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1. Introduction 
 

 The electronic, vibrational, and Raman spectra are all connected, one way or another, with the 
vibrations of the atoms that are forming molecules, complexes, etc. 
 In the case of the electronic spectra, vibrational movements of the molecular atoms are 
producing broadening and/or fine structure of the bands. 
 The pure vibrational spectra of the molecules (complexes) are associated with the permanent 
electric-dipole variation (Infrared domain, IR); some of those connected with the induced electric-
quadrupol variation (Raman domain) are also vibrational in nature.  
 It follows from the above that a great deal of spectral behavior of atomic associations are due 
to atomic vibrations around their equilibrium positions. 
 The main problems of the vibrational movements consist in the correct description of the 
corresponding energy levels (wave functions, w.f.) and of the transitions between these states 
(selection rules). Both these operations are, sometimes, difficult and  time consuming. Knowing the 
symmetry of the molecules and of the atomic movements during their vibrations is of a great help in 
optical spectroscopy. 
 A method of exquisite elegance and efficiency in such cases is that of the finite punctual 
group formalism. This instrument is more than adequate for finding the symmetries of the normal 
modes of vibration (n.m.v.) of the considered molecules. Finding the spatial, exact, form of the n.m.v. 
is, in principle, simple but in most cases, very difficult in practice. Hopefully there is no need, for 
solving the just mentioned spectral problems, to know the exact pattern of the n.m.v. (like dimension 
and orientation of the vectors representing the atomic movement during vibration). Their symmetry is 
enough. 
 The first item to be known here, for solving the two mentioned problems, is the molecular 
symmetry and its association with one of the known punctual groups. 

In the case of the w.f., describing the energy levels, the group formalism will tell us which of 
the elementary atomic orbitals (s, p, d, .…) may combine and with a simple algebra, in what 
proportions, for building molecular hybrids, adequate for describing the molecular spectral states. 
 When transitions (or selection rules) are considered, we look for the intensity of a spectral 
band, which is proportional to the moment of transition, π, equal to an integral over the  Ψ1 and Ψ2 
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w.f. describing the two states, and the implied operator, P, connected with di fferent physical  
quantities, which are changing in the process:  
 

 π = �Ψ1PΨ2 dτ                                                                (1) 
 

Such an integral cannot depend on the position of the molecule in a coordinate system, in 
other words, its value is invariant to any symmetrical changes in the molecule’s orientation. This 
means that a series of coordinate transformation can be made (like reflections, rotations, and 
inversion) without altering the internal (energy) states of that molecule. These operations form a 
specific group for any kind of molecule, and the elemental, atomic, orbitals (out of which hybrid 
orbitals are formed), as well as the mentioned operators, are bases for the irreducible representations 
describing that molecule. The hybrid orbitals are bases for a reducible representation in the same 
group. 
 All elemental w.f. and all operators needed to deal with most of the optical spectroscopy 
problems are represented directly by simple, products, or squared Cartesian coordinates, as well as by 
the sense of rotation around some of the symmetry axes. 
 All we have to know, to find the elemental (atomic) w.f. needed to form a given hybrid 
(molecular) orbital, is the form of the hybrid orbital (orientation of its lobes), that is a rather simple 
task. The form of the molecule indicates them. Using these hybrids as a base, a reducible 
representation is generated in the molecule’s group, and subsequently reduced to its irreducible 
representations. Now a rule is applied: only those elemental orbitals will enter as components in the 
hybrid orbital that have the symmetries of the just found irreducible representations. As for the 
quantities of each of them, the group formalism is also an extremely useful instrument, but we will not 
deal with it here. We are only interested now in finding the symmetries. 
 The other mentioned problem, of transitions, is again very simple. The transition between two 
energy levels of a molecule is represented, as mentioned before, by the corresponding transition 
moment, π. A second rule is applied: the product of the three factors of the π integral must be the 
basis for the totally symmetric representation of the group the considered molecule belongs to (or at 
least one of its components should do so after reduction), otherwise the integral will be zero (zero 
intensity, i.e., no transition). This conclusion can be illustrated by the following example. Let us take 
a molecule and try one of the specific symmetry operations. For simplicity (not affecting generality) 
imagine that the Ψ1 and Ψ2 w.f. of the implied levels, are non-degenerate, the changing operator is P, 
and take as the symmetry operation the inversion, I. Before doing any symmetry operation let us 
calculate the value of the transition moment, π. Presume the found value is A. Then we do the 
inversion in the central point of the molecule. There are the following possibilities: all factors of the 
integrand are symmetric to inversion. In this case the value of π remains the same: A. This means that 
the integrand will generate the totally symmetric representation (i.e. transition is permitted). If one of 
the factors is antisymmetric to inversion then we get –A. What we have done (inversion) is a 
symmetry operation and the value (or sign) of π cannot change under such a transformation, meaning 
A=-A must be true and that is not possible unless A=0 (transition is forbidden). If two of the factors 
are antysymmetric then, again, π = A (transition permitted) and so on (the +*+ = +, +*- = - rule). The 
game is played by the symmetry to inversion (in this case) of the integrand’s factors. 
 The above mentioned facts are the motives for which symmetry and the group formalism is of 
an exquisite importance in optical spectroscopy, in general. 
 
 

2. Models, n.m.v symmetry determination 
 
 Let us concentrate now on how it works in practice and what are the steps to be taken for 
finding the symmetry of the n.m.v. of a molecule.  
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 1. The first step consists in establishing the symmetry of the considered molecule and the 
punctual group it belongs to. This is an easy task for someone familiar with the group theory. There 
are many articles and books treating the subject [1-5]. 
 2. Step two: the attachment of a set of three mutually orthogonal versors to each one of the 
atoms in the molecule. These sets can be oriented in any direction, but for simplifying calculations, 
they should be oriented conveniently against the symmetry elements of the molecule: see the 
following examples.  
 3. The third step: application of all the operations in the group (one in each class) to all the 
versors, generating a reducible representation for the molecule. The result is, in fact, a set of 
characters of  the representation (the trace of the representation matrices, or matrices of symmetry 
transformations). 
 4. Step four: reduction (decomposition) of the representation found at point 3, into its 
irreducible representations of the group (this part is accomplished by the computer program proposed 
in this paper). 
 The so found representations are directl y connected with all the movements of all the atoms in 
the molecule, including translation and rotation of that molecule as a whole; therefore they are not real 
vibrations and must be eliminated from the list found at point 4. To do this we have simply to look at 
the character table of the group the molecule belongs to. Some of the  irreducible representations, that 
have x, y, and z, as well  as Rx, Ry and Rz, as bases, are representing translations and rotations, 
respectively. Not all the representations generated by these bases are due to translations and rotations: 
the program will take care of this, eliminating just the false vibrations. What remains after this 
elimination are the symmetries of the real normal modes of vibration of the considered molecule, the 
final result given by the program. 
 We should mention one more item: the number of the n.m.v. For any molecule having N 
atoms, is 3N-5, or 3N-6 depending on the fact that the molecule is linear or non-linear (for a linear 
molecule the molecular, axis - usuall y z - has no symmetry significance, so, we do not subtract Rz , 
therefore the number of the n.m.v. is 3N-5). 

Some other features should be observed, connected with easing the operation of finding the 
reducible representation: a) if  a set of versors are changing the position of their origin (the 
corresponding atom is moved to another equivalent position) during a symmetry operation, then that 
set of versors will not have any contribution to the character we are looking for, since in the 
transformation matrices there will be no non-zero diagonal elements; b) only versors, which are 
preserving their origin, wil l be transformed into themselves (+1 or –1), or into combination of 
themselves, giving projections that are generating non-zero diagonal elements; c) if the initial 
orientation of the versors is not convenient, they can freely be reoriented conveniently, for each 
symmetry operation; d) there is always a control of the correctness of the orientation by the fact that 
the product of the reducible representation with each of the irreducible ones (reduction operation) 
divided by the order of the group, an integer must be obtained (except for the new C9v  and D9h  
groups, since here the characters are expressed in fractional values, but even in these cases the 
corresponding ratios are very near to an integer the error being, usually, less than 1 %). A computer 
rounding eliminates all ambiguity. 
 
 

3. Application examples 
 
 Let us take some concrete examples (in the figures each type of atoms is colored differently). 
 1. A pyramidal, A-B3 molecule, Fig. 1. This molecule belongs to the C3v group. Its characters 
are given in Table 1. We will designate the symmetry elements (point, axes, planes) by lower case 
letters (i, c, 

�
), while the corresponding group elements (symmetry operations) by upper case letters 

(I, C, � ). 
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Fig. 1. a, b, c. Molecules having  C3v  symmetry. 
 
 

Table 1. 
 

C3v E 2C3 3Σv   l inear bases bilinear bases 
A1 1 1 1 z x2 + y2, z2 
A2 1 1 -1 Rz  
E 2 -1 0 (x,y) (Rx , Ry) (x2-y2, xy) (xz,yz) 
Γa 12 0 2 4* (x,y,z)  
Γb 15 0 3 5* (x,y,z)  
Γc 18 0 4 6* (x,y,z)  

 
First we look for the characters the 3N versors are generating under all the operations in the 

mentioned group:  
 The E operation (in each and every group) is simple to apply: “no operation”  means a 
character, χ(E), equal to the number of all versors, namely 3N. In this case, four atomic molecule, 
χ(E)=12. The transformation matrix (12*12) has all diagonal elements equal to 1 and all the others 
are zero (each versor is transformed into itself). 

The C3 operation, around the z-axis (the highest order cn-axis, in all groups, is always oriented 
vertically along the z-axis, by convention) affects only the versors of one atom, A, since all B atoms 
are changing places and do not have non-zero diagonal elements in the corresponding matrix of 

c3 c3 

c3 

�
v 
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transformation. A rotation around a c3-axis, of the three versors, in any group, gives a zero character, 
as follows (presuming x, y, z, and x’ , y’ , z’ , the old and new coordinate, respectively): 
 
    x’  =  x cos(1200) –  y sin(1200)  + 0z 

y’  =  x sin(1200)  +  y cos(1200)  + 0z                   (2) 
    z’  = 0x                 +0y                  + 1z 
 
and the transformation matrix is, 

 

�
�
�

�

�

�
�
�

�

�

1               0                 0     

0      )cos(120    )sin(120

0     )sin(120-   )cos(120
00

00

  or 

�
�
�

�

�

�
�
�

�

�

1      0       0  

0    1/2-   1/2 

0    1/2    1/2-

             (3) 

 
whose trace is zero, i.e., its character is  χ (C3) = 0. 
  The Σv operation affects two atoms (A and one B) whose z-versors are in that plan. It is 
convenient to take one of the x and y versors in the same  � v  plane. Let us take y in that plane. So 
reflection, for any one atom, will reproduce z and y into themselves and change x into minus x. The 
corresponding matrix is, 
 

    

�
�
�

�

�

�
�
�

�

�

1    0    0 

0    1    0 

0    0    1-

                       (4) 

 
and the character χ(Σv)  is equal to 1. Again, this is true in any group: reflection in a plane of a set of 
three versors gives 1. But there are two atoms on that plane, so, χ(Σv) = 2 in the reducible 
representation. These characters are given in the fifth line of Table 1, as  Γa. 
 It is easy to see that the cases illustrated by Fig. 1b and 1c, with 5 and 6 atoms, respectively, 
for the same group, have three and four atoms on the c3-axis and four and five atoms on  the σv-plane, 
in the two cases. The corresponding characters are given in the sixth and seventh lines of Table 1, as 
Γb and Γc respectively. 

The C2h – group, Fig 2. This molecule is a planar (horizontal) one, obviously, χ(E) = 12. 
χ(C2) = 0, since there is no atom on the c2-axis. The same is true for I-operation: χ(I) = 0. There are 8 
versors in the Σh plane and 4 perpendiculars to it. That means eight are reproduced, preserving their 
magnitude and  orientation and four are changing their sign in the process: χ(Σh) = 4. All these are 
given in the sixth line of Table 2. 

 
 
 

 
 
 
 
 
 
 

    

 
Fig. 2. The planar A4  molecule, C2h symmetry. 
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Table 2. 
 

C2h E C2 I Σh linear bases bilinear bases 
Ag 1 1 1 1 Rz x2, y2, z2, xy 
Bg 1 -1 1 -1 (Rx , Ry) (xz,yz) 
Au 1 1 -1 -1 z  
Bu 1 -1 -1 1 (x,y)  
 Γ 12 0 0 4 4* (x,y,z)  

 
 Let us take now three different molecules all having D3h symmetry, Fig. 3 a, b and c. The 
results of the transformations imposed by the symmetry operations of this group are given in Table 3, 
l ines 8, 9 and 10.  
 
 
 
 
 
                                                   
 
 
 

a 
 
 
 
 
 
 
 
 
 
                             
 
 
 

        
 b                                                         c 

 
Fig. 3. a, b, c. Molecules having D3h symmetry. 

 
 

Table 3. 
 

D3h E 2C3 3C2 Σh 2S3 3Σv linear bases bilinear bases 
A1’  1 1 1 1 1 1  x2 + y2, z2 
A2’  1 1 -1 1 1 -1 Rz  
E’  2 -1 0 2 -1 0 (x,y) (x2 - y2, xy) 
A1”  1 1 1 -1 -1 -1   
A2”  1 1 -1 -1 -1 1 z  
E”  2 -1 0 -2 1 0 (Rx , Ry) (xz,yz) 
 Γa 9 0 -1 3 0 1 3* (x,y,z)  
 Γb 18 0 0 0 0 2 6* (x,y,z)  
 Γc 21 0 -1 1 -2 3 7* (x,y,z)  

 
 

c
3 

�

c c
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The D3d case, Fig. 4, a b, and Table 4, is i llustrated by two molecules, slightly different, in 
order to emphasize the already mentioned fact that position of the atoms on the symmetry elements 
are very important. The feint atom triangles are copies of the opposite, real atom triangles, to 
emphasize their relative positions. 

 
 
 
 
 
 
 
 
 
 
 
 
                                      
 
 
 
 

     a                                                                      b 
 
     

Fig. 4. a, b. The D3d symmetry molecules. 
 
 

Table 4. 
 

D3d E 2C3 3C2 I 2S6 2Σd linear bases bilinear bases 
A1g 1 1 1 1 1 1  x2 + y2, z2 
A2g 1 1 -1 1 1 -1 Rz  
Eg 2 -1 0 2 -1 0 (Rx, Ry) (x2 – y2, xy) (xz,yz) 
A1u 1 1 1 -1 -1 -1   
A2u 1 1 -1 -1 -1 1 z  
Eu 2 -1 0 -2 1 0 (x,y)  
Γa 18 0 0 0 0 2 6*(x,y,z)  
 Γb 21 0 -1 -3 0 3 7*(x,y,z)  

  
 

The following cases, Td , Fig, 5, Table 5, and Oh, Fig. 6, Table 6, are given for the only reason 
of showing the correct answers and may be used for exercises by those interested in veri fying the 
method. 
 

Table 5. 
 

Td E 8C3 3C2 6S4 6Σd linear bases bilinear bases 
A1 1 1 1 1 1  x2 + y2 + z2 
A2 1 1 1 -1 -1   
E 2 -1 2 0 0  (2z2 - x2 - y2, x2 - y2) 
T1 3 0 -1 1 -1 (Rx, Ry, Rz)  
T2 3 0 -1 -1 1 (x,y,z) (xy,xz,yz) 
 Γ 15 0 -1 -1 3 5*(x,y,z)  

 
 

c3 c3 

�
v 

 i  i 
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        Fig. 5. The Td symmetry  species.                       Fig. 6. The Oh symmetry species. 
 
 

Table 6. 
 

O h E 8C3 6C2 6C4 3C2 I 6S4 8S6 3Σh 6Σd linear bases bilinear bases 
A1g 1 1 1 1 1 1 1 1 1 1  x2+y2+z2 
A2g 1 1 -1 -1 1 1 -1 1 1 -1   
Eg 2 -1 0 0 2 2 0 -1 2 0  (2z2-x2-y2, x2-y2) 
T1g 3 0 -1 1 -1 3 1 1 -1 -1 (Rx , Ry , Rz)  
T2g 3 0 1 -1 -1 3 -1 0 -1 1  (xy,xz,yz) 
A1u 1 1 1 1 1 -1 -1 -1 -1 -1   
A2u 1 1 -1 -1 1 -1 1 -1 -1 1   
Eu 2 -1 0 0 2 -2 0 1 -2 0   
T1u 3 0 -1 1 -1 -3 -1 0 1 1 (x,y,z)  
T2u 3 0 1 -1 -1 -3 1 0 1 -1   
Γ 21 0 -1 3 -3 -3 -1 0 5 3 7*(x,y,z)  

 
 

Finally, the new, C� 9v  group, [6] for l inear, unsymmetrical, molecules is presented in Fig. 7 a, 
b and Table 7. The D � 9h  shape and character table are not given or discussed here, since this group is 
simply  the product: Ci * C� 9v = D � 9h   and, consequently very easy to derive. 
 

         
 
 
 
 
 
 
 
 
 
 
 
 

              a                   b 
 

Fig.7. a, b. Linear, C
�

9v Symmetry 

c2 c4 

c9
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    Table 7. 
 

C� 9v E 2C9 2C9
2 2C9

3 2C9
4 9� v linear bases bilinear bases 

A1
� � + 1 1 1 1 1 1 z x2+y2, z2 

A2
� � - 1 1 1 1 1 -1 Rz  

E1
���  2 1.532 0.347 -1 -1.879 0 (x,y) (Rx , Ry) (xz,yz) 

E2
���  2 0.347 -1.879 -1 1.532 0  (x2-y2,xy) 

E3
���  2 -1 -1 2 -1 0   

E4
�	�  2 -1.879 1.532 -1 0.347 0   

�
a 

9 7.596 4.041 0 -2.637 3 3*(x,y,z)  



b 12 10.128 5.388 0 -3.516 4 4*(x,y,z)  
 
 

4. Discussion 
 

The nonlinear molecules do not need further discussion. 
  The linear molecules, however, must be treated a little deeper because we are using the 
recently proposed, pseudo-finite groups (C∞

9v and D
∞

9h) [6], which are limited, but rather efficient. 
Namely, they are transformed C∞v and D∞h  infinite groups into pseudo-finite ones. This has been 
made by  giving ϕ, the rotation angle around the molecular axis, finite, discrete values. The only 
problem with these groups is that they are not closed. This inconvenience is only bad for higher 
representations. We found that 9 is a good enough order for n, covering correctly and completely, all 
operations concerning representations up to E2 (∆). To this level these groups are working perfectly 
like any other finite group, in all respects as much as the n.m.v. are concerned. There is no need, in 
what we are doing here, to go to a higher group. In fact, all elements necessary for the n.m.v. 
symmetry determination are not going over E1 (Π). If higher orders are, nevertheless necessary, in 
other problems, like transitions, hybrid orbital construction, etc., these groups can easily be extended 
to n=17, for example. 
 The characters of the reducible representations can be found, in this case, by inspecting the 
character tables of the C∞

9v (or D∞
9h) group. They are the characters generated by the x, y and z 

coordinates (bases). The three-versors-to-each-atom model is valid here like in any other case (group) 
except that now the characters are not integers, i.e., less comfortable to work with. So, we should use 
another, simpler, method: add the irreducible characters that are generated by  x, y and z  bases, and 
multiply that sum by the number of atoms in the molecule we are interested in, separately for every 
class of the group. The result will be the characters of the reducible matrix of transformations of the 
3N versors on the molecule, to be introduced into P.C. when asked by the program. This way of 
finding the reducible characters is possible only because all the atoms are simultaneously on all the 
symmetry elements of the (linear) molecules. (This method can be used with nonlinear molecules i f 
the above mentioned sum of characters is multiplied by the number of atoms on each element of 
symmetry involved in each specific operation, and not by 3N). The so found symmetry species are 
also containing false vibrations: (translations and rotations) of the molecule. The program, presented 
here, as mentioned before, will eliminate these species and give the symmetries of the real vibrations 
only, so, there is no need to bather with them at all. 
 We have recently published two alternate, empiric, methods for finding the n.m.v. symmetries 
of the linear molecules [6,7]. 
 
 

5. Conclusion 
 

Just a few cases have been discussed here, to show how the program  works and to present 
some possible variations, but the method can be applied to any other group. All we have to do is to;  
a) consider the form of the molecule we are interested in; b) find the corresponding group; c) attach a 
set of three mutuall y orthogonal versors to each atom; d) generate the reducible representation by 
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yourself. The program will ask you to introduce the name of the group the considered molecule 
belongs to, then to introduce the characters of the just found reducible matrices. It wil l find the 
irreducible representations, eliminate the false vibrations, and give the symmetries (representations) of 
the real n.m.v. of the molecule (how many of each species). 

It should be stressed that point d) is solved di fferently for the linear molecules compared to all  
the others. In fact, in this case we do not even need the three-versors-to-each-atom model, but use 
directly the character tables of the two pseudo-finite groups, as an easier way. 
 The program is written in GWBASIC since it is simple, friendly and everybody has it. 
Comments are included in the program. Being simple, it can be easily translated into any other 
language (Appendix A).  
 Data are the characters of the irreducible representations of the analyzed groups multiplied by 
the number of operations in each class, followed by the symbols of those representations. 
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Appendix A 
 
 
10 REM Program:"nmv-symm".bas, for finding the symmetries of the molecular 
normal modes of vibration (n.m.v). 
 
15 LET A$="choose the group (c3v, c2h, d3h, d3d, td, oh, c9v)" 
20 PRINT A$: INPUT "A$";A$ 
25 IF A$<>"c3v" AND A$<>"c2h" AND A$<>"d3h" AND A$<>"d3d" AND A$<>"td" 
AND A$<>"oh" AND A$<>"c9v" THEN GOTO 15 
30 IF A$="c3v" THEN C=3: REM C= number of classes (representations) in the 
group. 
35 IF A$="c3v" THEN H=6: REM H= order of the group. 
40 IF A$="c3v" THEN RESTORE 430 
45 IF A$="c2h" THEN C=4 
50 IF A$="c2h" THEN H=4 
55 IF A$="c2h" THEN RESTORE 455 
60 IF A$="d3h" THEN C=6 
65 IF A$="d3h" THEN H=12 
70 IF A$="d3h" THEN RESTORE 485 
75 IF A$="d3d" THEN C=6 
80 IF A$="d3d" THEN H=12 
85 IF A$="d3d" THEN RESTORE 525 
90 IF A$="td"  THEN C=5 
95 IF A$="td"  THEN H=24 
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100 IF A$="td" THEN RESTORE 565 
105 IF A$="oh" THEN C=10 
110 IF A$="oh" THEN H=48 
115 IF A$="oh" THEN RESTORE 600 
120 IF A$="c9v" THEN C=6 
125 IF A$="c9v" THEN H=18 
130 IF A$="c9v" THEN RESTORE 660 
135 DIM A(C,C) 
140 FOR N=1 TO C 
145 FOR M=1 TO C 
150 READ D: REM D= DATA= X(R)*g(R); g(R)= number of operations in the class. 
155 A(N,M)=D 
160 NEXT M,N 
165 DIM B(C) 
170 FOR M=1 TO C 
175 PRINT M;"  "; 
180 INPUT "B=";B: REM B= the characters of the reducible representation. 
185 B(M)=B 
190 NEXT M 
195 DIM Y(C) 
 
200 FOR I=1 TO C 
205 Y=0 
210 FOR M=1 TO C 
215 Y(M)=A(I,M)*B(M) 
220 Y=Y+Y(M) 
225 NEXT M 
230 PRINT " I = "; I, 
235 READ B$: PRINT B$; " = "; : REM B$= symbols of the irred. representations. 
240 Z=CINT(Y)/H 
245 IF A$="c3v" THEN GOTO 280 
250 IF A$="c2h" THEN GOTO 300 
255 IF A$="d3h" THEN GOTO 325 
260 IF A$="d3d" THEN GOTO 350 
265 IF A$="td" THEN GOTO 375 
270 IF A$="oh" THEN GOTO 390 
275 IF A$="c9v" THEN GOTO 405 
280 IF I=1 THEN Z=Z-1: REM Lines 285-415: subtraction of the false n.m.v. 
285 IF I=2 THEN Z=Z-1 
290 IF I=3 THEN Z=Z-2 
295 GOTO 415 
300 IF I=1 THEN Z=Z-1 
305 IF I=2 THEN Z=Z-2 
310 IF I=3 THEN Z=Z-1 
315 IF I=4 THEN Z=Z-2 
320 GOTO 415 
325 IF I=2 THEN Z=Z-1 
330 IF I=3 THEN Z=Z-1 
335 IF I=5 THEN Z=Z-1 
340 IF I=6 THEN Z=Z-1 
345 GOTO 415 
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350 IF I=2 THEN Z=Z-1 
355 IF I=3 THEN Z=Z-1 
360 IF I=5 THEN Z=Z-1 
365 IF I=6 THEN Z=Z-1 
370 GOTO 415 
375 IF I=4 THEN Z=Z-1 
380 IF I=5 THEN Z=Z-1 
385 GOTO 415 
390 IF I=4 THEN Z=Z-1 
395 IF I=9 THEN Z=Z-1 
400 GOTO 415 
405 IF I=1 THEN Z=Z-1 
410 IF I=3 THEN Z=Z-2 
415 PRINT CINT(Z) 
420 NEXT I 
 
425 REM The c3v-group: 
430 DATA      1,   2,   3 
435 DATA      1,   2,  -3 
440 DATA      2,  -2,   0 
445 DATA        A1, A2, E 
450 REM The c2h-group: 
455 DATA      1,  1,  1,  1 
460 DATA      1, -1,  1, -1 
465 DATA      1,  1, -1, -1 
470 DATA      1, -1, -1,  1 
475 DATA        Ag, Bg, Au, Bu 
480 REM The d3h-group: 
485 DATA      1,  2,  3,  1,  2,  3 
490 DATA      1,  2, -3,  1,  2, -3 
495 DATA      2, -2,  0,  2, -2,  0 
500 DATA      1,  2,  3, -1, -2, -3 
505 DATA      1,  2, -3, -1, -2,  3 
510 DATA      2, -2,  0, -2,  2,  0 
515 DATA        A'1, A'2, E', A"1, A"2, E" 
520 REM The d3d-group: 
525 DATA      1,  2,  3,  1,  2,  3 
530 DATA      1,  2, -3,  1,  2, -3 
535 DATA      2, -2,  0,  2, -2,  0 
540 DATA      1,  2,  3, -1, -2, -3 
545 DATA      1,  2, -3, -1, -2,  3 
550 DATA      2, -2,  0, -2,  2,  0 
555 DATA        A1g, A2g, Eg, A1u, A2u, Eu 
560 REM The td-group: 
565 DATA      1,  8,  3,  6,  6 
570 DATA      1,  8,  3, -6, -6 
575 DATA      2, -8,  6,  0,  0 
580 DATA      3,  0, -3,  6, -6 
585 DATA      3,  0, -3, -6,  6 
590 DATA        A1, A2, E, T1, T2 
595 REM The oh-group: 
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600 DATA      1,  8,  6,  6,  3,  1,  6,  8,  3,  6 
605 DATA      1,  8, -6, -6,  3,  1, -6,  8,  3, -6 
610 DATA      2, -8,  0,  0,  6,  2,  0, -8,  6,  0 
615 DATA      3,  0, -6,  6, -3,  3,  6,  0, -3, -6 
620 DATA      3,  0,  6, -6, -3,  3, -6,  0, -3,  6 
625 DATA      1,  8,  6,  6,  3, -1, -6, -8, -3, -6 
630 DATA      1,  8, -6, -6,  3, -1,  6, -8, -3,  6 
635 DATA      2, -8,  0,  0,  6, -2,  0,  8, -6,  0 
640 DATA      3,  0, -6,  6, -3, -3, -6,  0,  3,  6 
645 DATA      3,  0,  6, -6, -3, -3,  6,  0,  3, -6 
650 DATA        A1g, A2g, Eg, T1g, T2g, A1u, A2u, Eu, T1u, T2u 
 
655 REM The c9v-group: 
660 DATA      1,       2,         2,        2,     2,        9 
665 DATA      1,       2,         2,        2,     2,       -9 
670 DATA      2,   3.064,   0.694,   -2,  -3.758,   0 
675 DATA      2,   0.694,  -3.758,   -2,   3.064,   0 
680 DATA      2,      -2,        -2,        4,    -2,        0 
685 DATA      2,  -3.758,   3.064,   -2,   0.694,   0 
690 DATA        A1,  A2,  E1,  E2,  E3,  E4 
 
695 REM 
700 REM Finding the reducible representations with the three-versors-to-each-atom    
technique, for real, finite, groups is a direct, easy, task when the characters 
of the ireducible representations are integers, as it is in many cases. 
 
705 REM 
710 REM With the pseudo-finite groups, C9v and D9h, the sum of the irreducible 
characters, generated by the x,y and z, multiplied by the number of atoms, in each 
class, are to be taken for finding the characters of the reducible representation. 


