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The synchronization phenomena that appear in nonlinear dynamics of two coupled external 
cavity semiconductor lasers can be used in communications systems. Numerically solving the 
Lang-Kobayashi system of equations for such a system we analyze the possibility of 
transmitting encoded information by modulating either the transmitter output light or the 
transmitter injected current. The synchronizing of lasers chaotic orbits are analyzed using 
both the phase for electric fields and Hilbert phase for intensities of the diode lasers light.  
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1. Introduction 
 

The nonlinear dynamics of laser diode devices that are very interesting as physical systems 
and very useful in all kind of engineering applications, especially under external optical feedback, 
have drawn great attention. When the laser output is redirected into the laser cavity as feedback from 
an external reflecting surface and the external cavity length is smaller than the output coherence 
length, the system will behave as a laser with a compound cavity. When the length is increasing 
chaotic behavior appears [1]. The level of optical feedback and intensity of injected current greatly 
influence the chaotic system evolution as well [2]. 

A chaotic system responds in complicated ways to external driving signals. Such a response 
can be a perfect match in amplitude of the signals or only a phase synchronization, where the 
amplitudes of slave and master device are poorly correlated but relationship becomes evident i f a 
suitable phase is defined. Originally pointed out for a chaotic oscillator perturbed by an external 
periodic signal  [3,4], the phase synchronism between coupled chaotic oscil lators has been introduced  
recently [5]. The relative optical phase determines the intensity distributions in the far field but it is 
difficult to estimate in a real experiment by measuring the interference fringe visibil ities. Hilbert 
phase (defined using analytic signal of a real intensities time series) [6] is experimentally accessible 
and allows quantitative detection of phase synchronization between coupled chaotic systems. 

Some widely accepted methods devoted to the information transmission using chaotic 
dynamics properties are based on chaos masking [7], chaos modulation [8], or chaos shift keying [9]. 
The last is based on the definition of some clearly separated chaotic orbits, which the decoder has to 
detect separately. In the chaos modulation method, the message modulates the carrier. The masking 
scheme uses the idea of synchronized chaos [10,11], where a master is used to synchronize one or two 
slave subsystems. The message is added to the chaotic signal generated by the master and is 
transmitted to the slave receiver. The message signal has to be small compared with the masking 
chaotic signal. When the subsystems are synchronized, the chaotic part of the mixed signal can be 
subtracted and the message signal is reproduced. In our simulations we use a masking scheme when 
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we modulate the light intensity from the master system, and a chaos modulation scheme if we 
modulate the master injection current. 

In this paper we consider a model for chaos modulation and masking scheme for digital  
communications using as carrier the chaotic output of a continuous wave mono-mod laser diode 
operating with external cavity. Using the Lang-Kobayashi system of equations we numericall y model  
the chaotic light emission and synchronization between two such systems – one, the so-called 
“master” , and another “slave” . The encoded digital message can be recovered coupling the transmitter 
with a similar chaotic laser diode receiver. The high frequency of the modulating signal and the 
impossibility of decoding the information without an appropriate receiver are carrying out important 
applications.      

 
 

2. Chaotic dynamics of the laser diode 
 

To model an external cavity semiconductor laser we use the Lang-Kobayashi type rate 
equations for the complex field with a feedback delay term [12,13]. These equations are generall y 
considered to give a valid approximation of a single-mode semiconductor laser with moderate optical  
feedback. The rate equations for the complex field E and carrier density N are given by:  
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The solitary laser oscillates in a single longitudinal mode with angular frequency ω (1.2 

rad⋅fs-1) under continuous wave (CW) operation, and it has the linewidth enhancement factor α=5, 
gain G with the gain parameter g (1.5×10-8 ps-1) and gain saturation coefficient s (5×10-7), τp (2 ps) is 
the photon lifetime. The external cavity round-trip time is τ = 2L/c (200 ps) – L is the distance from 
the laser facet to the external reflector and c is the speed of light in vacuum. N represents the carrier 
density averaged over the active region with N0 (1.5×108) the carrier at transparency and τn (2 ns) 
carrier lifetime. J represents the bias current and e the electron charge. The random spontaneous 
emission is modeled by a complex not correlated Gaussian white noise term ξ of zero mean, and with 
a spontaneous emission rate β (1.1×10-9 ps-1). The feedback coefficient γ is related to the cavity 
parameters as 
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were R is the reflectivity of the laser exit face, ρ is the fraction of the laser output power coupled by 
the external cavity and the round-trip time within the laser resonator is τI = 2ηl/c (8 ps) with η being 
the refractive index of the laser cavity and l the internal cavity length. 
 The equations (1)-(3) are written in the reference frame where the frequency at transparency 
of the laser is zero, and neglecting the effect of lateral diffusion and spatial hole burning and we do 
not include multiple reflections. The outgoing field at the internal laser mirror facing the external  
cavity is written:  
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 The output power of the laser is  

2
)(

4
)( tE

hc
tI m

πµ
ωα=                                                                   (6) 

 
where h is the Planck constant, αm (45 cm-1) is the facet loss and µ (4) is the group refractive index. 
 In equation (1) we can add another term responsible for coupling an injected external field 
into the laser cavity, i.e. the term responsible for the chaotic oscil lators coupling, 
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with k (0.1 ps-1) the coupling parameter and Eext the external field to be injected. 

In order to numerically solve the (1-3,7) delay differential equations we used a Runge-Kutta 
(2,3) pair of Bogacki and Shampine integrator and a piecewise cubic Hermite interpolation scheme. 
Neglecting optical feedback (γ = 0), a stable steady state solution can be found at a current greater 
than threshold current (Ith ≈ 14.7mA). Chaos can be reached only with an external feedback and 
without this the attractor evolves smoothly to a stationary point. After a short period of predominant 
spontaneous emission, a steady state laser emission is established at powers corresponding to the level 
of injected current. Coupling in the external cavity, feedback increased from zero and the system 
switches to an oscillating state which follows a chaotic trace, and sharp sidebands on each side of the 
main optical spectrum appears [14,15], characterizing the main laser system and depending of the 

injected current. Further increasing the feedback, the relaxation oscillation sidebands decrease in 
amplitude and are supplemented with external cavity mode beating features, depending on the length 
of the cavity. At important feedback values (γ > 3×1010 ps-1) the chaos is fully present. When external 
cavity mode spacing is equal to an integer sub-multiple of the relaxation oscil lation resonance peak a 
period-doubling sequence to chaos is observed [14]. When the ratio between them is not an integer, at 
fixed injection current and external cavity length, the increasing of the feedback from external mirror 
pushes the system to a quasi-periodic sequence to chaos.  
 
 
 
 
 
 
 
 
 

 

The information transmission arrangement assumed in this paper is shown in Fig. 1. Two 
external cavity semiconductor lasers are coupled unidirectionally via a Faraday optical isolator. 
Attenuators are used to control feedback and coupling strength. Coherent light from the master drive 
system is modulated and injected into the second external cavity laser, i.e. the slave. Both systems are 
modeled by the set of equations (1-3). The light injected in the slave system, equation (7), is included 
in slave system equation (1) as a supplementary term.   

In order to analyze the effect of synchronization to the data transmission capability of the 
system we use two kind of phase information. One is the complex field phase 
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and the other is the Hilbert phase [16] - ΦH, defined for the light intensity time series - I(t), a real 
function, from the corresponding analytic signal   
 

SL - master 

SL - slave 

FI-m  

BS  

BS  

M  

M  

Fig. 1. Master and slave transmission arrangement (SL, semiconductor laser; BS, beam 
splitter; M, mirror - attenuator; FI-m, Faraday isolator - modulator). 
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where HT denotes the Hilbert transform of I(t),  
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and here P denotes taking the principal value of the integral. The Hilbert phase describes changes in 
the field envelope and can be experimentally evaluated from the laser intensity time series using fast 
Fourier transform. It is to be noted that the nature of the complex phase dynamics is distinct from the 
dynamics of the Hilbert phase. We consider the constructed phases as unbounded, not taken modulo 
2π, correcting the radian phase angles by adding multiples of ±2π when absolute jumps between 
consecutive elements are greater than the jump tolerance π.  

The synchronization of chaotic systems is based on phenomena similar to the resonance of the 
linear oscillators. Coupling two chaotic oscillators with similar characteristics,. the orbits of the two 
systems evolve in a very similar way. This behavior of chaotic systems was experimentally used in 
encoding communication using fiber ring lasers [17] and semiconductor lasers [18]. For the setup 
presented in Fig. 1 the external field injected in the “slave” laser is the output field of the “master”  
laser delayed with an arbitrary time simulating space propagation (Tc = 0.8 ns). Synchronization is 
possible i f we have a solution of Eqs. (1-3,7) for both master and slave lasers and a condition for 
phase (complex or Hilbert) equivalence 
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here apostrophe denote the slave variable. In real experiments the perfect equality (11) can not be 
satisfied due to the inherent error limit evolution of phases and is replaced by a hard connection in 
phase evolution. We can use as criterion the constancy of the synchronization error defined as 
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where �Φ’ (t)	 is the temporal average of the slave phase. 
 
 

3. Encoded communication and synchronization of chaotic oscillators 
 

The information transmission using chaotic dynamics properties based on chaos masking can 
be obtained using a message M(t), of very small amplitude; to assure privacy and to avoid large 
distortion in the master output, one modulates the transmitter output, EMaster, resulting in a signal Emod, 
transmitted to the receiver: 
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where A is a constant attenuation factor. The decoding process is based on the synchronization of the 
receiver output, ESlave, to the transmitter carrier field, EMaster, and not to the modulated injected signal, 
after corresponding space travel, E’mod.  
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where D(t) is the detected signal. The decoded message must be analogous to the encoded one in the 
case of chaotic synchronization of the oscillators. The information transmission based on chaos 
modulation can be obtained with a modulating message added directly to the master injected current, 
rather than through an electro-optic modulator introduced in the master output optical field, 
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where J is the injected current. In these case the detection scheme can be similar with the one used for 
chaos masking. 

Let’s take the bias current of the laser diode J=40 mA, the feedback coefficient Γ=0.3 and 
assume that the master is identical with the slave. The light emission of the correspondent master is 
characterized by a high chaotic state (see Fig. 2a). After first identical trajectory steps, at the moment 
when the master signal reaches the slave, after a short period of adaptation, the slave leaves its own 
trajectory and follows a system chaotic trajectory dictated by the master.  

In Fig. 2b is presented for comparison the delayed modulating signal and the detected one. 
We can easily observe the synchronicity of signals and the way in which a coded signal, of about 4% 
from chaotic carrier, can be recovered in good conditions. A similar good recovering signal is 
obtained even if the ratio of the coded signal is about 1%, but information is lost if the modulation 
ratio is below 0.2%. The noisy recovered signal may be filtered using an appropriate band-pass filter, 
a Fabry-Perot with an adequate bandwidth. The time accuracy in signal recovery is to be noted; the 
first signal pulse of about 50 ps is very good temporally resolved.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A master chaotic semiconductor laser coupled with an identical slave, a) the intensity 
 output; b) the modulation delayed and detected signal; c) complex phase; d) Hilbert phase. 

 
The evolution of complex and Hilbert phase for master and slave diode laser light emission is 

presented in Fig. 2c and 2d.  For both types of phases a clear following of the slave to the driving 
master is observed. We can say that systems are coupled in phase. In Fig.3 the phase synchronization 
error between master and slave present an important decrease, and this is an obvious mark for 
obtaining accurate data recovery conditions.  
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Fig. 3. The complex and Hilbert phase synchronization error between master and slave in a chaos 
masking carrier data transmission arrangement. 
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An interesting situation is achieved when different types of chaotic oscillators are coupled in 

a transmission scheme. For instance if we take the slave parameters: gain parameter g = 8⋅10-8 ps-1), 
carrier lifetime τn =  6 ns and the feedback coefficient Γ=0.2, and the master feedback coefficient 
Γ=0.1 with a coupling parameter k = 0.04 ps-1 we obtain the signals presented in Fig.4.  

In this case the light emission of the master and the slave are characterized by a low chaotic 
state (quasi-periodic oscillations), see Fig. 4a. After a relative long period of adaptation the slave light 
emission follow synchronously the master driving signal –the slave is forced to evolve on a non-
characteristic orbit. For a digital carrier modulation of 10% (the coded signal - Fig. 4b) the same 
synchronicity can be observed in the decoded signal. After the adaptation period the decoded signal is 
evidently modulated by the data structure.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. A master chaotic semiconductor laser (Γ=0.1) coupled with a different type of 
slave, a) the intensity output; b) the modulation delayed and detected signal; c) the complex 
and Hilbert  phase  synchronization error;d) the complex and Hilbert phase synchronization  
                               error in case of master feedback coefficient is Γ=0.3 
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The synchronous coupling effect is also evident in the phase error graphics - Fig. 4c – where a 
apparent error reduction is present. Because in this case the slave is forced to a non-characteristic orbit 
the phases are no longer identical, and ∆Φ functions present oscillations correlated with the master 
driving signal.  

It is important to note that this forced synchronization is absent when the master oscillates on 
a chaotic non-periodic orbit. If the master feedback coefficient becomes Γ=0.3, the system is 
decoupled and the phase error clearly show this – see Fig. 4d.  The phase synchronization error in this 
case is important and the detected signals do not carry data information any longer.    

When a master chaotic oscillator (Γ=0.1) is coupled (k = 0.1 ps-1) in a transmission scheme 
with an identical slave but without external cavity (Γ=0), the situation is somehow similar. In Fig. 5a 
we can see how slave is forced to follow the master driving signal and in Fig. 5b the corresponding 
detected signal with a good recovery of the data structure is shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. A master chaotic semiconductor laser (Γ=0.1) coupled with a slave without external 
cavity (Γ=0), a) the intensity output; b) the modulation delayed and detected signal; c) the 
complex  and   Hilbert  phase  synchronization  error;  d)  the  complex  and  Hilbert   phase  
                   synchronization error in case of master feedback coefficient is Γ=0.3 

 
In this case the phase error graphics - Fig. 5c – show a low level of oscil lations correlated 

with the master driving signal, indicating a phase synchronicity for these signals. The synchronization 
is absent when the master oscillates in a chaotic non-periodic orbit (master feedback coefficient Γ=0.3 
– see Fig. 5d), and for these situation the detected signals cannot be used as a source for the encoded 
data information recovery, see Fig. 6. 
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Fig. 6. The decoded signal for data presented in Fig. 5d. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Another technique used in data transmission with chaotic carrier is chaos modulation. The 
message modulates one of the parameters involved in the master chaotic process and the resonance of 
the coupled slave assures a close orbit trace similar to one of the master [19]. In our case the most 
accessible parameter is the injection current. If we assume two identical laser diodes (Γ=0.3) coupled 
(k = 0.1 ps-1) in a chaos modulation scheme with a digital modulation of 4% for the injected current, 
the intensity output and the modulation and detected signal data are presented in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Two identical chaotic semiconductor lasers coupled in a data transmission arrangement 
using  chaos  modulation  technique,  a)  the  intensity  output; b)  the  modulation  delayed  and  
                                                          detected signal. 

 
 
The slave is practically coupled with the master signal (see Fig.8, as the complex phase 

synchronization error indicates). Even for a high coherent state of the master emission, the slave is 
synchronized in complex phase with the master, but not exactly in Hilbert phase. This situation 
indicates an inadequate condition for a perfect data recovery. The transmitted signal clearly carries the 
encoded information but not in an accurate state, due to the relatively low time response of the 
system.  
 As we can see, from Figs. 4 to 8, any attempt to force the slave oscillator to evolve in a non 
personal orbit – i.e. chaotic orbits characterized by di fferent parameters – produces a decrease in the 
quality of the decoded signal.  
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Fig. 8. The complex and Hilbert phase synchronization error between master and slave in a  
chaos modulation data transmission arrangement. 

0 0.2 0.4 0.6 0.8 1 1.2

x 10
-8

0

0.2

0.4

0.6

0.8

1

time(s)

∆Φ
 C

om
pl

ex

Phase synchronization error

0 0.2 0.4 0.6 0.8 1 1.2

x 10
-8

0

1

2

3

4

time(s)

∆Φ
 H

ilb
er

t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
4. Conclusions 
 
In this paper we have presented numerical simulations of synchronized chaotic semiconductor 

lasers that are unidirectional coupled by their electric fields, and we have analyzed the variation of the 
phase synchronization error between master and slave in a chaos masking and modulation data 
transmission scheme. A good decoding of the message is provided by those systems where the chaotic 
orbits of the master and the slave are as close as possible. The chaos masking system can achieve 
theoretically data transfer rates up to 10 Gbps. An acceptable restoration of the signal is obtained in 
all cases where the coupling factor between the oscillators is strong and low chaotic states are used. I f 
we use a high chaotic state for the master emission and small amplitude of the modulation the 
detected signal cannot be decoded. The same situation appears when the master and the slave signals 
are no longer in phase; the message cannot be longer decoded. The error of phase synchronization 
almost vanishes for the complex phase in cases for which the slave system is allowed to evolve in 
orbits very close to original ones. The synchronization error for the Hilbert phase is small for the 
cases where the complex phase is coupled, and it is major for the cases where the complex phase is 
not coupled. Although these results indicate that the Hilbert phase can be used as an experimental 
criterion to determine the quality of the chaotic systems coupling and data transmission recovery. 
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