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FRACTAL-LIKE STRUCTURESIN THE SELF-SIMILAR CRYSTALLIZATION
WITH A TWO-PHASE ZONE
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In the case of the self-similar regime in time-dependent crystal lization, the spatia coordinate,
& , st dong the solidification direction and time t are connected by means of the following

relation: & ~ \/f This scaling relation usually takes place for crystallization regimes far

from the initial stage t = O of the process. We demonstrate that nonstationary crystallization
processesin the presence of the mushy region are described by means of the fracta -like power
lawsat initid and self-similar stages.
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1. Introduction

Mathematical descriptions of crystalization processes play very important role in crystal
growth [1,2], engineering, [3], oceanography [4] and metallurgy [5]. The transition amorphous-to-
crystallinein the materials for optical phase-change memoriesis of great practical importance[6]. The
mathematical models alow to predict many properties of solids produced by melt cooling. If the
liquid is an aloy (a mixture of two or more components) its crystalization process completdy differs
from the solidification of a pure liquid. In particular, various distributions of impurity in the solid
phase lead to different mechanica and physical properties of ingots. This phenomenon arises due to
the impurity displacement into the mdt by the moving front of solidification. If the impurity
displacement is rather large, the constitutional supercooling originates ahead of the planar solid-liquid
interface [7] and, generally speaking, the two-phase zone (mushy region) appears. Moreover, solid
nucle inthe form of newly born crystals may evolvein this zone. The authors of Ref. [8] developed a
full set of thermodynamic eguations for a mushy zone, and solved a mush-reduced set of them
approximatdy for the constrained growth of a binary alloy. A more complete solution has since been
given in Refs. [9,10] for the steady-state solidification conditions. Nevertheless, solidification with a
constant rate is the specific regime. Generdly speaking, the rate of salidification is a function of all
operating and physical parameters and also it is a time dependent function. As was shown in Refs.
[11] and [12], the front rate is a nearly linear function of time at the initial stage of crystalization in
an ingot mold. The constitutiona supercooling origination (the latter occurs when the concentration

gradient G, = mdC,_ /o0& exceeds the temperature one G =00, /0¢ at the planar front; here m is

the liquidus slope determined from the phase diagram, C, and 8, are the concentration and
temperature fieds in the liquid phase) leads under certain circumstances to the mushy zone
solidification and the classical description of crystallization by means of the planar front mode
becomes inapplicable. However, if the process is far from the cooled wall and the constitutional
supercooling and/or a mushy layer are absent, solidification with a planar front proceeds in unsteady-
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state manner and after a lapse of time the process approaches to own s f-similarity. Such a scenario
of crystallization was experimentally studied in Ref. [13] on the basis of agueous solution of sodium
nitrate At first, solidification proceeds within the framework of the Stefan thermodiffusion problem
with a planar front. Further, after a lapse of time the planar shape of the solid-liquid interface is
destroyed and solidification is described with the hdp of the mushy layer mode [13]. The governing
set of egquations and boundary conditions for the mushy layer (see Ref. [13]) is essentidly nonlinear.
Therefore, in Ref. [13], this set is solved only numerically for two binary mixtures. The present study
is concerned with approxi mate power sol utions of the sdf-similar mode with the thermodynamically
equilibrium two-phase zone. We demonstrate that the bulk fraction of the solid phase and impurity
concentration are described by fractal-like (scaling) laws.

2. Mathematical description

Let us consider a unidirectiona solidification process of a binary mdt or solution directed
aongthe & axis. The cooled wall isplacedat & = 0 and regions 0 <¢ < Z (t) and X (1) <& < oo
arefilled with the solid and liquid phases whereas the region 2 < & < X, is occupied with the two-
phase zone (24 and 2, stand for the solid phase — two-phase zone and two-phase zone — liquid

phase coordinates). The temperature and concentration fields in pure liquid and solid phases are
governed by the following paraboli c-type equations

26 %9,  aC 9°C

o D& afzL I agzL , L) <&<o, @)
26 %0, aC 9°C

o % afzs o Ds 0551 0<¢<2s(). @

Here B5 and Cg are the temperature and concentration in the solid, 8 and a5 are the

thermal diffusivitiesin theliquid and solid, D, and Dy arethe diffusion coefficients in these phases.
The heat and mass transfer processes in the mushy region are governed by the following equations

9 _a(, e, o 0 (. _ 0[5 9C,) 1o 9 5 .
at(pmcmem)_az£ mazj-i- 516'[((1 ¢)Cm) aE{Dm az] Cm ot ’ S<E< L7(3)

where 6 and C_ are the temperature and concentration fields in the mushy zone, ¢ is the bulk
fraction of the solid in this zone, and

PrCn(®) =P (=) +psCsh . K () = K (1-0) + Kb, D,(9) =D (1-9¢) +Dso.

Here p, and pg ae the dendties in the solid and liquid, ¢, =K, /p&a and

Cs = Kg/psag arethethermal capacities in these phases. The two-phase zone is assumed to bein a

state of thermodynamic equilibrium. This means that the temperature in both of the phasesis equd to
the phase transition temperature connected with the solute concentration. Let us write down the
ligquidus equationin alinear form, i.e.

8,=6,+mC,, S, <E&<Z. 4

Thesd (1) - (4) must be supplemented by the boundary conditions imposed at both interfaces.
Namey
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where Kg and K_ are the thermal conductivities in the solid and liquid, L, is the latent heat
parameter (per unit volume), k is the equilibrium partition coefficient, 6, is the phase transition

temperature for the pure matter.
Temperature and concentration fields at the cooled wall and far from the front in the liquid will be
regarded as known, i.e

6.=8, C.=C,=kC., E=0, ®
0. - 6., C - C., § - . 9

3. Results and conclusions

Inthe case of sdf-similar crystallization the spatial coordinate & and time t are connected by
the relation X = (£ —Zg)/2,/Dt while the solid-mushy % and mushy-liquid %, boundaries are

expressed as (Ref. [14]) X =2A4/D,t and 2, =2\ /D t, where constants Ag and A, ae
solutions of the aforementioned moded. Further, we demonstrate that solutions of the model (1)-(9)
strengthen a hypothesis about sdf-similar distributions of the bulk fraction ¢ and the solute
concentration C_.. It is well-known that many fractal objects met in nature are described by means of

scaling laws [15,16]. Moreover, the fractal-like structure of the steady-state mushy zone was observed
in Ref. [17]. Taking into account the latter we describe the self-similar mushy zone by fractal-like
power laws in the spirit of Ref. [17]. Let us introduce the following homogeneous sef-similar

functions for the bulk fraction ¢ and concentration C_, in the two-phase zone [17]:

#(Y) =4, Cu(y) =Cre +(Cri=Cr)¥°, y=1—§, £=A A, (10

where C_; and C,,, arethe concentrations at the boundaries solid phase — two-phase zone and two-
phase zone — liquid phase. Expressions (10) satisfy to the scaling rlations
P(Ay) = 1°(y), Co(dy) ~Cp = A (C(¥) ~Cprr) -

Here A is a constant. The scaling parameter D plays the role of dimensions for fractal
objects [15]. It is easy to see that the value of C,,, isnot a fracta-like part of the function C,(Yy).
Apparently, this is due to the fact that the boundary two-phase zone — liquid phase does not displace
the solute concentration into the pure liquid phase. Substituting the self-similar variables introduced
abovein the set (1)-(9) we get the set of ordinary differential equations supplemented by the boundary

conditions (see, for example, Ref. [14]). The nonlinear sa of equations obtained in this way is solved
numerically. Since the procedure of numerical solutions is quite standard, we will not dwel on this

point. The resultsin the planes of (¢, x) and (C,,, X)areillustrated in Figs. 1 and 2 for two sets given
in Table 1 (all temperatures are measured from the point &, = 0°C; symbols 1 and 2 near the curves
correspond to sets | and |1 respectivdy). Further, we approach the exact numerical results by means of
the scaling relations (10) (vaues of ¢, C., and C,, are known from numerical solutions of the
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mode). These results areillustrated in Figs. 1 and 2 by symbols "+". It is easy to see that power laws
(10) arein agood agreement with numerical sol ution.

o(x) Cmix)
20
0.2+
15
0 X 0 1 X
Fig. 1. The bulk fraction of the solid phase as a Fig. 2 The solu_te_concentration as afunction of spatial
function of spatia coordinate within the two-phase coordinate  within  the two-phase zone.  (1):
zone. (1): A =0.154, A_ =1.05, ¢, = 0.328, As =0.154,4 =1.05,0,=20.952, D =1.03,
D=103,2: A;=0.154, A =174, (2:A; =0.154,4, =1.74,5,=19.281, D =1.07.
¢,=0.239, D=1.07.
Table 1. Parameter values used for the two sets of results in accordance with Refs. [13,14].
Property Set | Set 11: NaNO;+H,0 Units
Thermal conductivity, K, 1.310° 1.3x10° ca/(cms®C)
Thermal conductivity, Kg 1.310° 5.3x10° ca/(cms®C)
Thermal diffusivity, a, 1.310° 1.3x10° cm’/s
Thermal diffusivity, ag 1.310° 1.2x10 cm’/s
Diffusion coefficient, D, 1.010° 1.0x10° cm’/s
Diffusion coefficient, Dy 1.010° 1.0x10° cm’/s
Latent heat parameter, L, 80 73.6 cal/cm?
Liquidus slope, m -0.4 -0.4 °c
Segregation coefficient, k 0 0 -
Liquid phase density, o, 1.0 1.0 g/em?
Solid phase density, O 1.0 0.48 glem®
Initial concentration, C,_, 14 14 -
Temperature, 6, 15 15 °c

Let us especialy emphasize that the bulk fraction and solute concentrati on profiles within the
two-phase zone are determined only by means of boundary values ¢, C,, and C_,. Moreover, in
the case of fixed physical and operating parameters, these profiles are independent on the scaling
parameter D, whichisequal to 1.03+0.05 and 1.07 + 0.05for sets | and I respectively. This result
isin a good agreement with Ref. [16], where similar analyses are carried out for the steady-state
solidification with a mushy layer (authors of Ref. [17] have found that the scaling parameter D varies
from 1 to 2). Since the sdf-similar solutions describe nonstationary solidification far from itsinitia
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stage (t = 0), it is of interest to study how the scaling relations (10) work at initial stages (near the
vicinity t = 0). In order to study the latter et us pay our attention to experiments of Ref. [18]. Fig. 3
demonstrates distributions of the solute concentration ahead of the boundary solid phase — two-phase
zone, X =0, for initial stages of nonstationary crystallization of the set KCI (here x and & play the
role of dimensiona variables). The constitutional supercooling arises (and, as a consequence, the two-
phase zone originates) for crystallization time t > 60 s. As is seen from Fig. 3, the concentration
profile approaches to some invariable sef-similar distribution with increasing in time (in other words,
a distance between neighboring curves decreases). Further, we compare the scaling relation (10) with
experimental datain Fig. 3. The scaling parameter D is of the order of 2.7 for al curvesinFig. 3, i.e.
for different solidification time. Practically it means that experiments of Ref. [18] strengthen a
hypothesis about a fractal structure of the two-phase zone solidified in nonstati onary manner & initial
stages of the process.
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Fig. 3. The solute concentration in the two-phase zone as a

function of the spatia coordinate (symbols — experiments

of Ref. [18], solid curves— calculations in accordance with
relation (10)).

4. Conclusions

It was revealed a fracta -like structure of the two-phase zone for nonstationary crystallization
regimes at initial and sdf-similar stages of the process.

The fractal-like scaling laws (10) are in a good agreement with numerical cal culations and
experimental data.
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