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An improved approach is derived for the propagation of electromagnetic (EM) fields along a 
curved dielectric waveguide. The objective is to develop a mode model to provide a numerical 
tool for the calculation of the output fields also for intermediate radius of curvature               
(R ≈ 0.5 m). Therefore, we take into account all the terms in the calculations, without 
neglecting the terms of the bending. The longitudinal components of the fields are developed 
into Fourier-Bessel series.  The transverse components of the fields are expressed as functions 
of the longitudinal components in the Laplace plane and are obtained by using the inverse 
Laplace transform.  The separation of variables is obtained by using the orthogonal relations.  
The metal boundaries of the waveguides are modeled as a lossy dielectric media.  This model 
is applicable for hollow waveguide tubes where the wall of the bore is covered with a metal 
layer and dielectric overlayer.   
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1.  Introduction 

 

Dielectric-coated metallic waveguides have attracted considerable applications in practice and 
theory for a wide variety of transverse profiles.  The development of the fibers and waveguides for the 
transmission of CO2 laser infrared (IR) radiation (λ=10.6 µm) is very important for the application of 

this radiation in medical and industrial fields.  A review of the papers on fibers for IR transmission 
was published [1]. To reduce the transmission losses, the use of hollow core waveguides was 
proposed because the air is a material with very low transmission losses in the IR region of the 
spectrum.  Hollow fibers are leaky waveguides, because the refractive index of the core material(air) 
is lower than that of the cladding material dielectric coating [2-4]. The transmission medium is air and 
the guiding is achieved by refracting (dielectric) and reflecting (metal) layers deposited on the inner 
surface of the waveguide.  Hollow waveguides with both metal and dielectric internal layers were 
proposed to reduce the transmission losses.  A hollow waveguide can be made, in principle, from any 
flexible or rigid tube (plastic, glass, metal, etc.) if its inner hollow surface (the core) is covered by 
metal layer and dielectric overlayer.  This layer structure enables us to transmit both the TE and TM 
polarization with low attenuation [4,5].  

Various methods for the analysis of cylindrical hollow metallic or metallic with inner 
dielectric coating waveguides have been studied in the literature [2-11]. Two theoretical models can 
describe the radiation propagation in a hollow guide.  One is based on a mode model [2-7] and the 
other is based on a ray model [8-11].  
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The first theoretical analysis of the problem of hollow cylindrical bent waveguides was 
published by Marcatili and Schmeltzer [2]. Their theory considers the bending as a small disturbance 
and uses cylindrical coordinates to solve Maxwell equations.  They derive the mode equations of the 
disturbed waveguide using the ratio of the inner radius r on the curvature radius R as a small  
parameter (r/R << 1). Their theory predicted that the bending will have little influence on the 
attenuation of a hollow metallic waveguide.  However, practical experiments have shown a large 
increase in the attenuation, even for a rather large R. Miyagi et al.[3] suggested an improved solution, 
which provided agreement with the experimental results, but only for R >> r. A different approach 
[4,5]  treats the bending as a perturbation that couples the modes of a straight waveguide.  That theory 
explains qualitatively the large difference between the metallic and metallic-dielectric bent waveguide 
attenuation.  The reason for this difference is that in metall ic waveguides the coupling between the TE 
and TM modes caused by the bending mixes modes with very low attenuation and modes with very 
high attenuation, whereas in metallic-dielectric waveguides, both the TE and TM modes have low 
attenuation.  The EH and HE modes have similar properties and can be related to modes that have a 
large TM component. 

Several methods of investigation of propagation were developed using ray models [8-11]. The 
problem of transmission of 2CO  laser radiation through hollow fibers and waveguides was studied 
theoretically and confirmed experimentally by Croitoru et al. [9] It was shown theoretically and 
proved experimentally that the transmission of 2CO  radiation is possible even through a bent 
waveguide.  An improved ray model for simulating the transmission of laser radiation through a 
metall ic or metallic-dielectric multibent hollow cylindrical waveguide was proposed [10].  

The models based on the perturbation theory solve problems only for a large radius of 
curvature (R >> r). The objective of this work was to develop a theoretical mode model to provide a 
numerical tool for the calculation of the output transverse fields and power density also for 
intermediate radius of curvature  
(R≈0.5 m). Therefore we take into account all the terms in the calculations without neglecting the 
terms of the bending (namely, up to the fourth order of 1/R). These terms of the bending are functions 

of hζ, hζ
2, hζ

3, and hζ
4 (hζ=1+(r/R)sinθ), where hζ is the metric coefficient.  Thus the maximum 

value of the bending is of the order of 4R/1 . This will enable us to understand more precisely the 
influence of the bending on the output fields, output power density, and output power transmission of 
hollow waveguides.  This model was applied in the case of hollow flexible tubes, where the wall of 
the bore was covered with a metal layer and dielectric overlayer (hollow waveguide). The results of 
this model were applied to the study of hollow waveguide that are suitable for transmitting infrared 
radiation, especially CO2 laser radiation. 

   
 

2.  The derivation 
 
The toroidal system (r, θ, ζ ) in conjunction with the curved waveguide is shown in Fig. 1. 

The torus transformation of the coordinates is given by 
 

,cosrZ,
R

sin)sinrR(Y,
R

cos)sinrR(X θ=�
�

�
�
�

� ζθ+=�
�

�
�
�

� ζθ+=     (1a, b, c) 

 
where ζ = R φ. In this toroidal system the metric coefficients are 

θζθ sin)/(1,,1 Rrhrhhr +=== and a differential length is given by 

ds2=hr
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2 dζ2 where R is the bending radius, and r is the cross-section radius of the 

waveguide.  The case for the straight waveguide is obtained by letting R →∞. 
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Fig. 1.  A general scheme of the toroidal system and the curved waveguide. 

 
 

The derivation is based on Maxwell’ s equations for the computation of electromagnetic fields 
and the radiation power density at each point during propagation through a curved waveguide, in the 
case of a metall ic waveguide (e.g., Ag) with a radial dielectric profile.  The longitudinal components 
of the fields are developed into Fourier-Bessel series.  The transverse components of the fields are 
expressed as a function of the longitudinal components in the Laplace plane. 

The modes excited at ζ = 0 in the waveguide by the conventional 2CO  laser IR radiation 

(λ=10.6 µm) are closer to the TEM polarization of the laser radiation.  The 00TEM  mode is the 

fundamental and the most important mode.  This means that a cross section of the beam has a 

Gaussian intensity distribution.  The initial fields at ζ=0+ are formulated by using Fresnel coefficients 
of the transmitted fields as follows 
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The transverse components of the fields are finally expressed in a form of a transfer matrix 

functions as follows  
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are obtained.   
The inverse Laplace transform is performed in this study by a direct numerical integration in 

the s-plane by the residue method.  According to the residue method, two dominant poles for the 
toroidal dielectric waveguide are given by s= ±j k(r)hζ, where hζ=1+(r/R)sinθ. 

The ζ component of the average power density Poynting vector is given by 
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power transmitted across a cross section of the guide in the ζ direction is given by a double integral of 

avS . 

 
3.  Examples of this mode model 

 
This section presents several examples that demonstrate features of the proposed mode model  

derived in the previous section.  The cross section of the curved waveguide is made of a tube of 
various types of material, metal layer, and a dielectric layer upon it. The next examples represent the 
case of hollow waveguide with metallic (Ag) coated by thin dielectric layer (AgI). For silver having a 
conductivity of 6.14 × 107(ohm × m)-1, and the skin depth at 10.6 µm is 1.207 × 10-8 m.   

Test case 
The test case for the straight waveguide is obtain by letting R �  � . The transmitted fields of 

the initial fields ( 00TEM  mode in excitation) are formulated by using Fresnel coefficients [Eqs.  (2a) 

to (2d)]. The results of the output transverse components of the output fields )||.,.( rEge and the 
output power density are shown in Figs. 2(a) and 2(b), respectively. The result of the output power 
density of this example [Fig. 2(b)] is compared to the results of the previously published experimental  
data [12] of which the behavior has shown good agreement (a Gaussian shape), as expected, except in 
the secondary small propagation mode. In this example, the length (ζ(R=∞)) of the straight waveguide 
is 1 m, the diameter (2a) of the waveguide is 2 mm, the thickness of the dielectric layer [d(AgI)] is 

0.75 µm, and the spot-size (w0) is 0.3 mm.  The refractive indices of the air, dielectric (AgI) and 

material (Ag) are 1
)0( =n , n(AgI) = 2.2, and n(Ag) = 13.5-j75.3, respectively. The value of the 

refractive index of the material at a wavelength of λ=10.6 µm is taken from the table performed by 
Miyagi et al. [3]. 
 

Toroidal Dielectric waveguides 
 

One of the parameters that we studied was the output power transmission as a function of the 

radius of curvature.  The transmitted fields at +0=ζ  of the initial fields ( 00TEM  mode in excitation) 

are formulated by using Fresnel coefficients [Eqs.  (2a) to (2d)].  
The results of the effect of bending on the output power transmission for the vertical and 

horizontal polarizations were shown in the case of the optimal dielectric coating [d(AgI)=0.8 µm] by 

the theoretical ray model [8]. In both polarizations, the results are shown to be the same results by 
addition of the dielectric layer.  Horizontal polarization )( //E  is defined as parallel to the bending 

plane (parallel to Y-axis, as shown in Fig.  1, and vertical polarization as perpendicular to it. 
 

 
Fig. 2.  Solution of the output transverse component of the fields (e.g., |Er| component) and 

the power density [a=1 mm, d(AgI)=0.75 mm, λ=10.6 µm, w0 = 0.3 mm, n(0) = 1,                   

n(AgI) = 2.2, n(Ag) = 13.5 - j 75.3,   and   ζ(R=∞) = 1 m],  by  letting  R �  � :  (a)   the  output   

                                       field  |Er| and (b) the output power density (|Sav|). 
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Fig. 3.  Theoretical mode model’s result and the theoretical ray model’s result [8] where the 
hollow metal waveguide (Ag) covered inside the walls with a AgI film. The power 
transmission as  a  function  of  the radius of curvature for ζ= 1 m [a=1.5 mm, d(AgI)=0.8 µm,  

               w0= 0.06 mm, λ = 10.6 µm, n(0) = 1, n(AgI) = 2, and  n(Ag) = 10 – j 60]. 

      
Fig. 3 shows the results of the theoretical mode model and the theoretical ray model [8] where 

the length of the curved waveguide ( ζ ) is 1 m, the diameter (2a) of the waveguide is 3 mm, and the 
spot size (w0) is 0.06 mm. The refractive indices of the air, dielectric, and material are n(0)=1, 

n(AgI) = 2, and 6010)( jn Ag −= , respectively. The results of the theoretical mode model and the 

theoretical ray model [8] give a good approximation, where the waveguide’s diameter (2a) is much 
larger than the wavelength (2a >> λ). 

Fig. 3 shows the dependence of the power transmission as a function of the bending (1/R), 
where R is the radius of the bending.  For small values of 1/R the power transmission is large and 
decreases with increasing the bending (1/R). The metal (Ag) and dielectric (AgI) layers increase the 
power transmission for both theoretical mode model and theoretical ray model [8]. 

This example demonstrates the influence of the bending where we take into account all the 
terms in the calculations (namely, up to the fourth order of 1/R). This will enable us to understand 
more precisely the influence of the bending on the output power transmission of hollow waveguides.  
The results of the output transverse components of the fields, the output power density, and the output 
power transmission are obtained for a large (R >> r) and a medium (R≈  0.5 m) radius of curvature. 

 

 
 
 

Fig. 4.  Solution of the output transverse component of the fields (e.g., |Er| component) and 

the power density [a=1 mm, d(AgI)=0.75 µm, λ=10.6µm, w0 = 0.3 mm, n(0) = 1,                       

n(AgI) = 2.2, n(Ag) = 13.5 - j 75.3, R = 0.7 m, and φ = π]:  (a) the output field |Er| and (b) the  

                                                  output power density (|Sav|). 
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Fig. 4 represents the solution for the output transverse components of the fields )||.,.( rEge  
and the output power density in the case of toroidal dielectric waveguide (Fig. 1), where R=0.7 m and 
φ  =  π . In this example the diameter (2a) of the waveguide is 2 mm, the thickness of the dielectric 
layer [d(AgI)] is 0.75 µm, and the spot size (w0) is 0.3 mm.  The values of the refractive indices of the 

air, dielectric (AgI) and material (Ag) are n(0)=1, 2.2
)( =AgIn , and 3.755.13

)( jn Ag −= , 

respectively.  Fig. 4(a) enables us to understand more precisely the influence of the preceding bending 
(R=0.7 m) on the output transverse components of the fields )||.,.( rEge . The output power density 
in Fig. 4(b) shows that in addition to the main propagation mode, several others secondary modes 
appear.  The amplitude is small as the bending radius (R) is small, and the shape is far from a 
Gaussian.  Note that the amplitude of the output power density in Fig. 4(b) is smaller as regard to the 
output power density in the case of straight waveguide (R →∞), as shown in Fig. 2(b). In the 
calculations all the terms (namely, up to the fourth order of 1/R) are taken into account. 

 
 
4.  Conclusions 
 
The objective of this work was to develop a theoretical mode model to provide a numerical  

tool for the calculation of the output transverse fields and power density also for intermediate radius 
of curvature (R≈ 0.5 m). Therefore we took into account all the terms (namely, up to the fourth order 
of 1/R) in the calculations.  Note that all the terms were taken into account without neglecting the 
terms that belong to the bending.  This will enable us to understand more precisely the influence of 
the bending on the output fields, output power density, and output power transmission of hollow 
waveguides. The results of the solutions of the power transmission were obtained for a large and a 
medium radius of curvature. The propagation of the electromagnetic wave along the curved 
waveguide is computed by input-output relations [Eqs.  (3a), etc.]. 

In this paper, we supposed that the modes excited at the input of the waveguide by the 
conventional 2CO  laser IR radiation (λ=10.6 µm) are closer to the TEM polarization of the laser 

radiation.  The 00TEM  mode is the fundamental and the most important mode.  This means that a 

cross-section of the beam has a Gaussian intensity distribution. The transmitted fields at +0=z  of the 
initial fields ( 00TEM  mode in excitation) are formulated by using Fresnel coefficients [Eqs. (2a) to 

(2d)]. The mode model was developed to predict the transmission of energy as a function of the 
curvature for a given ζ. For small values of 1/R the power transmission is large and decreases with 
increasing the bending (1/R). The metal and dielectric layers increase the power transmission for both 
theoretical mode model and theoretical ray model [8]. 

The elements of the boundary conditions for 00TEM  mode in excitation are functions of 
2/1 R . Miyagi et al. [3] suggested an improved solution in the case of 01TE  mode by taking into 

account the terms correct up to the second order ( 2/1 R ), thus their solution provided agreement with 
the experimental results.  We can explain why it is necessary to take into account the terms until the 

second order ( 2/1 R ), at least. The elements of the boundary conditions for 00TEM  mode in 

excitation are functions of the principal terms and the other terms of the second order ( 2R/1 ). In the 
same way, one can derive the elements of the boundary conditions for the 01TE  mode to calculate the 

elements that are dependent on 2/1 R . If the bending’s terms of the second order are not taken into 
account in the case of the TE01 mode or the 00TEM  mode in excitation, then the elements of the 

boundary conditions will give us very little influence of the results.  In this case, we obtain good 
results only for the large values of R (R >> r ), such as the models based on the perturbation theory.  

The remaining orders of the bending ( 3/1 R , 4/1 R ) in our calculations are given in the elements of 
the matrices, and do not appear in the elements of the boundary conditions, in the case of the 00TEM  

mode in excitation.  In this case, the orders of the bending ( 3/1 R , 4/1 R ) are neglected as regard to 
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the orders of the bending (1/R, 2R/1 ). Thus, the main point is that we must take into account all the 
terms until the highest value of the order of the bending, as appear in the elements of the boundary 
conditions of the initial fields, for arbitrary excitation.  All these terms must be taken into account to 
obtain good results of the output fields, output power density, and output power transmission of 
hollow waveguides also for an intermediate radius of curvature (R≈  0.5 m).  

The test-case for the straight waveguide is obtained by letting R →∞. The result of the output 
power density in this case is compared to the results of previously published experimental data [12] of 
which the behavior has shown good agreement (a Gaussian shape), as expected, except for the 
secondary small propagation mode. 

This model can take into account the cases of smaller R only if the step’s angle (δp) is very small, 

where the condition is given according to δp≥(2a)/(2πR). 

The calculation of power density has shown that in addition to the main propagation mode, several 
other secondary modes appear in the case of the toroidal dielectric waveguide.  The amplitude is small 
as the bending radius (R) is small, and the shape is far from a Gaussian.   

This mode model may also be a useful tool for solving problems of power transmission of 
microwaves through flexible curved waveguide for application in medical and industrial fields. 
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