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MONTE CARLO METHODS IN SEQUENTIAL AND PARALLEL COMPUTING
OF 2D AND 3D ISING MODEL
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Because of its complexity, the 3D Ising mode has not been given an exact ana ytic solution so
far, as well asthe 2D Ising in non zero externd field conditions. In real materials the phase
transition crestes a discontinuity. We analysed the Ising model that presents similar
discontinuities. We use Monte Carlo methods with a single spin change or a spin cluster
change to ca culate macroscopic quantities, such as specific heat and magnetic susceptibility.
We studied the differences between these methods. Local MC al gorithms (such as Metropolis)
perform poorly for large lattices because they update only one spin at atime, so it takes many
iterations to get a statistically independent configuration. More recent spin cluster algorithms
use clever ways of finding clusters of sites that can be updated a once. The single cluster
method is probably the best sequentia cluster agorithm. We aso used the entropic sampling
method to simulate the density of states. This method takes into account dl possible
configurations, not only the most probable. The entropic method also gives good resultsin the
3D case. We studied the usefulness of distributed computing for Ising model. We established
a parallelization strategy to explore Metropolis Monte Carlo simulation and Swendsen-Wang
Monte Carlo smulation of this spin model using the data parallel languages on different
platform. After building a computer cluster we made a Monte Carlo estimation of 2D and 3D
Ising thermodynamic properties and compare the results with the sequential computing. In the
same time we made quantitative analysis such as speed up and efficiency for different sets of
combined parameters (e.g. lattice size, pardld algorithms, chosen model).
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1. Introduction

Monte Carlo methods provide approximate solutions to a variety of mathematicd problems
by performing statistical sampling experiments on a computer.

Numerical smulations are now, more than ever before, a valuable tool for studying the
properties of mathematicad moddsin physics[1, 2]. As computers become more and more powerful,
the kind of problems being solved with their help become more and more difficult and time
consuming, demanding in turn more powerful algorithms.

We used Visual C™ and Fortran to simulate nearest neighbors interactions in a 2D or a 3D
Ising lattice [3], in zero magnetic fidd. The system can be described by a set of properties that are
temperature-dependent. These are energy, magnetization, heat capacity and magnetic susceptibility.
At a specific temperature caled the critical temperature, the modd shows characteristics of a phase
transition. The phase transition in the Ising model is a transition between an ordered and a non-
ordered state. In real materials we aso have transitions of this kind.

We tried different algorithms for different systems to see the differences in establishing the
criticd point and, also, we tried to reduce the time necessary for running the program by developing
some paralle computing algorithms.
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We worked with Ising model, which is one of the simplest for phase transitions in statistical
physics. The 1D Ising mode presents one of the simplest interacting systems in the absence of an
applied fied. Because the 1D case does not present a phase transition, the interest in studying such a
systemis very small. Onsager showed in 1944 that the 2D system presents a phase transition.

The spins are considered to be aranged in alattice, usuady square or triangular in 2D, in fixed
positions and the interactions are only between first order neighbors.

There are many methods for deriving the partition function of the 2D Ising model and some
scientists tried to generalize some of these methods for the 3D case. We aso tried to gpply some
methods with good resultsin 2D case for a3D case.

2. The algorithms

For the beginning, we are presenting some types of agorithms that we used in our paper.

We start with a single cluster algorithm, called Wolff algorithm [4]. Thisis aredistic cluster
algorithm for lattice models. The basic ideais to look for clusters of similarly oriented spins and then
changether orientation dl at once

Thedgorithmis asfollows:

- we choose a seed spin at random from the whole | attice;
- we look at each of the neighbors of that spin. If they are pointing in the same direction as the seed
spin we add them to the d uster with the probability:

Pas=1-exp(-2J/ksT) 1)

- for each spin that was added in the last step we examine each of its neighbors to find the ones that
are pointing in the same direction and if they are add each of them to the same probability Paq. If
some neighbors are already cluster members, they do not need to be added again. For spins that were
considered for addition but rgjected before, they get another chance to be added to the duster at this
step;

- the previous step will be repeated as many times as necessary until there are no spins left in the
cluster whose neighbors have not been considered for ind usion in the cluster;

- changethe d uster orientation.

Another duster algorithm is Swendsen-Wang algorithm [5]. The difference between Wolff
cluster agorithm is that this agorithm is using more spin clusters at the same time. That is why it is
called multi-cluster algorithm. It inspects all nodes and if s=s; a bond between sites is created with a
probability Pyq. After this clusters are constructed using sites wich are connected by bonds. Next step
isto giveto each cluster arandom value, +1 or —1.

We aso used the so called entropic sampling method, introduced by Lee [6]. This method
gives the state density function, g{ m,s} and from this we can obtain the partition function of the
system and also all macroscopic quantities, e.g. specific heat or susceptibility [7].

The interaction energy is considered only between the nearest neighbors, 4 in 2D case and 6
in3D case

The eguation for energy is the sum over al nearest neighbor pairs, with spins equaling either
+1 or -1, and multiplied by a factor J, which describes the strength of the interacti on between spins.

Thetotal energy of the system is given by the formula:

1 N N
H =_§ZS.SiJij_h23 @)
i =

where J; is the exchange energy between thei and j spins, histhe external applied fiedld and S=+1
or -1 as spin state.
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J if the spins are first order neighbors
0 otherwise

The coupling constant J represents a measure for the exchange interaction. J is positive for
ferromagnetic coupling and negative for antiferromagnetic coupling.

We consider an Ising system and we say that the macrostate of the spins system is a series of
values of the couple {m,s} represented by a point in the plane of al possible values of m and s. This
plane is the phase space of our problem. The degenerescence g(m,s) of this macrostate we shall aso
call it state density like m and s are varying continuously. Is this the two variable function that we
want to obtain using Monte Carlo simulations. Once obtained the state density g(m,s), the calculations
for obtaining the partition function is very easy.

We considered different dimensions for our system and we studyed the influence of the
dimensi onality on the system properties.

We obtained a file which contains on the first column the values for m (m= Z S ), onthe

second column the values for s (S = Z S Sj ) and on the third column the values for g, the energy
i
density function.
We used the folowing formulas:

Z =Y g(E)e™ is thepartition function of the system (4)
E)Ee"™
(E)= 2 9(E)E __19Z represents the mean energy (5)
z Z 0B
9(E)E*™™ 197z
E?)= 2 9(E)E == is the mean square ener 6
(E?) > 2 37 SV ay (6)

The heat capacity will be cal culated using the formulas:
_9(E) _opoE __ 1 9(E)

oT dToB KT’ 9p
oE) _ o (10z)_ 10°Z (0z\ 1 _(102) 10°Z _, 2 ;o
S5 e

)

o8 0B\ zop) zop® \oB) 22 \zop) zop?
We obtain:
E2)-(E)’
C:% (9)
For susceptibility we used:
M 2)=(M)?
X:% (10)
where we have:
Zmie—/ﬂ Zmize—bﬁ
(M)=T—— and (M*)= T — 1y

For paralld computing [8], we present the following as an outline of the steps required:

a Lattice partitioning

This means a scattered strip (column-cyclic) partitioning of the lattice, so that the portion of
the lattice alocated to each processor has L=(WP) partitions of width W, i.e L=P columns and L2=P
sitesin total.

b. Sdlection of aninitial random site
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One of our processors selects the initia random site and broadcasts the information to the
other processors.

¢. Loca expans on of the cluster

Each processor maintains a queue that stores those sites in the local lattice that are in the
current generation, and also maintains a communication bufer to collect all communication requests.
Each locdl sitein the current generation is fetched from the queue, and used as a parent site to expand
the cluster. Bonds are made with the appropriate probability between the parent site and dl its
neighboring sites, unless the neighboring site is aready an e ement of the cluster. At thistime, if the
parent site is on the boundary (the lft or right edge) of a partition, communication with the left or
right processor may be needed. Such communication requests are saved into the communication
buffer for collective communication.

All locd connected sites are added to the cluster and the queue for the next generation of
sites, and the spin values at these sites are updated.

d. Callective communication

Any communication requests are collected from the communication bufer and sent to the
destination processors.

e Remote expansion of the cluster

Each site in the recaived bufer is checked to see whether it is already an dement of the
cluster. If not, the site is added to the local cluster list and the queue for the next generation, and its
spin valueis updated.

f. Check for termination

The final step checks whether there are any sites in the new generation. This can be done
easily by using a globa reduction function such as logical AND. If every processor has the empty
queue, the algorithm halts. If not, steps ¢, d and e are repeated. The parald code to i mplement this
message-passing program was written in C**. This algorithm should be easily implementable in High
Performance Fortran (HPF) using a column-cyclic data distribution.

3. Results
Figs. 1-5 show the results. Fig. 1 shows the energy density versus m while Fig. 2 illustrates

the dependence of s function on m. The variations of the magnetization, magnetic susceptibility and
heat capacity with the temperature are presented in Figs 3-5.
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Fig. 1. The energy density (g) versus m Fig. 2. The graph of sfunction versus m for a 5x5x5
for a5x5x3 system obtaned with the system for the entropic sampling method.
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4. Discussion

The magnetization, is the sum of dl individud spins. It depends on how many spins are
pointed in the same direction, and is comparable to the amount of order in the system. As the
temperature increases, and therefore more randomness is introduced to the system, the magnetization
decreases. Once again, the stegpest slope of the graph is found near the critical point. Over a broad
temperature scale, the graph of magnetization would range between exactly 1 at |ow temperatures and
close to 0 at high temperatures. We compared our results with Onsager’s data and observed that the
critica point islessdistinct for small |attice sizes.

Because the properties related to the magnetization tend to converge faster than those based
on energy, they are more commonly studied and used as indicators of critica phenomena in the
model.

For magnetic susceptibility, the first derivative of the magnetization, there is no exact
solution, so we compared our results with those obtained using the well-known Metropolis method
[10]. At critical point we see a discontinuity in the graph.

Heat capacity is essentially the first derivative of the energy. Specific heat is comparable to
the amount of energy needed to raise the temperature by one unit. At approximatey the critica point,
a spike in the specific heat is found, which is essentialy a discontinuity in the graph. The singular
point appears at T=Tc; Onsager's prediction of singular point is found in the simulation result.

5. Conclusions

The theory behind the Ising model assumes that the lattice size is infinite. By decreasing the
size of the lattice, it becomes easier to manage and understand, but the key features of the modd are
lost. In significantly smaller lattice sizes, the peaks in specific heat and magnetic susceptibility
become more rounded, and the critical point is much less distinct.

Different ways of handling the edges of the lattice are cadled boundary conditions. We looked
at two types of boundary conditions: free and periodic.

With free boundary conditions, the edges are surrounded by empty space. With periodic
boundary conditions, to each spin is given its full six neighbors in 3D case. A spin at the edge wraps
around to a spin on the other edge, and a spin on the corner wraps to other corners. Periodic boundary
conditions better represent the infinite system that the modd is based on.

It is possible that paralle programming techniques could also be used to improve the
performance of the algorithms. On a massivdy parallel machine, paraldism could be extracted by a
combination of the strip partitioning dgorithm and the independent (or job-leve) paraleism of



976 M. Diaconu, R. Puscasu, A. Stancu

running independent Monte Carlo simulations with different random number streams on different
groups of processors. For example, one might run 16 independent simulations, each of which use 16
processors. In this scenario, the main advantage of using the parald algorithm is that it avoids the
memory limitations of a single processor, and allows the use of largerlattice sizes.

Most serial Monte Carlo codes are readily adaptable to a paralld environment. Strengths are
gtill for multi-dimensiona problems and complex geometries. Care must be taken to assure
reproducible results and must assure that the cal culations on different processors are independent.

Optimising the performance of paralld programs [11] is significantly more difficult than
optimising the performance of normal seria programs. Despite the efforts made during program
design, most paralld performance tuning still relies on a “~measure-modify approach” because of the
difficulties in foreseeing the effect on performance of factors such as input data, the number of
available processors and the characteristics of the communication network that connect them.
Performance moddling provides an dternative to this time-consuming development process by
bringing the focus of performance optimisation for parale programs back from the tuning phase to
the design phase. Thisis possible because of the predictive capabilities of performance modes, which
empower programmers to make better decisions during design.

We also have to notice that cluster methods can be used for amorphous materials, because in
both cases we have a short range arrangement corresponding to about 10-100 particles.

In conclusion, we have a method that produces good results and has been reasonably
optimized. Tests gtill remain to be run for larger lattices.
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