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In the case of the self-similar regime in time-dependent crystallization, the spatial coordinate, 
ξ , set along the solidification direction and time t  are connected by means of the following 

relation: t~ξ . This scaling relation usually takes place for crystallization regimes far 

from the initial stage 0=t of the process. We demonstrate that nonstationary crystallization 
processes in the presence of the mushy region are described by means of the fractal-like power 
laws at initial and self-similar stages.  
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1. Introduction 
 
Mathematical descriptions of crystallization processes play very important role in crystal 

growth [1,2], engineering, [3], oceanography [4] and metallurgy [5]. The transition amorphous-to-
crystalline in the materials for optical phase-change memories is of great practical importance [6]. The 
mathematical models allow to predict many properties of solids produced by melt cooling. If the 
liquid is an alloy (a mixture of two or more components) its crystallization process completely differs 
from the solidification of a pure liquid. In particular, various distributions of impurity in the solid 
phase lead to different mechanical and physical properties of ingots. This phenomenon arises due to 
the impurity displacement into the melt by the moving front of solidi fication. If the impurity 
displacement is rather large, the constitutional supercooling originates ahead of the planar solid-liquid 
interface [7] and, generally speaking, the two-phase zone (mushy region) appears. Moreover, solid 
nuclei in the form of newly born crystals may evolve in this zone. The authors of Ref. [8] developed a 
full set of thermodynamic equations for a mushy zone, and solved a mush-reduced set of them 
approximately for the constrained growth of a binary alloy. A more complete solution has since been 
given in Refs. [9,10] for the steady-state solidification conditions. Nevertheless, solidification with a 
constant rate is the specific regime. Generally speaking, the rate of solidi fication is a function of all 
operating and physical parameters and also it is a time dependent function. As was shown in Refs. 
[11] and [12], the front rate is a nearly linear function of time at the initial stage of crystallization in 
an ingot mold. The constitutional supercooling origination (the latter occurs when the concentration 
gradient ξ∂∂= LC CmG  exceeds the temperature one ξ∂θ∂= LG  at the planar front; here m  is 

the liquidus slope determined from the phase diagram, LC  and Lθ  are the concentration and 
temperature fields in the liquid phase) leads under certain circumstances to the mushy zone 
solidification and the classical description of crystall ization by  means of the planar front model 
becomes inapplicable. However, if the process is far from the cooled wall and the constitutional 
supercooling and/or a mushy layer are absent, solidification with a planar front proceeds in unsteady-
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state manner and after a lapse of time the process approaches to own self-similarity. Such a scenario 
of crystallization was experimentally studied in Ref. [13] on the basis of aqueous solution of sodium 
nitrate. At first, solidification proceeds within the framework of the Stefan thermodiffusion problem 
with a planar front. Further, after a lapse of time the planar shape of the solid-liquid interface is 
destroyed and solidification is described with the help of the mushy layer model [13]. The governing 
set of equations and boundary conditions for the mushy layer (see Ref. [13]) is essentially nonlinear. 
Therefore, in Ref. [13], this set is solved only numerically for two binary mixtures. The present study 
is concerned with approximate power solutions of the self-similar model with the thermodynamically 
equilibrium two-phase zone. We demonstrate that the bulk fraction of the solid phase and impurity 
concentration are described by fractal-like (scaling) laws.  
 
 

2. Mathematical description 
 
Let us consider a unidirectional solidification process of a binary melt or solution directed 

along the ξ  axis. The cooled wall is placed at 0=ξ  and regions )(0 tSΣ<< ξ  and ∞<<Σ ξ)(tL  

are fi lled with the solid and liquid phases whereas the region LS Σ<ξ<Σ  is occupied with the two-

phase zone ( SΣ  and LΣ  stand for the solid phase – two-phase zone and two-phase zone – liquid 

phase coordinates). The temperature and concentration fields in pure liquid and solid phases are 
governed by the following parabolic-type equations 
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Here Sθ  and SC  are the temperature and concentration in the solid, La  and Sa  are the 

thermal diffusivities in the liquid and solid, LD  and SD  are the diffusion coefficients in these phases.  

The heat and mass transfer processes in the mushy region are governed by the following equations 
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where mθ  and mC  are the temperature and concentration fields in the mushy zone, ϕ  is the bulk 

fraction of the solid in this zone, and 
 

ϕρ+ϕ−ρ=ϕρ SSLLmm ccc )1()( , ϕ+ϕ−=ϕ SLm KKK )1()( , ϕ+ϕ−=ϕ SLm DDD )1()( . 

 
Here Lρ  and Sρ  are the densities in the solid and liquid, LLLL aKc ρ=  and 

SSSS aKc ρ=  are the thermal capacities in these phases. The two-phase zone is assumed to be in a 

state of thermodynamic equilibrium. This means that the temperature in both of the phases is equal to 
the phase transition temperature connected with the solute concentration. Let us write down the 
liquidus equation in a linear form, i.e. 

 

mm mC+θ=θ 0 ,          LS Σ<ξ<Σ .                                            (4) 

 
The set (1) - (4) must be supplemented by the boundary conditions imposed at both interfaces. 

Namely 
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where SK  and LK  are the thermal conductivities in the solid and liquid, VL  is the latent heat 

parameter (per unit volume), k  is the equil ibrium partition coefficient, 0θ  is the phase transition 

temperature for the pure matter.  
Temperature and concentration fields at the cooled wall and far from the front in the liquid will be 
regarded as known, i.e. 

WS θθ = ,       ∞== LWS kCCC ,     0=ξ ,                                        (8) 

   ∞θ→θ LL ,        ∞→ LL CC ,        ∞→ξ .                                        (9) 
 

 
3. Results and conclusions 
 
In the case of self-similar crystall ization the spatial coordinate ξ  and time t  are connected by 

the relation tDx LS 2/)( Σ−≡ ξ  while the solid-mushy SΣ  and mushy-liquid LΣ  boundaries are 

expressed as (Ref. [14]) tDLSS λ2=Σ  and tDLLL λ=Σ 2 , where constants Sλ  and Lλ  are 

solutions of the aforementioned model. Further, we demonstrate that solutions of the model (1)-(9) 
strengthen a hypothesis about self-similar distributions of the bulk fraction ϕ  and the solute 

concentration mC . It is well-known that many fractal objects met in nature are described by means of 

scaling laws [15,16]. Moreover, the fractal-l ike structure of the steady-state mushy zone was observed 
in Ref. [17]. Taking into account the latter we describe the self-similar mushy zone by fractal-like 
power laws in the spirit of Ref. [17]. Let us introduce the following homogeneous self-similar 
functions for the bulk fraction ϕ  and concentration mC  in the two-phase zone [17]:  
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where ∗mC  and εmC  are the concentrations at the boundaries solid phase – two-phase zone and two-

phase zone – liquid phase. Expressions (10) satisfy to the scaling relations  

)()( yy Dϕλλϕ = ,  ))(()( εε λλ mm
D

mm CyCCyC −=− . 

Here λ  is a constant. The scaling parameter D  plays the role of dimensions for fractal 
objects [15].  It is easy to see that the value of εmC  is not a fractal-like part of the function )(yCm . 

Apparently, this is due to the fact that the boundary two-phase zone – liquid phase does not displace 
the solute concentration into the pure liquid phase. Substituting the self-similar variables introduced 
above in the set (1)-(9) we get the set of ordinary differential equations supplemented by the boundary 
conditions (see, for example, Ref. [14]). The nonlinear set of equations obtained in this way is solved 
numerically. Since the procedure of numerical solutions is quite standard, we will not dwell on this 
point. The results in the planes of ( x,ϕ ) and ( xCm , )are illustrated in Figs. 1 and 2 for two sets given 

in Table 1 (all temperatures are measured from the point 00 =θ OC; symbols 1 and 2 near the curves 

correspond to sets I and II respectively). Further, we approach the exact numerical results by means of 
the scaling relations (10) (values of ∗ϕ , ∗mC  and εmC are known from numerical solutions of the 
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model). These results are illustrated in Figs. 1 and 2 by symbols ""+ . It is easy to see that power laws 
(10) are in a good agreement with numerical solution.  

 
Table 1. Parameter values used for the two sets of results in accordance with Refs. [13,14]. 

 

 
 
Let us especially emphasize that the bulk fraction and solute concentration profi les within the 

two-phase zone are determined only by means of boundary values ∗ϕ , ∗mC  and εmC . Moreover, in 

the case of fixed physical and operating parameters, these profiles are independent on the scaling 
parameter D , which is equal to 05.003.1 ±  and 05.007.1 ± for sets I and II respectively. This result 
is in a good agreement with Ref. [16], where similar analyses are carried out for the steady-state 
solidification with a mushy layer (authors of Ref. [17] have found that the scaling parameter D  varies 
from 1 to 2).  Since the self-similar solutions describe nonstationary solidification far from its initial 

Property Set I Set II: NaNO3+H2O Units 
Thermal conductivity, LK  1.3.10-3 1.3×10-3 cal/(cm.s.OC) 

Thermal conductivity, SK  1.3.10-3 5.3×10-3 cal/(cm.s.OC) 

Thermal diffusivity, La  1.3.10-3 1.3×10-3 cm2/s 

Thermal diffusivity, Sa  1.3.10-3 1.2×10-2 cm2/s 

Diffusion coefficient, LD  1.0.10-5 1.0×10-5 cm2/s 

Diffusion coefficient, SD  1.0.10-9 1.0×10-9 cm2/s 

Latent heat parameter, VL  80 73.6 cal/cm3 

Liquidus slope, m  -0.4 -0.4 OC 
Segregation coefficient, k  0 0 - 

Liquid phase density, Lρ  1.0 1.0 g/cm3 

Solid phase density, Sρ  1.0 0.48 g/cm3 

Initial concentration, ∞LC  14 14 - 

Temperature, ∞Lθ  15 15 OC 

Fig. 2. The solute concentration as a function of spatial 
coordinate within the two-phase zone. (1): 

154.0=Sλ , 05.1=Lλ , 952.20=∗σ , 03.1=D , 

(2): 154.0=Sλ , 74.1=Lλ , 281.19=∗σ , 07.1=D . 

 
 
 
 

Fig. 1. The bulk fraction of the solid phase as a 
function of spatial coordinate within the two-phase 

zone. (1): 154.0=Sλ , 05.1=Lλ , 328.0=∗ϕ , 

03.1=D ,(2):     154.0=Sλ ,      74.1=Lλ , 

                       239.0=∗ϕ , 07.1=D . 
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stage ( 0=t ), it is of interest to study how the scaling relations (10) work at initial stages (near the 
vicinity 0=t ). In order to study the latter let us pay our attention to experiments of Ref. [18]. Fig. 3 
demonstrates distributions of the solute concentration ahead of the boundary solid phase – two-phase 
zone, 0=x , for initial stages of nonstationary crystallization of the set KCl  (here x and ε play the 
role of dimensional variables). The constitutional supercooling arises (and, as a consequence, the two-
phase zone originates) for crystallization time 60>t  s. As is seen from Fig. 3, the concentration 
profile approaches to some invariable self-similar distribution with increasing in time (in other words, 
a distance between neighboring curves decreases). Further, we compare the scaling relation (10) with 
experimental data in Fig. 3. The scaling parameter D  is of the order of 2.7 for all curves in Fig. 3, i.e. 
for different solidification time. Practically it means that experiments of Ref. [18] strengthen a 
hypothesis about a fractal structure of the two-phase zone solidified in nonstationary manner at initial 
stages of the process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Conclusions 
 

It was revealed a fractal-like structure of the two-phase zone for nonstationary crystallization 
regimes at initial and self-similar stages of the process. 

The fractal-like scaling laws (10) are in a good agreement with numerical  calculations and 
experimental data. 
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