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The simulation of interstitial void evolution in a model of crystall ine silicon subjected to 
topological disordering revealed that the void size distribution broadens and shifts towards 
smaller mean diameter size, when the lattice disordering increases.  The size distribution is not 
gaussian and the mean diameter of the voids is lower than the crystalline value. The 
calculation of the structure factor corresponding to void configuration evidences the absence 
of the short and long range order and point out to the presence of the medium range order.  
 
(Received July 25, 2003; accepted August 28, 2003) 
 
Keywords: Amorphous silicon, Intestitial voids, Medium range order, Modell ing 

 
 

1. Introduction 
 

Amorphous silicon (a-Si) is a particularl y interesting material. With the advent of the 
hydrogenated amorphous sil icon, this non-crystalline semiconductor became the most promising 
material for solar energy conversion. a-Si was the subject of considerable effort devoted to the 
measurement of its structure, optical, electrical and vibrational properties [1-5]. Recently, the 
possibil ity to have the elemental sil icon in several allotropic forms, like carbon, has been 
demonstrated [6]. Yonezawa et al. [7] have shown that the radiative recombination rate is enhanced in 
amorphous sil icon nanostructures and, therefore, the disorder is important for l ight emitting silicon.  

The fundamental properties of amorphous silicon require a detailed knowledge of the atomic 
scale structure. As opposite to the crystall ine case, there are limitless possible disordered structures 
but no experimental techniques that provide atomic resolution similar to crystallography [8]. The way 
to get information on the amorphous structure is to calculate the one-dimensional radial distribution 
function (RDF) [9]. Nevertheless, the information obtained from RDF is an average on all atomic 
configurations in the material. The structural models, either hand-built or computer generated, greatl y 
enlarge the information on the structure of the disordered materials, especially when used conjointly 
with the experimental RDFs [9]. 
 The amorphous state of germanium and silicon was thought, firstly, in terms of the 
microcrystalline models, and then in terms of the continuous network models [10]. Later, Wooten, 
Winer and Weaire [11] used a simple algorithm for the systematic computer generation of disordered 
network models, starting with the simulated diamond structure (FC-2), and successfully rearranging it 
by special elementary processes. On the basis of the generated models the mentioned authors have 
investigated the topological conditions that lead to crystallization [12].  
 Last years, an increased attention was paid to the problem of structural voids in the disordered 
materials with the purpose to explain some properties of the glasses. Thus, Elliott [13] explained the 
structural origin of the first sharp diffraction peak in the di ffracted intensity curves of several glasses 
through the void-based model, while Jensen et al. [14] suggested that voids are important for the 
interpretation of the positron annihilation lifetime data in non-crystall ine chalcogenides. 
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 The presence and the role played by the structural voids in various metal-semiconductor 
alloys as e.g. Ge-Mo and Ge-Au, are still under debate and several models based on the Monte Carlo 
– Metropolis and reverse Monte-Carlo methods have been discussed [15,16]. Recently, Gaskell [17] 
has reviewed the structural network glasses and has shown that ordered (microcrystall ine) and random 
models have both strengths and weaknesses. Halm et al. [18] have shown that in many liquid alloys 
there are strong fluctuations of density at the atomic scale and they can be ascribed to the specific 
distribution of the voids. 
 In this paper we report the results of the calculation of interstitial void size distribution in a 
model of amorphous silicon derived from the crystalline lattice of silicon by introducing step by step 
special topological modifications, called deformon states. 
 
 

2. Topological defects in a perfect tetrahedrally bonded lattice.  
    Model of amorphous silicon 

 
 If two neighboring atoms in crystall ine silicon are interchanged after breaking and re-forming 
only three bonds (one common bond and two bonds with the neighbors) then one gets deviant bonds 
embedded into a perfect lattice. The distortion energy of the deviant bonds rapidly decreases by the 
relaxation of the lattice around the interchanged atoms. The final state of distortion defines a diffuse 
defect in the silicon lattice. This can be considered as a topological defect, and Popescu [19] proposed 
to be called a deformon state, or simply deformon.  
 The schematical i llustration of the change of the positions of two atoms while preserving all  
covalent bonds in the lattice, characteristic to the deformon state, is shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The topological changes involved in the deformon state; a. initial state; b deformon state. 
 
 

 The modelling was carried out on a hand-built model of crystalline sil icon with 300 atoms. A 
number was attached to each atom in the original crystallite. The coordination of every atom was 
listed in a coordinate table and the covalently bonded neighbours were listed in a neighbour table. 
Firstly, only one deformon was introduced in the centre of the model by switching two bonds. The 
analysis of the topological defect thus formed has shown that in the crystalline lattice characterized by 
6-fold chair-like rings of atoms do appear four 5-fold rings and six 7-fold rings of atoms.  
 After introducing the defect state, the whole crystal (whose atom coordinates were 
subsequently measured on the model) was energetically relaxed, without boundary conditions, by 
using a Monte Carlo computer procedure and bond bending and bond stretching potentials after 
Keating [20] with the elastic force constants given by Martin [21].  
 The Keating potential is a simple sum of bond-stretching and bond-bending potentials: 
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where �  and �  are the bond-stretching and bond-bending force constants, respectively, and d is the 
strain-free equilibrium bond length in the crystal. For Si  d = 0.235 nm. The sum i is over all atoms, j 
over the nearest neighbours of i, and k over all nearest neighbours not including j. γ is the ideal  
tetrahedral angle: 109o28’ . The bond stretching force constant is �  = 48.5 pJ and the ratio � / �  = 0.285.  
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The Keating potential provides a good semiempirical description of the bonding forces with 
only two parameters. Central bond-stretching forces are not enough for stabilizing a tetrahedrall y 
bonded structure, hence the bond-bending term is essential. 
 In the first stage of modelling we introduced a second deformon in the same simulated lattice 
and the new state of distortion was determined after the relaxation of the whole model. Then, we 
continued the process by introducing new deformons: 3, 5, 12, 15, 20, 25, 30, 33, 38, 45, 50, 55, 60, 
64, 69, 75, 80, 85, 89, 95, 100, 105, 110, 115, 125, 130 and 138 deformons for the final state of the 
crystalline model. After every new group of deformons introduced in the lattice, the coordinate table 
and the neighbor table were updated. The relaxed network in every case was analysed in detail. 
 Fig. 2 shows the variation of the distortion energy per mole of sil icon as a function of the 
number of deformons introduced in c-Si model. It is remarkable the synergic effect induced by a high 
number of deformons. The total distortion energy increases non-linearl y. The increase of distortion 
energy is not proportional to the number of deformons, but shows a tendency to saturation. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The distortion energy of the c-Si model vs the number of deformons. 

 
 

3. Method for the calculation of the void-size distribution 
 

An interstitial void in a lattice or network is defined as that region situated in-between the 
atoms, that corresponds to the sphere of maximum diameter, which can be introduced in the free 
space delimited by the atomic neighbourhood [22]. The void size distribution represents the 
distribution of the diameters of all the spheres that can be introduced in the lattice or network without 
a notable superposition (partial superposition of around 5-10 % of the diameter was permitted, thus 
accounting for eventually non-spherical, elongated voids). A special computer program run in 
FORTRAN was devised to this purpose. 

 
 

4. Results 
 
4.1 Void distribution. Characterization 
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Fig. 3. a. The distribution of the void diameters; b. the mean diameter of voids versus the 
number   of  deformons   introduced  in   the  sil icon  lattice; c. the  dispersion (r.m.s.) of  the    
     void diameters as a function of the number of deformons introduced in the silicon lattice.  
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Fig. 3 shows the characteristic of the void system in the silicon model. The distribution of the 
void diameters (a) broadens and moves towards small values when the model becomes disordered by 
introducing more deformons into the lattice. The mean diameter (b) moves down to a value of ~ 0.18 
nm. In the same time the r.m.s. deviation of the void diameter (c) increases up to values of ~ 0.04 nm. 
It seems that the model tends to a limit of disorder when no four – fold rings of atoms are permitted. 
This rule was imposed to our model during the disordering procedure.  

 
 
4.2 Structural characterization of the silicon model and of its voids 

 
 The structure factor of the silicon model with various numbers of deformon is shown in           
Fig. 4a. Fig. 4b shows the theoretical interference function calculated for a model defined by the void 
centres, where the void centers consist of silicon atoms. The most important feature of the void 
assembly is the vanishing of the oscillations specific to crystalline lattice (for a large range of the 
scattering vector) and those specific to short-range order (for high values of scattering vectors). 

Fig. 4. a. The structure factor of the model with various number of deformons; b. Theoretical  
                  interference function calculated for a model defined by the void centres. 

 
 
 The differential radial distribution function of the silicon model and of its image of voids 
were calculated and represented in Fig. 5 for different number of distorting deformons in the silicon 
lattice. While the atom DRDF is in good agreement with the experimental function, the void DRDF 
show less pronounced structural details. The existence of a low and broad maximum around the value 
of 0.37 nm speaks in favour of some ordering of the voids around the network atoms.  

Fig. 5. a. Differential radial distribution function of the silicon model; b. Differential  
                radial distribution function of the model defined by the void centres. 
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The void configuration could be not completely at random. Some ordering probably exists 
and this can be related to the medium range order in the amorphous material. The extension of this 
order has been analysed by determining the network of possible bonds between voids and calculating 
the hypothetical distribution of dihedral angles between voids. The results are shown in Fig. 6. As 
easily observed, the dihedral angle correlation is rapidly lost when the number of deformons in the c-
Si increases. The complete loss of dihedral angle correlation means that the voids are rather correlated 
at distances larger than 0.54 nm, corresponding to the average distance between the end voids that 
define the dihedral angle. 

Fig. 6. Dihedral angle distribution in the system of voids. 
 

 
5. Discussion 

 
The interstitial void distribution in a model of amorphous silicon is an important parameter 

related to the properties of silicon. Nakhmanson [23] has shown that the main properties of 
amorphous sil icon can be understood by supposing that a network of intimately related nanovoids and 
crystalline grains defines the structure of the material. The size and distribution of voids and 
nanocrystallites control the electronic density of states in the material, and, therefore, the optical and 
electrical properties. Well ordered crystallites define voids with a narrow size distribution. In such 
configurations the doping of the material is possible because the flexibility of the network is lower. 
Non-uniform distribution of the strained sp3 bonds is useful for the appearance of n or p type centres, 
especially when doping atoms are added [24].   
 A general concept of nano-heteromorphism for complex glasses has been developed by 
Minaev [25]. This concept could be extended to elemental glasses: the glass consists of nanostructural 
units formed by group of atoms with a low mean distortion of the inter-atomic bonds. This seems to 
be also the case of the amorphous silicon. 
 
 

6. Conclusions 
 
 The void morphology, size distribution and spatial configuration have been analyzed in a 
model for amorphous silicon derived from the perfect crystalline lattice of silicon by introducting in it 
a large number of deforming states. The voids seem to be ordered at the intermediate scale. The void 
structure is relevant to the physical properties of the material. Work is in progress for comparing the 
void configuration in this model with the continuous random network models for amorphous silicon. 
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