COMPOSITIONAL VARIATION OF OPTICAL AND REFRACTOMETRIC PARAMETERS OF γ_1 -(Ga_xIn_{1-x})₂Se₃ MIXED CRYSTALS

I. P. Studenyak^{*}, M. Kranjčec^{a,b}, O. M. Borets^c

Uzhhorod National University, 46 Pidhirna St., Uzhhorod 88000, Ukraine ^aUniversity of Zagreb, Geotechnical Department Varaždin, 7 Hallerova Aleja, 42000 Varaždin, Croatia

^bRuđer Bošković Institute, 54 Bijenička Cesta, 10000 Zagreb, Croatia

^cDepartment of Institute of Information Recording Problems, Ukr. Nat. Acad. Sci.,

P.O. box 47c, Uzhhorod 88000, Ukraine

Refractive index dispersion in γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals with x=0.1; 0.2; 0.3; 0.4 in a broad spectral range is shown to be well described by optical-refractometric relation. The effect of In→Ga cationic substitution upon the refractive index dispersion and molar refraction in γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals is studied.

(Received July 14, 2003; accepted August 21, 2003)

Keywords: Refractive index, Optical-refractometric relation, Compositional dependence

1. Introduction

Crystals of $(Ga_xIn_{1-x})_2Se_3$ semiconducting solid solutions with 0.02 < x < 0.55 belong to the γ_1 -phase of the Ga_2Se_3 -In_2Se_3 chalcogenide ternary compounds [1]. They crystallize in hexagonal structure with defect wurtzite symmetry (P6₁ or P6₅ space group). A typical feature of this structure is high concentration of vacancies due to the fact 1/3 of sites in the cation sublattice being empty; these vacancies are the intrinsic defects of the crystal lattice, capable of forming spirals along the *c* axis [1]. γ_1 -(Ga_xIn_{1-x})_2Se_3 crystals are characterized by low electronic conductivity ($\sim 10^{-10} \ \Omega^{-1} \times \text{cm}^{-1}$). Photoconductivity in γ_1 -phase is almost by three orders higher than in other phases [1]. The crystals possess high optical activity along the optical axis and are promising materials for acousto-optical modulators [2–5]. Some optical properties (Raman scattering, far-infrared reflection spectra, fundamental absorption edge spectra) were presented in [2,6–11]. Refractive index dispersion for both ordinary n_o and extraordinary n_e rays in γ_1 -(Ga_xIn_{1-x})_2Se_3 crystals were studied at room temperature by prism technique [2].

Here we report the description of the refractive index dispersion by optical-refractometric (OR) relation and the analysis of the compositional behaviour of some optical and refractometric parameters for γ_1 -(Ga_xIn_{1-x})₂Se₃ mixed crystals with *x*=0.1; 0.2; 0.3; 0.4.

2. Theory

It was shown [2] that the experimental values of the refractive indices of γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals in a broad spectral range 0.57÷5 µm are in a good agreement with those calculated using a well known one-term Sellmeier relation. However, deeper physical treatment of the dispersion dependences of the refractive indices can be obtained based on the relationship between the refractive index and the energy gap. A number of empirical and semiempirical relations of such kind are known from the

^{*} Corresponding author: studenyak@dr.com

literature [12–18]. Among them one should first of all mention the well known empirical Moss $(n_{\infty}^4 E_g = 95 \text{ eV} [12] \text{ or } n_{\infty}^4 E_g = 107 \text{ eV} [13])$ and Penn [14] relations,

$$n_{\infty}^2 - 1 = E_{pv}^2 / E_g^2, \tag{1}$$

where n_{∞} is the refractive index in the long-wavelength spectral range, E_g is the energy gap, E_{pv} is the energy of plasma vibrations of valence electrons. Wemple and DiDomenico [15,16] made an attempt to find theoretically a correlation between the refractive index and the energy gap and obtained the relation

$$(n_{\infty}^2 - 1)E_t \approx \frac{2}{3}\beta N_c Z_a N_e, \qquad (2)$$

where $E_t \approx E_g$; N_c is the coordination number; Z_a is the formal chemical valence of the anion; N_e is the total number of valence electrons per anion; β is a constant, equal to 0.37 ± 0.04 eV for covalent and 0.26 ± 0.04 eV for ionic crystals. Later, Ravindra et al. [17,18] supposed another empirical relationship

$$n_{\infty} = 4.084 - 0.62E_{g} \,. \tag{3}$$

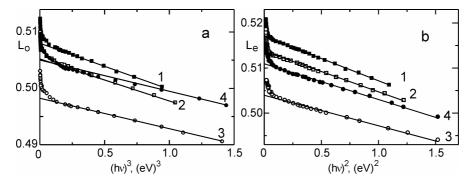
The above relations describe exactly enough the relationship between E_g and *n* for different classes of semiconductor materials. However, they do not permit to describe the dispersion dependence of the refractive index. OR relation, proposed in [19], lacks this shortcoming.

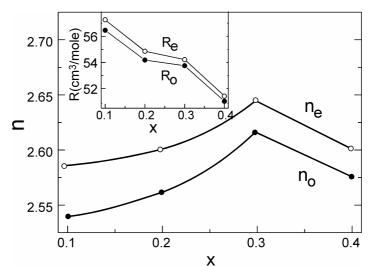
3. Results and discussion

OR relation enables to describe the dependence of the refractive index on dispersion on the basis of its relationship to the optical pseudogap E_g^* and the energy of plasma vibrations of valence electrons E_{pv} as

$$\frac{1}{3} \frac{n^2(h\nu) + 2}{n^2(h\nu) - 1} = \left(\frac{\eta_s}{2}\right)^s \left(1 + \frac{E_g^*}{E_{p\nu}}\right)^s - \left(\frac{h\nu}{E_s}\right)^s,\tag{4}$$

where $E_{pv} = 28.82 \sqrt{n_v \rho / \mu}$, n_v is the number of valence electrons per formula unit, ρ is density, μ is molecular mass; η_s and E_s are adjustment parameters; s=2 for the medium-energy and s=3 for the high-energy parts of the transparency range. The optical pseudogap E_g^* is the energy position of the absorption edge in semiconductors where direct allowed transitions are masked by exponential absorption tails caused by various types of disordering [20].




Fig.1. Dependences $L_0 = f[(h\nu)^3]$ (a) for the refractive index of the ordinary ray and $L_e = f[(h\nu)^2]$ (b) for the refractive index of the extraordinary ray for γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals with various values of x: 1 - 0.1; 2 - 0.2; 3 - 0.3; 4 - 0.4.

It should be noted that the reliability of the OR relation has been shown for over 150 different non-metallic substances [19]. Hence, Eq. (4) was used to describe the experimental dispersion of the refractive indices of γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals, i. e. the linear dependences $L=f[(hv)^s]$ (Fig.1) where $L(hv) \equiv \frac{1}{3} \frac{n^2(hv) + 2}{n^2(hv) - 1}$ being the evidence for the successful description. The dependences $L=f[(hv)^3]$ are given for the ordinary ray refractive index, and $L=f[(hv)^2]$ – for the extraordinary one. The values of the adjustment parameters n and E resulting in the best fit between the calculated and

of the adjustment parameters η_s and E_s resulting in the best fit between the calculated and experimental dependences $n_o(h\nu)$ and $n_e(h\nu)$, are listed in Table 1.

Crystal		ho ,	E_{pv} ,	E_g^* , eV	<i>E</i> ₂ ,	E_3 ,	η_2	η_3
		g/cm ³	eV	8	eV	eV		
$(Ga_{0.1}In_{0.9})_2Se_3$	0	5.22	15.08	1.982	9.89	5.59	1.263	1.409
	e			1.950	9.66	5.53	1.274	1.418
$(Ga_{0.2}In_{0.8})_2Se_3$	0	5.37	15.45	2.044	10.37	5.62	1.258	1.406
	e			2.012	10.59	6.05	1.268	1.413
$(Ga_{0.3}In_{0.7})_2Se_3$	0	5.41	15.67	2.088	11.02	5.42	1.247	1.399
	e			2.074	11.17	5.48	1.254	1.404
$(Ga_{0.4}In_{0.6})_2Se_3$	0	5.50	15.96	2.188	10.07	5.59	1.253	1.400
	e			2.164	9.46	5.38	1.260	1.405

Table 1. The main optical and refractometric parameters of $\gamma_1\text{-}(Ga_xIn_{1\text{-}x})_2Se_3$ crystals at room temperature.

X Fig. 2. Compositional dependences of the refractive indices n_0 and n_e at room temperature and $\lambda = 5 \ \mu m$ for γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals. The inset shows the compositional dependences of molar refractions R_0 and R_e .

All the crystals are optically positive, since for all of them $\Delta n = n_e - n_o >0$. Fig. 2 presents the compositional dependences of the refractive indices n_o and n_e for γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals at room temperature and $\lambda = 5 \mu m$. With the increase of gallium content the refractive indices increase, reaching maximum at x=0.3, and then decrease. Knowing the compositional dependences of density $\rho(x)$, $n_o(x)$ and $n_e(x)$, the compositional dependences of molar refraction $R_{o,e}(x)$ were calculated (See the inset to Fig. 2) using the known formula

$$R_{o,e}(x) = \frac{\mu(x)}{\rho(x)} \times \frac{n_{o,e}^2(x) - 1}{n_{o,e}^2(x) + 2}.$$
(5)

It is seen from the inset to Fig. 2 that the increase of gallium content in γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals results in the decrease of the molar refraction (electronic polarizability), a feature in the $R_{o,e}(x)$ dependences being observed at x=0.3. Thus, the anomalous compositional behaviour of the refractive indices in γ_1 -(Ga_xIn_{1-x})₂Se₃ is determined by the nonlinear compositional behaviour of density (Table 1) and the anomalous variation of molar refraction (Fig. 2).

3. Conclusions

The dispersion dependences of the refractive indices for ordinary and extraordinary rays in γ_1 -(Ga_xIn_{1-x})₂Se₃ crystals with x=0.1, 0.2, 0.3, 0.4 in a broad spectral range are shown to be well described by the optical-refractometric relation linking the dispersion $n(h\nu)$, optical pseudogap E_g^* and the energy of plasma vibrations of the valence electrons $E_{p\nu}$. With the increase of Ga content the value of the refractive index increases, reaches a maximum at x=0.3 and then decreases. The anomalous compositional behaviour of the refractive indices in γ_1 -(Ga_xIn_{1-x})₂Se₃ is shown to be determined by the nonlinear compositional behaviour of density and the anomalous variation of molar refraction.

References

- [1] S. Popović, B. Čelustka, Ž. Ružić-Toroš, D. Broz, phys. stat. sol. (a) 41, 255 (1977).
- [2] M. Kranjčec, I. D. Desnica, B. Čelustka, A. N. Borets, Gy. Sh. Kovacs, Z. P. Hadmashy,
- L. M. Suslikov, I. P. Studenyak, phys. stat. sol. (a) 153, 539 (1996).
- [3] J. Ye. T. Yoshida, Y. Nakamura, O. Nittono, Appl. Phys. Lett. 67, 3066 (1995).
- [4] J. Ye. T. Yoshida, Y. Nakamura, O. Nittono, Jpn. J. Appl. Phys. 35, 4395 (1996).
- [5] M. Kranjčec, I. D. Desnica, I. P. Studenyak, B. Čelustka, A. N. Borets, I. M. Yurkin, Gy.S h. Kovacs, Applied Optics 36, 490 (1997).
- [6] P. Dubček, B. Etlinger, K. Furić, M. Kranjčec, phys. stat. sol. (a) 122, K87 (1990).
- [7] P. Dubček, B. Etlinger, B. Pivac, M. Kranjčec, Solid State Communications 81, 735 (1992).
- [8] M. Kranjčec, B. Čelustka, B. Etlinger, D. Desnica, phys. stat. sol. (a) 109, 329 (1988).
- [9] D. I. Desnica, M. Kranjčec, B. Čelustka, J. Phys. Chem. Solids 52, 915 (1991).
- [10] M. Kranjčec, D. I. Desnica, B. Čelustka, Gy. Sh. Kovacs, phys. stat. sol. (a) 139, 513 (1993).
- [11] M. Kranjčec, D. I. Desnica, B. Čelustka, Gy. Sh. Kovacs, I. P. Studenyak, phys. stat. sol. (a) 144, 223 (1994).
- [12] T. S. Moss, phys. stat. sol. (b) 131, 415 (1985).
- [13] N. M. Ravindra, V. K. Srivastava, Infrared Phys 19, 603 (1979).
- [14] D. R. Penn, Phys. Rev. 128, 2093 (1962).
- [15] S. H. Wemple, Phys. Rev. B 7, 3767 (1973).
- [16] S. H. Wemple, M. Di Domenico, Phys. Rev. B 3, 1338 (1971).
- [17] N. M. Ravindra, S. Auluck, V. K. Srivastava, phys. stat. sol.(b) 93, K155 (1979).
- [18] V. P. Gupta, N. M. Ravindra, phys. stat. sol.(b) 100, 715 (1980).
- [19] A. N. Borets, Ukr. Fiz. Zhurn. 28, 1346 (1983).
- [20] I. P. Studenyak, M. Kranjčec, Gy. Sh. Kovacs, V.V. Panko, D. I. Desnica, A. G. Slivka,
 - P. P. Guranich, J. Phys. Chem. Solids 60, 1897 (1999).