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Because of its complexity, the 3D Ising model has not been given an exact analytic solution so 
far, as well as the 2D Ising in non zero external field conditions. In real materials the phase 
transition creates a discontinuity. We analysed the Ising model that presents similar 
discontinuities. We use Monte Carlo methods with a single spin change or a spin cluster 
change to calculate macroscopic quantities, such as specific heat and magnetic susceptibil ity. 
We studied the differences between these methods. Local MC algorithms (such as Metropolis) 
perform poorly for large lattices because they update only one spin at a time, so it takes many 
iterations to get a statistically independent configuration. More recent spin cluster algorithms 
use clever ways of finding clusters of sites that can be updated at once. The single cluster 
method is probably the best sequential cluster algorithm. We also used the entropic sampling 
method to simulate the density of states. This method takes into account all possible 
configurations, not only the most probable. The entropic method also gives good results in the 
3D case. We studied the usefulness of distributed computing for Ising model. We established 
a parallelization strategy to explore Metropolis Monte Carlo simulation and Swendsen-Wang 
Monte Carlo simulation of this spin model using the data parallel languages on different 
platform. After building a computer cluster we made a Monte Carlo estimation of 2D and 3D 
Ising thermodynamic properties and compare the results with the sequential computing. In the 
same time we made quantitative analysis such as speed up and efficiency for different sets of  
combined parameters (e.g. lattice size, parallel algorithms, chosen model). 
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1. Introduction 
 
Monte Carlo methods provide approximate solutions to a variety of mathematical problems 

by performing statistical sampling experiments on a computer. 
Numerical simulations are now, more than ever before, a valuable tool for studying the 

properties of mathematical models in physics [1, 2].  As computers become more and more powerful, 
the kind of problems being solved with their help become more and more difficult and time 
consuming, demanding in turn more powerful algorithms. 

We used Visual C++ and Fortran to simulate nearest neighbors interactions in a 2D or a 3D 
Ising lattice [3], in zero magnetic field. The system can be described by a set of properties that are 
temperature-dependent. These are energy, magnetization, heat capacity and magnetic susceptibility. 
At a specific temperature called the critical temperature, the model shows characteristics of a phase 
transition. The phase transition in the Ising model is a transition between an ordered and a non-
ordered state. In real materials we also have transitions of this kind. 

We tried different algorithms for different systems to see the differences in establishing the 
critical point and, also, we tried to reduce the time necessary for running the program by developing 
some parallel computing algorithms. 
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We worked with Ising model, which is one of the simplest for phase transitions in statistical  
physics. The 1D Ising model presents one of the simplest interacting systems in the absence of an 
applied field. Because the 1D case does not present a phase transition, the interest in studying such a 
system is very small. Onsager showed in 1944 that the 2D system presents a phase transition. 

The spins are considered to be aranged in a lattice, usualy square or triangular in 2D, in fixed 
positions and the interactions are only between first order neighbors. 
       There are many methods for deriving the partition function of the 2D Ising model and some 
scientists tried to generalize some of these methods for the 3D case. We also tried to apply some 
methods with good results in 2D case for a 3D case. 
 
 

2. The algorithms 
 
       For the beginning, we are presenting some types of algorithms that we used in our paper. 
       We start with a single cluster algorithm, called Wolff algorithm [4]. This is a realistic cluster 
algorithm for lattice models. The basic idea is to look for clusters of similarly oriented spins and then 
change their orientation all at once.  
      The algorithm is as follows: 
 - we choose a seed spin at random from the whole lattice; 
 - we look at each of the neighbors of that spin. If they are pointing in the same direction as the seed 
spin we add them to the cluster with the probability: 
 

Padd=1-exp(-2J/kBT)     (1) 
 

 - for each spin that was added in the last step we examine each of its neighbors to find the ones that 
are pointing in the same direction and if they are add each of them to the same probability Padd. If 
some neighbors are already cluster members, they do not need to be added again. For spins that were 
considered for addition but rejected before, they get another chance to be added to the cluster at this 
step; 
 - the previous step will be repeated as many times as necessary until there are no spins left in the 
cluster whose neighbors have not been considered for inclusion in the cluster; 
 - change the cluster orientation. 

Another cluster algorithm is Swendsen-Wang algorithm [5]. The difference between Wolff 
cluster algorithm is that this algorithm is using more spin clusters at the same time. That is why it is 
called multi-cluster algorithm. It inspects all nodes and if si=sj a bond between sites is created with a 
probability Padd. After this clusters are constructed using sites wich are connected by bonds. Next step 
is to give to each cluster a random value, +1 or –1. 

We also used the so called entropic sampling method, introduced by Lee [6]. This method 
gives the state density function, g{ m,s}  and from this we can obtain the partition function of the 
system and also all macroscopic quantities, e.g. specific heat or susceptibility [7].  

The interaction energy is considered only between the nearest neighbors, 4 in 2D case and 6 
in 3D case.  

The equation for energy is the sum over all nearest neighbor pairs, with spins equaling either 
+1 or -1, and multiplied by a factor J, which describes the strength of the interaction between spins. 

The total energy of the system is given by the formula: 
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where  Ji j is the exchange energy between the i and j spins, h is the external applied field and  S = +1 
or -1 as spin state. 
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The coupling constant J represents a measure for the exchange interaction. J is positive for 

ferromagnetic coupling and negative for antiferromagnetic coupling. 
We consider an Ising system and we say that the macrostate of the spins system is a series of 

values of the couple { m,s}  represented by a point in the plane of all possible values of m and s. This 
plane is the phase space of our problem. The degenerescence g(m,s) of this macrostate we shall also 
call it state density like m and s are varying continuously. Is this the two variable function that we 
want to obtain using Monte Carlo simulations. Once obtained the state density g(m,s), the calculations 
for obtaining the partition function is very easy. 

We considered different dimensions for our system and we studyed the influence of the 
dimensionality on the system properties. 

We obtained a fi le which contains on the first column the values for m ( �=
i

iSm ), on the 

second column the values for s ( �=
ji

ji SSs
,

) and on the third column the values for g, the energy 

density function. 
We used the folowing formulas: 
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The heat capacity will be calculated using the formulas:  
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We obtain: 
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For susceptibility we used: 
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For parallel computing [8], we present the following as an outline of the steps required: 
a. Lattice partitioning 
This means a scattered strip (column-cyclic) partitioning of the lattice, so that the portion of 

the lattice allocated to each processor has L=(WP) partitions of width W, i.e. L=P columns and L2=P 
sites in total. 

b. Selection of an initial random site 
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One of our processors selects the initial random site and broadcasts the information to the 
other processors. 

c. Local expansion of the cluster 
Each processor maintains a queue that stores those sites in the local lattice that are in the 

current generation, and also maintains a communication bufer to collect all communication requests. 
Each local site in the current generation is fetched from the queue, and used as a parent site to expand 
the cluster. Bonds are made with the appropriate probability between the parent site and all its 
neighboring sites, unless the neighboring site is already an element of the cluster. At this time, if the 
parent site is on the boundary (the left or right edge) of a partition, communication with the left or 
right processor may be needed. Such communication requests are saved into the communication 
buffer for collective communication. 

All local connected sites are added to the cluster and the queue for the next generation of 
sites, and the spin values at these sites are updated. 

d. Collective communication 
Any communication requests are collected from the communication bufer and sent to the 

destination processors. 
e. Remote expansion of the cluster 
Each site in the received bufer is checked to see whether it is already an element of the 

cluster. If not, the site is added to the local cluster list and the queue for the next generation, and its 
spin value is updated. 

f. Check for termination 
The final step checks whether there are any sites in the new generation. This can be done 

easily by using a global reduction function such as logical AND. If every processor has the empty 
queue, the algorithm halts. If not, steps c, d and e are repeated. The parallel code to implement this 
message-passing program was written in C++. This algorithm should be easily implementable in High 
Performance Fortran (HPF) using a column-cyclic data distribution.  
 
 

3. Results 
 
 Figs. 1-5 show the results.  Fig. 1 shows the energy density versus m while Fig. 2 i llustrates 
the dependence of s function on m. The variations of the magnetization, magnetic susceptibility and 
heat capacity with the temperature are presented in Figs 3-5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

  Fig.  1.  The  energy  density (g) versus  m                     Fig. 2. The graph of s function versus m for a 5×5×5 
      for a 5×5×3 system obtained with the                              system for the entropic sampling method. 
             entropic sampling method. 
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Fig.  3.  Magnetization    versus                  Fig. 4. Magnetic susceptibili ty         Fig. 5. Heat capacity versus 
temperature  for   different  systems,            versus   temperature  for                  temperature  for  different 
and obtained with different methods.         different systems and methods.              systems and methods. 
 
 

4. Discussion 
 
      The magnetization, is the sum of all individual spins. It depends on how many spins are 
pointed in the same direction, and is comparable to the amount of order in the system. As the 
temperature increases, and therefore more randomness is introduced to the system, the magnetization 
decreases. Once again, the steepest slope of the graph is found near the critical point. Over a broad 
temperature scale, the graph of magnetization would range between exactly 1 at low temperatures and 
close to 0 at high temperatures. We compared our results with Onsager’s data and observed that the 
critical point is less distinct for small lattice sizes. 
      Because the properties related to the magnetization tend to converge faster than those based 
on energy, they are more commonly studied and used as indicators of critical phenomena in the 
model. 
      For magnetic susceptibility, the first derivative of the magnetization, there is no exact 
solution, so we compared our results with those obtained using the well-known Metropolis method 
[10]. At critical point we see a discontinuity in the graph. 
      Heat capacity is essentially the first derivative of the energy. Specific heat is comparable to 
the amount of energy needed to raise the temperature by one unit. At approximately the critical point, 
a spike in the specific heat is found, which is essentially a discontinuity in the graph. The singular 
point appears at T=Tc; Onsager's prediction of singular point is found in the simulation result. 

 
 
5. Conclusions 

 
      The theory behind the Ising model assumes that the lattice size is infinite. By decreasing the 
size of the lattice, it becomes easier to manage and understand, but the key features of the model are 
lost. In significantly smaller lattice sizes, the peaks in specific heat and magnetic susceptibility 
become more rounded, and the critical point is much less distinct.  
      Different ways of handling the edges of the lattice are called boundary conditions. We looked 
at two types of boundary conditions: free and periodic.  
      With free boundary conditions, the edges are surrounded by empty space. With periodic 
boundary conditions, to each spin is given its full six neighbors in 3D case. A spin at the edge wraps 
around to a spin on the other edge, and a spin on the corner wraps to other corners. Periodic boundary 
conditions better represent the infinite system that the model is based on.  
      It is possible that parallel programming techniques could also be used to improve the 
performance of the algorithms. On a massively parallel machine, parallelism could be extracted by a 
combination of the strip partitioning algorithm and the independent (or job-level) parallelism of 
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running independent Monte Carlo simulations with different random number streams on different 
groups of processors. For example, one might run 16 independent simulations, each of which use 16 
processors. In this scenario, the main advantage of using the parallel algorithm is that it avoids the 
memory limitations of a single processor, and allows the use of largerlattice sizes. 

Most serial Monte Carlo codes are readil y adaptable to a parallel environment. Strengths are 
still for multi-dimensional problems and complex geometries. Care must be taken to assure 
reproducible results and must assure that the calculations on different processors are independent.  

Optimising the performance of parallel programs [11] is significantly more difficult than 
optimising the performance of normal serial programs. Despite the efforts made during program 
design, most parallel performance tuning still  relies on a ``measure-modify approach'' because of the 
difficulties in foreseeing the effect on performance of factors such as input data, the number of 
available processors and the characteristics of the communication network that connect them. 
Performance modelling provides an alternative to this time-consuming development process by 
bringing the focus of performance optimisation for parallel programs back from the tuning phase to 
the design phase. This is possible because of the predictive capabilities of performance models, which 
empower programmers to make better decisions during design. 
      We also have to notice that cluster methods can be used for amorphous materials, because in 
both cases we have a short range arrangement corresponding to about 10-100 particles.  

In conclusion, we have a method that produces good results and has been reasonably 
optimized. Tests still remain to be run for larger lattices. 
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