving optical solitons as information carrying
entitiesin high bit-rate optica fiber communication systems.

Theideas of Hasegawa and Tappert could not be supported by experiments since nether low-
| oss single-mode optica fiber nor a suitable mode locked laser ddlivering high peak power picosecond
pulses at the correct wavelength was available. With advance of fiber optic and laser technology,
Mollenauer and co-workers performed a remarkable experiment in 1980 and demonstrated the
generation of optica solitons in single-mode optical fibers[12]. They explained the soliton generation
mechanism in optical fibersin the following way [12-14]: The intensity-dependent refractive index in
optical fibers can cause a phenomenon known as self-phase modulation [15]. Self-phase modulation
modulates the phase of the optical carrier, that it normally increases the frequency in the trailing part
of the pulse and decreasing the frequency in the leading part. The modification of pulse structure in
this way is known as chirping and the overall effect is to broaden the spectrum. Dispersion in optica
fibers aways causes pulse broadening irrespective of its sign. The sign of the dispersion only
determines which parts of the pulse are retarded or advanced compared to other parts. Since trailing
part of the pulse contains higher frequencies, this part of the pulse will propagate faster than the
leading part if dispersion of fiber is negative. Hence, the back of the pulse catches up the front part
and the pulse tends to narrow. Depending on the amount of chirp generated in the fiber, the
propagating pulse will either keep its shape or be compressed. In this way, dispersion, which on its
own causes the pulses to broaden, leads to compressed or shape-preserving pulses in optical fibers.
Although the explanation given above illustrates pulse compression optica fiber in a simplified
manner, it does not predict other pulse shaping effects such as splitting, interaction, periodicity and
the effect of 10ss on pulse width. In order to show thelatter effects, one should solve (numerically) the
appropriate NL S equation with suitableinitial conditions.

In this work, the NLS equation with an added term representing optical loss is numericaly
solved for solitons by using the split-step Fourier transform technique. In particular, the effect of loss
on the pulse width of solitons having initia pulse width of afew picosecond propagating over severd
tens of kilometersin optical fiber with lossesis investigated.
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2. Mathematical model

The equation governing the propagation of picosecond pulses under the combined effects of
sd f-phase modul ation and dispersion of optical fiber is given by [16]
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where @is the complex dowly-varying enveope function, y is the optical loss, w, is the radian
frequency, B', is the inverse of the group velocity at w,, B”, is the total dispersion at w,, ¢ isthe
speed of light, t is the time, z is the distance and n, is the coeffident of the intensity-dependent
refractive index. The first step in solving a nonlinear differential equation is to transform it into
dimensi onless coordinates by using suitable transformations. The following transformations will be
used for eg. (1),
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where sis the coordinate moving with a group veocity (dimensionless retarded time variable) and t.
is an arbitrary time scale. The time scale t; in this transformation dlows a pulse of standard duration
in the dimensionless variable s to correspond to a pulse of any desired duration in time t. These
transformations will later be used to find the soliton period and the fundamental soliton power linking
the physical parameters with the dimensionless parameters. Equation (1) is transformed into
dimensi onl ess coordinates by using the above transformations as
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where T isequa to yt/[B" 0.

If the term representing the loss of the optical fiber is omitted from the right hand side of eqg.
(5), this equation is called nonlinear Schrodinger (NLS) eguation. The NLS equation can be solved
exactly by using the inverse scattering theorem [7,8], and supports soliton solutions which are ideally
suited to the representation of digital signals and have desirable property that they do not suffer from
dispersion. For an input pulse of the form

u(0, s) = Nsech(s) (6)

where N is an integer known as the order of the saliton, the analytical solutions of the NLS equation
for N=1, 2 aregiven [7,8] by

wy(Z, s) = " sech (9 @)
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The first order soliton given by equation (7) has a magnitude of sech?(s) which is independent
of . This means that the first order soliton keeps its initia shape during propagation through the
optical fiber. However, the magnitude of the second order soliton is not independent of  and devel ops
aperiodica structure. The period of oscillation which is the same for al solitons is given by { = 172,
The evalution of higher-order solitons is symmetric at about { = 174. For N>2, the solution of the
NL S equation become lengthier and no anal ytic solution are given.

The soliton period and the fundamental power (peak power) are the important quantities for
soliton propagation in optica fibers. The fundamenta power is the power required within the fiber in
order to obtain the first order soliton. Since solitons are periodic in the dimensionless coordinate
with a period of 172, the saliton period can be obtained from eg. (3) by substituting { = 1¥2 and using
therdation t/t, = 2 cosh’™V2=1.76 as

Z,=0322 TS;T ©)

where D is the dispersion of the optica fiber, T isthe FWHM of the pulse, ¢ is the speed of light and
is the wavel ength. The power carried by d ectromagnetic waveis given by

P:%nc,:socAgM2 (10)

where Aq is the geometrical core area of the fiber. Using egq. (4) and eg. (9) in eg. (10), the
fundamental power can be obtained as

Ag CN
PO = O—OAg (11)
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Equations (9) and (11) show that the only variable parameters are the pulse duration and the
dispersion of the fiber. Once the operating wavdength is fixed, the dispersion of the fiber can no
longer be changed. Hence, the only way to change the soliton period and, in turn, the fundamental
power isto change the pulse duration. For fiber parameters of D = 16 ps/nm/km at 1.55 pum, d = 8 um,
No = 1.46 and n, = 1.22 x 10 m?/V?, the soliton period and the fundamental power for an input pulse
duration of 25 ps are calculated as 16 km and 80 mW, respectivey. If the fiber is not polarization
preserving, the fundamental power should be increased by a factor of 6/5. For higher-order solitons
the power scal es with the soliton number and can be written as

Pn= N?P, for N> 2 (12)

The soliton period and the fundamental power are plotted in Fig. 1 as a function of the pulse
duration for four different values of the fiber dispersion. In the calculations, n, is replaced by n, 5/6
for nonpolarization-preserving fiber. At a fixed value of the pulse duration, the soliton period
increases, which in turn decreases the fundamental power if changing the operating wavd ength of the
system decreases the dispersion of the fiber.



Effect of loss and pul se width variation on soliton propagation 451

LOG10
D =4ps/nm/km i

D =8ps/nm/km l

D =16 ps/ nm/km

D =16 ps/ nm/ km D =12ps/ nm/km

Soliton Period (km)

D =12 ps/ nm/km

Peak Pawer (W)

-2

D =8ps/nm/km

D =4ps/nm/km

-3

-2 . . . . y t 4 0 § 10 45 20 25 30 35 40

-] 10 15 20 25 30 ?5 40 45 50 Input Pulse Duration (psec)
Input Pulse Duration (psec)

50

Fig. 1. Saliton period and fundamental power versus input pulse duration for A = 1.55 pm and
D =4, 8, 12 and 16 ps/nnmvkm.

A continuous set of solutions can be generated from the solutions of the NLS equation by
using the invariance of the NLS equation. Equation (5) is invariant under the following
transformetions:

Ku
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J
¢
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Therefore if the soliton amplitude is increased by a factor of K, K2 reduces the distance of
transmission, K reduces the period, while K2 effectively increases the fiber loss. This scaling law
shows that one computation can be renterpreted for different power leves. For example, in solving
&g. (5) for aninitid pulse of Jumx| =1, if the pulseisfound to contract to awidth of 1, at a distance {3
with the assumed loss rate I3, then an identical process occurs for an initial pulse having amplitude
four times greater than the previous one at a distance {,/4 with the pulse width 1,/2 if the transmission
lossrateis four times that assumed in the computation.

3. Split-step Fourier transform method and its application to the
numerical solution of the PNLS equation

There are severa computational techniques by which one could predict the results of plane
wave propagation in a materia, which is both nonlinear and dispersive. The dispersive part of the
problem invaol ves finding the proper phase shift for each Fourier component, while the nonlinearity is
governed by atempord equation. A particularly simple and general numerical method, the so-called
split-step Fourier method (or beam propagation method) has been developed by Hasegawa and
Tappert [5,6] to solve the NL S equation for solitons. The split-step Fourier technique has been widdy
used in analyzing pul se propagation in opticd fibers[18,19].

The basic philosophy behind the split-step Fourier technique is to treat the effects of
dispersion and nonlinearity, separately. The advantage of this techniqueisthat dispersionis calculated
in the frequency domain and nonlinearity in the time domain, both effects requiring only simple
multiplication in their own domain. The details of this technique are given in [20-22]. Therefore, the
technique is applied directly to the PNLS equation given by eq. (5). The PNLS equation is written
formaly as

ou _
—=(X+Y)u (19
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where the differentia operator X includes aterm involving dispersion and Y consists of the nonlinear
term and the loss term. These operators can be written from eqg. (5) as

97_j a?
X[g}‘zg (15)
G2
Y(u) = jju” -1 (16)

An exact solution is difficult to obtain because of the non-commuting nature of the operators
X and Y. However, an approximate sol ution can be obtained using the following symmetrized split-
step procedure [20-22] to propagate the complex fidd u (z,s) by asmadl distance &:

u(¢+3,s)= {eﬁx 12 eprZZ+6Y(Z') dl} e ’2} u(¢, s) (17)

Symmetrized splitting of operators reduces the commutation error further [20]. The numerica
technique consists of propagating the complex fied for a distance &2 with dispersion only by setting
Y = 0, multiplying the result by a nonlinear term that represents the effect of the nonlinearity and the
loss over the whole segment &, and then propagati ng the complex fidd for the remaining distance &/2
with disperson only. The error is minimized when the effect of nonlinearity is included in the
midplane rather than in the beginning or the end of a segment [21]. Further, the error decreases as the
magnitude of & decreases, and sufficiently accurate results can be obtained with a proper choice of the
step size d.

The propagation of pulses in alinear dispersive medium governed by the exponentia term
exp (0X/2) in eq. (17) can be easily solved by using the Fourier transform technique. So, the solution
of this part of the problem can bewritten as

u(+8/2,s)=exp(6G/ 2)u(Z,s)= {F 1 expB el joo)}F}u(Z ,s) (18)

where F denotes the Fourier transform operation, G (j &) is obtained using eg. (15), and is the
Fourier transform variable in the frequency space. The use of the fast Fourier transform algorithm
makes numerica evaluation of eg. (18) reatively fast. Eq. (17) can be used repeatedly to propagate
the optical pulsethrough a given length of fiber after suitably choosing the step size d.

The integral appearing in eq. (17) should be performed carefully. This integral can be
approximated by using the trapezoidal rule as

Lm Y ke =[v(@)+v(e + 5)]2 (19)

where Y (€) is given by eg. (16). However, Y ({+0) cannot be eva uated since u ((+9,9) is hot
known while evauaing eg. (19) at the midsegment located at {(+&2. Thus, a sdf-consistent
calculation must be done. An iterative procedure was used that was initiated by replacing Y({+d) with
Y(Q) in eg. (19). Then, eg. (17) was used to estimate u ({+96,s) which in turn was used to calcul ate the
new va ue of Y({+9d). In the cd culations, two iterations were sufficient to give an overall accuracy of
10°. The calculations were also performed with reduced step size (without self-consistent technique)
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and were found that the program using the self-consistent method was twice as fast as the one with the
smaller step size, for the same overall accuracy. I1n the computer simulation, the step size As, whichis
chosen as 32/1024 was kept the same dl thetime. The complex fidd u (¢,s) was propagated a ong the
fiber under the effect of dispersion, nonlinearity and | oss by using the above procedure and the initia
condition of eg. (6).

Using the first conservation law among many of eg. (5) without the right hand side checked
the accuracy of the numerica method. The first conserved law of eg. (5) related to the tota energy i.e.
the number of photons carried by the pulseis given [7] by

fw u(z, s)’ds=2N? (20)

This quantity was checked for the proper choice of the integration step size & to give an
overall accuracy of 107 in the absence of the loss. In addition, the accuracy of the method was aso
checked in the presence of the loss. Perturbation andysis of the PNLS equation indicates that the total
energy in the pulse decays as exp(-2I,) [23]. Hence, the total energy can be computed by using the
foll owing equation:

E =2N2e 21
t =2N%e (21)

For the same step size, an overal accuracy of 10* was obtained between the numerically

calculated energy and the one computed from eg. (21) in the presence of the loss.

4. The results of the mathematical model

The propagation of solitons through a single-mode fiber at 1.55 pum is s mulated by using the
mathematical model explained before. Silica based single-mode fiber having a core diameter of 8 um,
aloss of 0.35 dB/km a 1.55 um, core refractive index of 1.46, nonlinear coefficient of 1.22 x 10%
m?/V? and chromatic dispersion of 16 ps/nmv/km is used in the computer simulation. Theinitial pulse
width of the sech pulseis chosen as 25 ps, which can easily be generated from semiconductor |asers.
This pulse width sets the soliton period and the fundamenta power for the nonpal ari zati on-preserving
fiber to 16 km and 96 mW (80 mW for polarization-preserving fiber), respectively. Although the
results of the computer simulation is depicted for the above pulse and fiber parameters, the same
results are applicabl e to the other pulses with different parameters if the parameters are rescd ed by
using &g. (13).

4.1 First, second and higher-order solitons

The propagation of solitons through the optica fiber is considered without the optical loss.
Fig. 2 represents the first order (N=1) and the second order (N=2) soliton at a half period of 174 (8
km). The shape of the first order soliton is exactly same as the input pulse while the second order
soliton devel ops three peaks at the half period. The centra peak is the dominant peak and represents a
compressed pulse having a pulse width, which is % of the initial pulse width. This suggests that
higher-order solitons can be used to compress the pulses to a shorter width. In order to see how the
pulse shape changes during the propagation, three-dimensional graphs of the first order and the
second order solitons are plotted in Fig. 3 for the entire period.
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Fig. 2. First and second order solitons at half period (I =0).

The first order soliton is the only soliton which keeps its initial shape (sech) al the time
during the propagation through any length of the fiber. The first order soliton represents the exact
balance between the pulse narrowing effect of SPM and the pulse broadening effect of dispersion
adone. Thus, the pulse shape and the amplitude are such that the last two terms of eg. (5) cancd
completdy. This exact balance results in the eguation du/d¢ =0. Any deviation from this balance
results either in pulse broadening (N<1) or in pulse compression (N>1). This shape-preserving
property of the first order soliton makes it ideal for designing high bit-rate and long-distance optica
communication systems. However, the above pictureis true for the lossless case. Theindusion of loss
compledy changes the picture, which will be explained later in Section 4.2. The first order soliton
requires less power than higher-order salitons, so the first order soliton should be the easiest to
generate with semiconductor lasers. The periodic nature of the second order soliton can be seen from
Fig. 3. After compressing at the half period, the second order soliton reexpands to its origina form
deve oping no further structure.

If the soliton order is increased further, the pulse deve ops more and more structure at the half
period. Fig. 4 represents some higher-order solitons (N=3, 4 and 5). For example, the third order
soliton has four peaks at the haf period. The number of peaks at the half period is equal to N+1 for
N>1. All these peasks where higher-order solitons develop lie within the original pulse width. All
higher-order solitons are periodic having same period of 172 in dimensionless coordinate {. The
periodic nature of the some higher-order solitons are depicted in the three dimensiond graphs of
Fig. 5.
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As it can be seen from Fig. 5, they all develop peaks at the haf period and reexpand to the
origina pulse at the full period. It should be noted that the evolution of al higher-order solitons
within the period is symmetrical around { = 174. Al higher-order solitons can be viewed as the
nonlinear superposition of the fundamenta first order solitons. For example, the second order soliton
shownin Fig. 2 isthe nonlinear superposition of two fundamental solitons. Only higher-order solitons
can be used to compress the initial pulse duration. The compression ratio increases as the soliton
number increases. The point where the optimum compression of the pulse takes place moves toward
the input end of the fiber as the solution number is increased. This movement can be seen from the
graphs givenin Fig. 3 and 5. This compression technique was first used experimentaly by Mollenauer
and his co-workers [24] who obtained a pulse compression factor of 22. Of course, one should
remember that the peak power required producing higher-order solitons increase as the soliton number
isincreased. Therefore, the peak power required for higher-order solitons except for the first and the
second order could not be within the capacity of the semiconductor lasers.

Nes ) q N=4 Cug9 O

1=25ps
Zp=16 km

1=25ps

l N=5 15
Zo= 16 km

Fig. 5. Three dimensiona graphs of higher - order solitons (N=3, 4, 5) over one period (I"=0).

In order to see how the spectrum of the solitons evol ves during the propagation in the optica
fiber, the spectrum of the pulses are cal culated by taking the Fourier transform of the pulses. The three
dimensional graphs given in Fig. 6 represent the evolution of the spectrum of the solitons up to the
fifth order. Asin the temporal evolution, the spectrum of the first order soliton keeps its initid shape
throughout the propagation. The spectra of all higher-order solitons are periodic and the initial spectra
are restored at the end of the period. Fig. 6 indicates that the higher-order solitons generate more and
more peaks both temporaly and spectraly. Theinitid spectra of pulses also broaden due to tempora
compression throughout the propagation. The spectral evolution of the higher-order solitons is
symmetrical around {=T11/4 as in the temporal evolution picture. Using their pulse compression ability
can use higher-order solitons to compensate the broadening effect of the loss. Hasegawa and K odama
[23] has shown theoretically a bit-rate of 1 Thits's over 30 km by using the pulse compression ability
of the second order soliton. Therefore, only the first and second order solitons are considered in the
next sections.
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4.2 Effect of loss on soliton propagation

In order to see the effect of 1oss on solitons, the propagation of the first and the second order
soliton is simulated for a distance of 69 km with aloss of 0.35 dB/km. For the pulse width of 25 ps,
the coeffident (I")) of the loss term in eq. (5) has a vaue of 0.4. A condition for the perturbation
analysstobevalidisgivenasli{ <1in[25]. Since { is6.8 inthe computer simulation the condition
is not satisfied. According to this condition, the perturbation analysisis valid up to a distance of { <
1T, which is 2.5. One should remember that the perturbation anaysis of the solitons in the presence
of thelossisonly valid for the first order soliton.
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Fig. 7. Temporal and spectral evolution of first and second order solitons in the presence of loss.
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Fig. 7 shows the evolution of the first and second order soliton in the presence of loss. The
evolution of the pulse spectrum is al'so shown in Fig. 7. In this figure the amplitude of the first order
soliton starts to decrease due to the effect of loss and the width of the pulse is not maintained during
the propagation. The width of the first order soliton increases in direct proportion with the loss. The
second order soliton in Fig. 7 still initially compresses, but it does not reexpand to the initia pulse
shape at the end of the period. The same observation is aso true for the evol ution of the pulse spectra
giveninFig. 7. The effect of the loss on solitons can be easily understood from the soliton period and
the fundamental power given by eqg. (9) and (10), respectively. Theloss causes the fundamental power
to decrease and s nce the fundamental power isinversely proportional to the soliton period, the period
increases to compensate the decrease of the power. This means that the soliton period changes with
the loss. The increase in the saliton period is only possible if the pulse width increases as well.
Therefore, both the soliton period and the pulse width adjust to the decrease in the power. The change
in the pulse width aso results in rescaling of 'y in the PNLS equation. This rescaing of I in turn
accd erates the increase in the soliton period and the pulse width. So, the first effect of the lossis to
modify the period of the second order soliton and the second effect is to broaden the pulses.

1/2

J: Jul ?s2ds J: |u|2 sds
.Eo Jul %ds J: |u|2 ds

In addition to the pulse width ratio, pulse peak, pulse energy and pulse area are aso
numerically computed. Fig. 8 displays the pulse width ratio of the first order soliton as a function of
the propagated distance.
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Fg. 8. Pulsewidth ratio (FWHM and RMS) of first order soliton versus di mensionless
distance for T = 25 psand ygg = 0.35 dB/km (1 unit =10.2 km).

The width of the pulse stays the same up to a distance of { = 0.8 and then starts to broaden as

distance increases. This broadening of pulseis dmost linear asin the case of linear dispersion. At
=6.8, the first order soliton gives pulse width ratios of 4 and 3.4 for FWHM and RMS widths,
respectively. For the same distance, the linear dispersion gives a pulse width ratio of the first order
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soliton. For the same distance of propagation, the bit-rate can be increased compared to the linear
transmission if the first order soliton be used in the system. The reason why the soliton increases the
bit-rate can be explained as follows. The pulse broadens directly with dispersion in the linear system
wheresas it broadens with the loss in the nonlinear system. But, the amount of broadening in the
nonlinear system caused by the loss is less than in the linear case because the fiber nonlinearity
aways tends to compensate the pul se broadeni ng. Of course, the amount of compensation depends on
the power level and the pulse width of the soliton. Although the width ratio based on the RMS pulse
width gives a smaller value for the first order solution, RMS width does not truly represent the pulse
wi dth because it gives undue weight to the pulse spreading at large distances [26]. The width ration
based on the RMS width is plotted to show the difference between the two measures of the pulse
width. Fig. 9 depicts the variation of the pulse energy, the pulse area and the pulse peak of the first
order saliton with the propagation distance. The graphs of these quantities indicate that they decrease
exponentialy with distance, which was predicted by the perturbation analysis [25]. For short distances
( < 1, the energy, the area and the pulse peak reduce as exp(-2I'\{), exp(-I¢) and exp(-IJ),
respectivay, At large distances, decrease in these quantities does not follow the exponential decrease
given above. Thisisdueto the fact that the perturbation analysisis not valid for large distances where
I, gets bigger and bigger as aresult of increase in the pulse width.
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Fig. 9. Energy, areaand pulse peak of first order soliton versus dimensionless distance for
T =25 ps and ygg =0.35 dB/km (1 unit =10.2 km).

The pulse width ratio of the second order soliton is presented in Fig. 10 as function of
distance for two measures of the pulse width. The following observations are based on the FWHM
measure. First, the second order soliton compresses to a minimum pulse width at ¢=0.85 with a
compression factor of 2.5 instead of ¢ = 174 and a compression factor of 4 as in the case of lossless
propagation. Secondly, it recovers its initial pulse duration at {=2.1 compared to 172. These are the
immediate effects of the loss on the second order soliton. Due to large I}, the second order soliton
having an initial pulse duration of 25 ps does not show a periodic behavior with different periods a
the end of each period. After reexpanding to its initid pulse width, the width of the second order
soliton continuously i ncreases with the distance.
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Fig. 10. Pulsewidth ratio (FWHM and RMS) of second order soliton versus dimensionl ess
distance for 1=25 psand ygs =0.35 dB/km (1 unit =10.2 km).

The increase in the pulse width is nearly linear after a distance of { =3. At { =3, the pulse
width ratio is 3 compared to 2.8 of the linear case. Whereas the pulse width ratio is 10 at {=6.8 and
the linear dispersion gives a value of 6 at the same distance. This indicates that the second order
soliton enters the linear regime after (=3 at which the pulse broadening is mainly due to dispersion.
As compared to the first order soliton, the second order soliton broadens more at (=6.8 due to the
effect of theloss. Hence, the second order soliton cannot be used directly in an optical communication
system. But, the initial compression of the second order soliton can be used to compensate for the
pulse broadening in the first order soliton. That is, a nonlinear pulse can be generated by launching an
initial pulse, which has amplitude N>1 to tailor the initial pulse compression. Fig. 11 represents the
variation of the energy, the area and the pulse peak for the second order soliton as a function of the
distance.

Energy, Area and Pulse Peak

3 5
Dimensionless Distance

Fig. 11 Energy, areaand pul se peak of second order soliton versus dimensionless distance for
T =25 psand ygg =0.35 dB/km (1 unit =10.2 km).
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The curves for the area and the pulse peak are completdy different than for the first order
soliton. This is due to the fact that the second order soliton does not preserve its initia pulse shape
during the propagation in the optica fiber. The variations in the pulse peak and the pulse area of the
second order soliton reflect its shape changing character. The pulse energy decreases exponentially
again as in Fig. 9. The variation in the energy, which is related to the totd number of photons in the
pulse, is independent of the pulse shape and its decrease is only due to the loss of the optical fiber.
Hence, the variation of the energy is the same for dl solitons. The pulse peak attains its maximum
value at the same distance of { =0.85 where the pulse width compresses to its minimum value. After ¢
=0.85 the amplitude starts to decrease. The same behavior can be seen from Fig. 11 for the pulse area.
It should be noted that these results are correct for the pulse having an initial width of 25 psin which
theloss coefficient Iy is high. Since Iy is afunction of pulse duration, the different pulse duration will
scalel differently. Hence, theresults will be different form the results given here. In the next section,
the propagation of the first and second order solitons are considered with different pulse widths.

N=1 s 0|
T=7ps
Zo=1.25km
Loss=0.35db/ km

N=1 Cu(Zs C

N=1 Cus) g
1=21ps
: Zo=11km
FA"aY, Loss=0.35db/ km
/]]

Fig. 12. Three dimensiona graphs of first order solitonsfor 1 =21, 14 and 7 ps and y4s=0.35 dB/km.
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4.3 Effect of pulse width on soliton propagation

The propagation of solitons having initial pulse widths of 7 ps, 14 ps and 21 psis considered
in this section. The soliton periods are 1.25 km, 5 km and 11 km, respectively. Since the coefficient of
the loss term scales with the pulse width, the propagation of the solitons with the different pulse
widths is actually equiva ent to the propagation of the soliton having the same initial pulse width, but
with loss rates of 0.032, 0.128 and 0.288, respectively.

Fig. 12 shows the three dimensional graphs of the first order soliton with the three different
pulse widths. The solitons with 7 ps and 14 ps pulse widths are propagated up to the period of the
soliton of width 21 ps. The soliton having 21 ps initia pulse width is propagated one period. The
graphs givenin Fig. 12 dearly show that the first order soliton with the initial width of 7 ps broadens
more at the end of the propagation distance than the 14 ps and 21 ps solitons. In order to seethe effect
of the loss, these solitons are further propagated up to a distance of 31 km. The pulse width ratios
(FWHM) of the first order soliton corresponding to the above pulse widths are plotted in Fig. 13.

Pulse Width Ratio

"""" 25 3 35 40
Dimensionless Distance

Fig. 13. Pulse width ratio of first order solitons versus dimensionless distance for 1 = 21, 14
and 7 ps and y4e=0.35 dB/km (1 unit = 0.8 km).

One of the immediate observations that can be made from Fig. 13 is that the shorter pulse
spreads more than the longer pulse over the same distance which is the same as occurs in the case of
the linear dispersion, but the magnitude of the spread is less. The linear dispersion gives pulse width
rations of 35, 8.8 and 4 corresponding to 7, 14 and 21 ps pul ses whereas the pulse width ratios of the
first order soliton for the same pulse widths are 6.2, 4 and 2.4 ps at a distance of 31 km. Although the
pulse width ratios of the linear dispersion for 14 and 21 ps pulses are two orders of magnitude bigger
than the corresponding soliton broadening, this factor is 5.5 for 7 ps pulse. Thisis due to the fact that
broader pulses which have larger loss coefficients than the 7 ps pulse enter the linear regime earlier.
That is, the effect of loss on the 7 ps soliton is less pronounced. Hence, in contrast to the linear
dispersion, the first order soliton with a shorter pulse width is advantageous to use in an optical fiber
communication system. But this does not mean that the first order soliton with a shorter pulse duration
and, correspondingly, smaller loss coefficient broadens less compared to the first order soliton with a
longer pulse duration. Fig. 13 shows that the pulse width ratio at a certain distance increases if the
initial pulse width is decreased. On should expect that the first order 7 ps soliton should have a
smaller pulse width ratio dueto smaller loss coefficient. But the graphs given in Fig. 13 show that the
oppositeis the case. This can be explained with the he p of the loss coefficient and the transformation
used for the dimensionless distance given by eg. (3). For a fixed value of the pulse duration and
optical loss, the loss coefficient increases if the dispersion is decreased since the loss coefficent is



464 M. S. Ozyazici, M. Sayin

inversely proportional to the dispersion. The decrease of the dispersion will result in a decrease in the
dimensionless coordinate ¢ for a fixed value of thereal distance. This means that thefirst order soliton
with a larger initia pulse width and a large loss coefficient is propagating a shorter distance in
dimensionless units than the first order soliton with a shorter initia pulse width. The first order
solitons shown in Fig. 13 are propagated for distances of 40, 10 and 4.4 in dimensionless units, for
7ps, 14 ps and 21 ps pulses, respectively. Hence, the broadening of the first order soliton with larger
initial pulse width will beless dueto effect of the same loss rate for afixed value of the real distance.

N=2
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Zp=125km
Loss=0.35db/ km 4
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Fig. 14. Three dimensiona graphs of second order solitonsfor 1 =21, 14 and 7 ps and
Y4g=0.35 dB/km.

Fig. 14 shows three-dimensiond graphs of the second order soliton with different pulse
widths. The second order 21 ps soliton is propagated one period, while the 7 ps and 14 ps solitons are
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propagated 9 and 2.25 times of their respective periods, as it is known that the loss will modify the
period of the soliton. The amount of variation in the soliton period depends on the va ue of the loss
coefficient. The variation of the soliton period can be easily seen from Fig. 14 for the second order 7
ps soliton. Due to the larger loss coefficient of the second order 14 ps saliton, this variation in the
soliton period is less pronounced, athough it is propagated for 2.25 times its origina period. Hence,
the other periods cannot be seen in Fig. 14. The second order 21 ps soliton in Fig. 14 is ill
reexpanding to itsinitial shape, which will happen at alonger distance dueto its large loss coefficient.

The pulse width ratios of the various second order solitonsin Fig. 15. It can be seen from Fig.
15 that the period of the 7 ps soliton gets progressively larger and eventually the second order soliton
will enter the linear regime where there is no further periodicity in the pul se shape. The second order
14 ps soliton is ill compressing after its first period. whereas the second order 21 ps soliton starts to
broaden after its first period and its second period will occur a a longer distance. The extended
periods of the 7 ps, 14 ps and 21 ps solitons are 3.8 km, 7.6 km and 15.2 km, respectivdy. Since the
variation in the period is different for the three pulse widths due to different loss coefficients, entry
into the linear regime will occur at different distances. For the second order 7 ps soliton this will occur
earlier because it propagates further in units of the dimensionless coordinate {. But if the loss
coefficient Ty is too big, the period of the soliton will be too long. Hence, the second order soliton
with the longer initid pulse duration will enter the linear regime after its first compression without
showing any second period. Once the solitons enter the linear regime, the pulse shows no structure
and its shape will be different from the initial shape. The pulse width ratios of the second order
solitons at ¢ =10 can be seen from Fig. 15 to be 10.8, 1.7 and 5.6 for the 7 ps, 14 ps and 21 ps pulses.
Among these second order solitons, the 14 ps pulse is interesting because it shows how the second
order soliton improves the bit rate compared to the first order soliton with the same pulse with the
same distance. Thefirst order soliton gives a pulse width ration of 4 which is three times bigger than
the pulse width ratio of the second order soliton. Thisis dueto the fact that the second order solitonis
still compressing at ¢ =10 whilethe first order soliton is continuously broadening at {=10.

12,

Pulse Width Ratio

Dimensionless Distance

Fig. 15. Pulse width ratio of second order solitons versus dimensionless distance for T =21, 14
and 7 ps and y4e=0.35 dB/km (1 unit =3.2 km).

The second order 7ps and 14 ps solitons give larger pulse width ratios than the first order
soliton with the same pulse widths at (=10. This is because these second order solitons are in the
reexpanding stage where the pulse width ratios are bigger compared to the pulse width ratios in the
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compressed stage. Hence, the pulse width ratios of these second order solitons should be compared to
thefirst order soliton during the compression stage. For example, the second order 7 ps soliton gives a
pulse width ratio of 2.8 a the same distance. So, improvement in the pulse width ratio depends on
whether the second order soliton is its compression stage. Hence, the bit-rate of a soliton-based
communication system can in principle be increased by using second order solitons instead of first
order solitons, if the initial pulse parameters of the second order soliton is chosen properly. The
compression factors obtained with different pulse widths are 4, 3.3 and 2.5 for 7ps, 14 ps and 21 ps
pulses, respectivdy. The factors indicate that the smaler loss coefficdent will give a larger
compression factor. Thisis expected because if the perturbation in the PNLS eguation is reduced, the
compression factors approach the lossless case. In the lossless case, the second order soliton gives a
compression factor of 4 which is same compression factor obtained for the second order 7 ps saliton.
So, shorter pulses should be used for obtaining larger compression factors.

5. Conclusions

All the aspects of solitons and soliton propagation in optica fibers have been widdy
investigated for the purpose of implementing high bit-rate and long-distance optical fiber
communi cation systems using solitons generated by semiconductor lasers.

The nonlinear Schrodinger equation induding the loss term is numerically solved in the
picosecond domain by split-step Fourier transform technique for the case of soliton propagation a
1.55 um where the optical loss is minimum. Two important quantities, the soliton period and the
fundamental power, which interlink theinitia pulse parameters and dispersion of the optical fiber, are
also derived from the normalization eguations for the nonlinear Schrédinger equation. The results
obtained for solitons up to fifth order in the lossless case demonstrate some of the properties of
solitons such as the shape-preserving property of the first order soliton and periodicity, splitting and
compression properties of higher-order solitons. Since hi gher-order solitons regquire more pesk power,
the propagation of only the first and second order solitons are considered under the effect of optica
loss. It has been found that the optical loss broadens the pulse width of salitons and increases the
soliton period. However, this broadening in the pulse width is directly proportional to the optica loss
unlike the broadening effect of dispersion. Numerical calculations for an initid pulse width of 25 ps
show that the use of the first order soliton in optical communication systems can improve the bit-rate
compared to the linear case even if no precaution is taken against the pulse broadening effect of fiber
attenuation. For the same initia pulse width of 25 ps and a propagation distance of 69 km, a pulse
broadening ratio of 4 for the first order soliton has been obtained compared to the pulse broadening
ratio of 6 for the linear dispersion.

The propagation of first order solitons with different pulse widths indi cates that shorter initid
pulses spread more than longer ones although the loss coefficient in the PNLS equation is smaller.
This seems contradictory because when the perturbation in the PNLS equation is decreased, one
would expect to approach the solution in the lossless case; hence the broadening of the first order
soliton should be decreasing. Buit, the effect of the loss is to put the solitons into the linear regime
where they propagate under the effect of the dispersion only. Linear dispersion theory gives larger
pulse width ratios for shorter initid pulse duration. Therefore, the numerical results are not
contradictory to that predicted by the linear dispersion case

Numerical results obtained for the propagation of the second order soliton with different
initial pulse widths show that the bit-rate of a soliton-based communication system can be further
improved over the first order soliton system if the compression property of the second order systemis
utilized. The improvement in the bit-rate over the same distance of propagation as the first order
soliton, depends on the initial pulse width. That is, the initial pulse width of the second order system
should be adjusted in such a way that its compression stage should occur at the same propagation
distance of thefirst order soliton with the same initid pulse width. A pulse compression factor of 2.5
for sandard parameters has been obtained from the computer results for the second order soliton. This
pulse compression will take place at a distance of 8.7 km compared to Z,/2 for the |ossless case where
the soliton period Zo is 16 km for an initial pulse width of 25 ps. The computer simulation of the
second order soliton propagation depicts that pulse compression is possible even in the presence of
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loss. The amount of compression depends on the initid pulse width of the soliton. Although shorter
initial pulse widths give larger compression factors than longer ones, the fundamental power i ncreases
if pulse width is decreased. Therefore, the initia pulse width of the soliton should be chosen
appropriately to obtain a compromise between the fundamental power and the amount of
compression. In conclusion, the solitons can improve the bit-rate of optical communication systems
and they can be generated from low power pulses and in large soliton period regime even in the
presence of optica loss if the necessary peak power could be obtained from semiconductor lasers
generating picosecond duration pul ses.

The problems rdaed to the sdf - modulation during the longitudinal and transversal
propagation of the optical field in optical fibers have been later developed in [27 - 29]. In [29] have
been obtained analytical solutions regarding the compression of the optical solitons a the level of
small and large signal. The obtained results are in a quite good agreement with the results obtained by
us. In the paper [30] a more complete model was achieved, which characterizes the compression of
the "dark" type optical solitons. In [31] is evidenced the compression process of the optical solitons
resulting from the compensation of the third order negative dispersion and from the Raman sdf -
scattering.

Findly, we mention that the problems analyzed by us have determined later the deved opment
of modds rdated to the transversal and longitudinal instabilities of the three-dimensional optical
solitons [32]. Thus, an important problem has been resolved in [33]: transversaly stabilized soliton
vortex by solitaire longitudinal waves. As show in the paper [34] the three-dimensional modd alows
to get interesting correation between the longitudind transversal instabilities with applications in the
design and sizing of the communication system based on optical fibers.
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Part Il1. Fiber Bragg grating design for mode-locked hybrid soliton pulse source

1. Introduction

Single mode, narrow linewidth semiconductor lasers are key components in long-haul, high
bit-rate fiber optic communication systems. DFB and DBR lasers and some hybrid structures
incorporating a Bragg refl ector [2,3] are good candidates to be used as a source in these systems. Ultra
long distance soliton transmission systems, however, require reativdy long pulsewidths and hence a
narrow optical bandwidth. One of the most promising hybrid devices for the long distance soliton
transmission systems is the Hybrid Soliton Pulse Source demonstrated first by Morton et al. [1]. The
device is comprised a strained MQW laser, a fiber and a Bragg reflector in a single package. It has
been shown that HSPS can be mode-locked over an unusually wide frequency range (2.2-2.8 GHz
[1,4]), although the cavity is designed to be operated at the SONET frequency 2.488 GHz. This
feature of the HSPS is aresult of the nove wave ength sd f-tuning mechanism empl oyed by the use of
the chirped Bragg reflector. Having these specifications, HSPS was used in a soliton transmission
experiment at 10 Gb/s over 27000 km [5].

In order to simulate the operation of a device including a fiber Bragg grating, the refractive
index variation along the grating must be known. With the help of mathematical modds, it is possible
to determinethe reflection and group delay spectrums as wel as the coupling distribution provided by
the grating. It is known that the reflection characteristics of Bragg reflectors with a constant pitch
(uniform) have many side lobes [6,7,8], depending on the coupling strength. However, for practical
applications these side | obes must be diminated to have a good filter response. For this reason, some
chirp must be introduced while writing the Bragg reflector [4,6,7,9] in addition to apodizing the
refractive index profile of the grating. Although it is possible to apply many apodization functions to
the grating during fabrication [8,10], we assumed that the index profile of the grating is written by a
UV Gaussian laser beam and hence the grating is Gaussian apodized. It is known that an apodized
grating with a proper amount of chirp results in a single-lobed reflection spectrum together with an
amost uniform group delay [7,8]. Therefore, the use of gratings with these specifications in hybrid
structures, such as HSPS, may result in a more stable operation of the system [1,4].

In this work, a nonlinear refractive index profile with a different chirp term from those given
in[7] and [8] is used. The coupled-mode equations are derived according to this profile. A fiber Bragg
grating mode is developed from the piecewise-uniform solution of the coupled-mode equations.
Although the mode described in this work is for the Gaussian apodized and linearly chirped Bragg
gratings, it can be used for any refractive index profile. The effects of the index change amplitude,
wavelength chirp, grating length and the modulation index on the response of grating are determined.
Theresults are examined according to the criteria for a proper operation of the HSPS [1,4].

2. Theory

The fiber Bragg grating considered in this work is a single mode optical fiber whose coreis
written by a Gaussian laser beam adongz=-L/2toz=L/2.
The variation of the perturbated core index can be formulated as

n.(2)=n,+An_ (2) [1+ mcos(% ﬂ 1)

where mis the modul aion index (or fringe visibility) of theindex change, ny, is the refractive index of
the unperturbated fiber core (taken as 1.46) and Ang(2) is the slowly varying envel ope function of the
index perturbation (Ang, << ny,). The z-dependent grating period A(2) is linearly chirped and is taken
as
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where A\, = Ao/2n, is the pitch of the unchirped Bragg grating at the operating wavel ength A.. The
derivative of A, with respect to z defines the chirp rate C that is usualy expressed in nm/cm. A
negative chirp rate means that the period of the corrugation decreases as moving along the paositive z
direction, while the opposite is true for the positive va ues of the chirp rate. Inserting Equation 2 into
Equation 1 and expanding the term inside the cosine parenthesis as a Taylor series, Equation 1 can be
rewritten as

4
n.(2)=n,+An,(2)| 1+mco 2n z—@sz ©)
/\0 /]0
Inthis expansion, it is assumed that Cz << A,. Using the nonlinear index profile in this equation, the
coupled-mode equations can be derived following a similar procedure as givenin [7,11,12]

2« 4
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R-j 5+?+ Xz Cz|R=jkF (5)

where F and R the forward- and reverse-propagating fidds, Jis the deviation from the real part of the
propagation constant (0= 8- %), and «kisthe“ac” coupling coefficient. The following assumptions
are made while deriving Equations 4 and 5 from Equation 3: Cz<< A, and d<< S, 3. The perturbated
refractive index profile and hence the coupling coefficient are taken as Gauss an apodized,

ccoq- L2
K(z)—/(pexp{ > (LH j } (6)

Here Ly isthe half-width of the profile (at 1/e intensity point) and «; is the peak value of the Gaussian
variation. If the half-width in this equation is replaced by the full-width at hal f-maximum (FWHM) of
the « variation FWHM,, it can berewritten as

_ -4n2 _,
K(z)—/(pexp(wz j (7

Assuming the whole length of the fiber grating is apodized, the FWHM, can simply be taken as ~L/3.
The peak va ue of the « is related to the averaged dc index variations by

_ nAng
Ky= 3 m 8)

o

The coupled-mode equations (Equeations 4 and 5) derived here are similar to those givenin [7]
where the derivati on starts with the index function

n.(2)=n,+An,(2) [ 1+m cos(%z + CDH 9)

o
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If the second term in the argument of the cosine function in Equation 3 is defined as the chirp
parameter,

am,
CD=—/1—2CZ (20

then Equations 3 and 9 will be the same. Although a different procedure is followed throughout the
derivations, the resultant coupled-mode eguations are aso similar to those given in [7]. If the term
inside the parenthesisin Equations 4 and 5 is call ed the dc “sdf-coupling” coefficient, asin [7]

g= 5+—2K + 47-200
m o

Cz (11)

and the last term in this equation is rewritten as |1/2)d®/dz, then the resultant equations will be the
sameasthosegivenin[7].

The coupled-mode equations are solved using a piecewise-uniform approach. First the
eguations are sol ved anal ytically and then the grating is divided into M sections each having an equal
length Az. Assuming the boundary conditions at z= L/2 as F(L/2) = 1 and R(L/2) = 0, the calculations
are carried out back to forth (from z = L/2 to -L/2), the parameters of each section are calculated and
these parameters are put into a 2x2 propagation matrix T;.

The fidds at the i section can be calculated from the known fields of the previous section

such that
e
R| 'R,

The propagation matrix for thei" mode can be written as

cosh(y; A2)- j-Zisinh(y, A2) ~ %5 sinh(y, a2)
T= . e (13)
j7isinh(yi A7) cosh(y, Az)+ jTisinh(yi A7)

wherethe coupling coefficients arerdated as

yi2 =K i2 -0 i2 (14)

Note that the values of «;, g and hence i are different for each section and must be calculated
individually before putting into the propagati on matrix.

Once dl of the matrices for the individual sections are known, the amplitudes at z = L/2 can
be found from the multiplication of the propagation matrices. After the caculation of the complex
fid ds at the M™ section, the field refl ection coefficient of the Bragg grating can be cal culated from

(15

After the calculation of the reflection coefficient, the group delay 7, can be determined from
the phase of the reflection coefficent g, by
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46 FrRY:
" o (16)

where wis the angular frequency, c is the speed of light in vacuum, and Ag, and A1 are very small
changes in the phase of reflection coefficient and wave ength, respectively.

The number of sections needed for the calculations is determined by the required accuracy.
For most cases, M100 is sufficient [7]. M may not be arbitrarily large, since the approximations that
|ead to the coupled-mode equetions are not valid when a grating section is only a few grating periods
long. Thus, we require Az >> A which means that (since Az = L/IM, A\ = Ay/2ny,)

2n, L
M << g (17)

o

If “<<” is gpproximated by 100 times, and n, = 1.46 and A, = 1.55 pum, this inegquality can be
rewrittenas M < 188 L, whereL isin cm. This makes M < 752 for a4 cm grating.

3. Results

A computer program that calculates the response of the fiber Bragg grating (reflectivity and
group delay) at a wave ength range near the Bragg waveength A, is developed. A single mode fiber
Bragg grating operating at 1.55 pm is considered in this modd. The results are presented in Figs. 1 to
7. The peak reflectivity of the grating is taken as 0.5 [4] in order to make a comparison between the
results. The value of «;, and hence An, is cal culated by the program according to 0.5 pesk refl ectivity.
The only exception is made for Fig. 2 for which the effects of the index change amplitude is
investigated. Similarly, the modulaion index is taken as 1 for all results except those given in Fig. 6
for which the effects of the modulation index on the response of the grating are investigated.

The reflection spectrum, its phase and the group delay characteristics of a linearly chirped
(-2 A/cm) grating are given in Fig. 1, where &, is calculated by the program as 1.82 (L/cm). The
reflection spectrum is asymmetric and its peak is shifted from the design wavedength 1.55 pum to
1550.145 nm. This behavior is because of the chirping and the nonzero average refractive index (as a
result of Gaussian apodi zation).
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Fig. 1. Reflectivity and group delay spectrums for a Gaussian apodized, linearly chirped
grating with a pesk reflectivity of 0.5 and C = -0.2 nm/cm.

The effect of the index change amplitude (related to «, by Equation 8) on the reflection
spectrum of a Gaussian apodized grating is given in Fig. 2(a). The grating has uniform pitch
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(unchirped) and is 1 cm long. As it can be seen from the figure, the pesk of the reflectivity and its
FWHM are higher for stronger gratings, as expected [7,9]. It is possible to make strong gratings by
choosing «, greater than ~9 (1/cm), with fully refl ective spectrum where light can not penetrate into
the whol e length of the grating. The reflection spectrum in Fig. 2(a) aso shows a prominent side-lobe
structure observed at the short wavel ength side of the spectrum, for stronger gratings. These lobes are
the result of the Fabry-Perot effect employed by the grating edges that behave as partially reflecting
mirrors [6,7]. This phenomenon has been explained in detail by the effective medium description in
[13]. Since a good reflector must have an almost uniform shape of reflection coefficient, the lower &,
values are better. It can also be seen from Fig. 2(a) that the wavel ength corresponding to the peak of
the refl ection spectrum shifts towards the longer wave engths for stronger gratings.
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Fig. 2. () Reflectivity and (b) group delay characteristics for Gaussian apodized, unchirped
gratings for different K, values.

The peaks are located a 1550.08 nm, 1550.16 nm and 1550.29 nm for &, = 2, 4 and 8 (1/cm),
respectively. This shift is found to be due to the increased nonuniform dc averaged refractive index
change [3,6,7]. Since the output of the HSPS is taken from the end of the grating at z = L/2, the
grating should not be a perfect reflector, instead, the peak reflectivity may lie between 0.5-0.7 range
[3,4]. According to these criteria, the «, values grester than 4 cm® and smaller than 3 cmi* are not
suitable for HSPS applications since the former results in a very high reflectivity and the latter avery
low reflectivity. While determining this range, it is assumed that the other parameters of the grating
are kept constant.
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Fig. 3. Reflectivity and group delay characteristics for a Gaussian apodized, unchirped grating
with &, = 12 cm™.

The group delay characteristics for different «, values are shown in Fig. 2(b). The jump
discontinuities in this figure are the result of the side lobes at the reflection spectrum [14,15]. Since
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the phase of the reflectivity vanishes (77phase change in the phase of reflection) a the minimums of
the spectrum their derivative are discontinuous at these points. Because of these discontinuities, there
will also be some unwanted jumps at the dispersion characteristics. For a clearer presentation, the
refl ection spectrum with more side lobes and the corresponding group delay discontinuities are given
inFig. 3 for x, = 12 (cm).
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Fig. 4. (8) Reflectivity and (b) group delay characteristics for the gratings having different
lengths. The gratings are Gaussi an apodized, linearly chirped (C = -0.2 nm/cm).

Fig. 4(a) shows the change in the reflection spectrum with the grating length. The peak
reflectivity is chosen as 0.5 and the «, of the grating is adjusted for each grating length to give 0.5
maximum reflectivity. There are no significant side lobes in this figure since the grating is linearly
chirped at arate of —1 A/cm. As the length of the grating is increased, the FWHM of the reflection
spectrum increases as well. The FWHMs of the spectrums are 2.25 A, 3.1 A and 6.3 A for 1 cm, 3cm
and 6 cm long gratings, respectively. Since the wider the FWHM of the reflection spectrum, the better
the wavelength sdf-tuning for mode-locked HSPS [4], it is preferable to have a longer grating.
Although it is not noticeabl e, the peak wave ength of the refl ection spectrum shifts towards the longer
wave engths as the length of the grating is increased. The group delay curves for the gratings having
different lengths are shown in Fig. 4(b). The group delay curve with respect to the wavdength
becomes linear for longer gratings. With the help of this feature, HSPS can be mode-locked for a
wider frequency range, since the whole reflection spectrum can be used [4]. Because the group delay
curve for the 1 cm long grating is nonlinear, its application to an external cavity system will not
produce good resuilts.
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Fig. 5. (8) Reflectivity and (b) group delay characteristics for the gratings with different values
of linear chirp. The gratings are Gaussian apodized and 4 cm long.
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The effect of the chirp on the reflection spectrum of a4 cm long grating is given in Fig. 5(a).
The peak reflectivity is taken as 0.5 asin Fig. 4 and the «;, of the grating is cal culated by the modd.
When the grating is unchirped, the reflection spectrum is narrow (FWHM = 0.5 A) with a small side
lobe on the short wavel ength side. Although the pitch of the grating is not chirped for C = 0, there still
exists some inherent “intrinsic’ sdf-chirp because of the background refractive index variation
(Gaussian in our case). This effective index variation causes the asymmetrica spectrum [9] as
opposed to the symmetrical spectrum for uniform gratings [7]. As the magnitude of the chirp is
increased, the spectrum becomes wider and the side |obe disappears [16]. FWHMSs of the spectrum are
2.1A, 42 A and 6.3 A for the chirp rates of -1, -2 and -3 A/cm, respectivdy. Although the unchirped
reflector shows a sharper filter response, it does not dlow an operation for a wide mode-locking
frequency range in HSPS applications. This is an important festure for mode locking applications
since the device can be mode-locked over a wide frequency range without physically changing the
length of the grating. As the chirp rate is increased, the peak of the reflection spectrum is shifted
towards the long wavd ength side. The peak is located at 1550.03 nm for the grating with no chirp and
shifted to 1550.095 nm, 1550.145 nm and 1550.175 nm for the chirp rates of -1, -2 and -3 A/cm,
respectively. This shift is dueto the same reason explained for Fig. 2. That is, theincreasein the chirp
rate results in the increased averaged (effective) index change. The group dday characteristics of the
fiber Bragg grating is found to change with the chirp rate as in Fig. 5(b). The side obe shown in the
reflection spectrum of the unchirped grating results in a discontinuity in the group delay curve [9].
Although the group delay curve for the unchirped reflector is nonlinear, it becomes linear as the rate
of chirp is increased. Therefore, the higher chirp values will result in good gratings for HSPS
applications.
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Fig. 6. The change in the FWHM of reflection spectrum and the K, with the chirp rate.

The peak of the refractive index change amplitude (k) and the FWHM of the reflection
spectrum as a function of the chirp rate are given in a more understandable form in Fig. 6. The peak K
is adjusted to give a peak reflectivity of 0.5 for each solution. Both curves show alinearly increasing
trend with respect to the amount of chirp (magnitude). Thisis aresult of the linear chirp incorporated
in the grating.
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Fig. 7. (8) Reflectivity and (b) group delay characteristics for the gratings with
different modulation index values. The gratings are Gaussian apodized, linearly chirped
(C=-0.2 nm/cm) and 4 cm long.

The effect of modulation index on the reflection spectrum is shown in Fig. 7(a). Higher
modulation index values result in a more symmetric spectrum and a decrease on the shift of the
resonance peak. This is due to the fact that the effect of averaged index decreases as the modulation
index increases. At higher mva ues, the effect of the “ac” index change dominates the “dc” part since
m is the ratio of the former to the latter. In this case grating behaves as if it only has an “ac” index
variation. In other words, the grating shows a performance similar to that of an unapodized grating
(see, for example, the case when m = 4). There is no side lobe in the reflection spectrum for any m
value since the grating is chirped. The group dday characteristics for different m values are shownin
Fig. 7(b). Although there are no big differences between the curves, the group delay curvefor m=0is
distorted most [8] dueto the effect of the increased averaged refractive index.

4. Conclusions

We reported possible specifications of the fiber Bragg reflectors for mode-locked HSPS
applications. It is shown in Fig. 2(a) that the grating without chirp produces side lobes at the reflection
spectrum. Although the amplitudes of these lobes become smaller for weaker gratings, they do not
disappear completely unless the pitch of the grating is chirped. The length of the grating can be changed
in order to adjust the spectral width of the reflection spectrum as shown in Fig. 4(a). Even if the length
of the grating is constant, its refl ection spectrum can be made wider or narrower with the application of a
proper amount of chirp as shown in Fig. 5. Finally, the reflection spectrum can be made symmetrical
and its peak can be shifted by choosing proper values of m as givenin Fig. 7. All these parameters are
used to tail or the response of the grating and their optimum configuration can be found.

In this work, the coupled-mode equations are derived directly from the nonlinear index profile
that contains a chirp term different than those given in the literature. The solutions of these equations
and some results obtained from the modd are compared with the results given in the literature. It is
shown that both the equations and the results obtained from the modd arein a good agreement.

Asaresult, it isfound that the grating must be linearly chirped, and its length and index change
must be adjusted according to the required specifi cations for HSPS applications. For instance, the length
of the grating must be at least 3 cm if the chirp rateis—1 A and the pesk reflectivity is0.5.
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