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The paper aims to cast a new light on the accuracy of ultrasound based measurement of elastic 
parameters for crystalline materials. We have measured the values of elastic parameters and 
their temperature variation for n-Si sample. We present two sets of empirical relations vs. the 
adiabatic approximation and the thermal coefficient of elastic constants. Our results are in 
agreement with the modern theory of crystal lattices elaborated by Leibfriend and Ludwig, 
which gives a general relationship between the elastic constants and the temperature 
considering the anharmonic nature of the atomic oscillations. Knowing the temperature 
variation of nonlinearity parameter, we estimated the degradation of the material. The results 
of our measurements of the elastic constants demonstrate that, in the investigated temperature 
range, the anisotropy factor is a constant and is equal to 1.54 ± 0.06. 
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1. Introduction 
 

Ultrasonic is a nondestructive method for the evaluation of the microstructure and associated 
mechanical parameters. Microstructural characterization of the material which includes the 
determination of dislocations, grain size material anisotropy, cracks, inclusions and geometry, plays 
an important role in ensuring the quality of the estimation of mechanical properties and the 
determination of the amount and the rate of the degradation of structures and components [1]. 
Ultrasonic velocity techniques enable us to determine the elastic [2] and inelastic parameters of the 
materials including elastic module, the nonlinearity parameter and the anisotropy factor without 
harming the materials being tested.  

 
 
2. Experimental 
 
2.1. Theory 
 
2.1.1 Elastic constants and the adiabatic approximation 

 
By pulse-echo method the elastic constants of a solid can be determined. To this aim it is 

necessary to experimentally measure the longitudinal and transversal sound velocities in the sample. 
The sample subjected to the experiments that is Si semiconductor, bears three elastic constants 
corresponding to the cubical system. Crystallographically, the cubic system employs the following 
relations for the outcome of the first conversion, namely the elastic constants Ci j [3]: 

 

[ ]100vC 2
L11 ρ= ; [ ]100vC 2

T44 ρ= ; [ ]111v3CCC 2
L441211 ρ=++                  (1) 

 
where �  – is the sample density. 
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One can easily notice the fact that C11 and C44 can be obtained in a more direct manner from 
velocity data, were C12 can be obtained only indirectly. In order to measure the elastic constants using 
the above – stated relations, the propagation direction is considered parallel to the required 
crystallographic axis and the ultrasound waves are plane waves [4]. 
Given the fact that the actual experimental conditions do not generall y follow these requirements 
there are errors between the transducer and the examined sample, due to the following causes: 

- the misalignment between the crystal orientation and the required crystallographic axis; 
- the diffraction which appear because the transducer has a finite diameter and the acoustic 

pressure received in di fferent points do not have the same phase; 
- the fact that in the near field (Fresnel zone), the presence of the lateral surfaces limiting the 

propagation medium influences the oscillation mode and the propagation velocity becomes 
dependent on the lateral size of the sample and the wavelength. 
In the adiabatic approximation we assumed zero change in the thermal energy during the 

successive contraction-dilatation processes which occurs while ultrasonic waves propagate through 
the material. In ambient temperature conditions, the elastic constants are influenced by the energy of 
the atomic oscillations, which are assumed to have the following temperature dependence [5] 
 

Cij(T) = Cij
0 (A – BT)                                                        (2) 

 
where Ci j

0 corresponds to 0 K. 
Making allowances for the fact that the dilatation process and the temperature variation of the elastic 
constants are included by the anharmonic nature of atomic oscillations, a more general model can be 
applied: 
 

Cij (T) = Cij
0 [1 – Di j E(T)]                                                   (3) 

 
where Dij – are the anharmonic coefficients. According to [6], the appearance of higher order terms in 
the series expansion for the mean energy E(T), leads to a curvature in the high-temperature range of 
the elastic constants vs. temperature. Experimentally the graph has been shown to exhibit a linear 
portion in this temperature range, which enables us to disconsider the higher order terms of the series 
[6]. Thus E(T) = KBT, where KB is the Boltzmann constant, will be a reasonable linear approximation 
for the energy of the atomic oscillation, allowing the temperature dependence of the elastic constants 
to be expressed as: 
 

Cij (T) = Cij
0 (1 – Di j kBT)                                                   (4) 

 
2.1.2 The thermal coefficient of the elastic constant 

 
The velocity of a longitudinal wave propagating along the [100] axis of the cubic system is 

given by the equation (1) 
 

vL[100] = (C11/
� )1/2                                                          (5) 

 
where C11 – is an elastic constant and �  is the material density. Di fferentiating the equation (5) with 
respect to temperature, one obtains: 
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0(1 - 3�
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0 is the density at temperature T0 and �  is the thermal coefficient of 
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Hence the ecuation (6) can be written as: 
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 is the velocity temperature coefficient and 
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⋅  is the thermal coefficient of 

the corresponding elastic constant. Identically, for the transversal ultrasonic velocity vT for [100] axis, 
one can write: 
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with 

�
T = T – T0. In this approximation: 
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2.1.3 Nonlinearity parameter 
 
The ultrasonic wave propagating through a solid can produce a waveform distortion induced 

by the micro structural properties of the solid. This waveform distortion is characterized by the 
existence of a second harmonic whose amplitude is proportional to the square of the amplitude of the 
fundamental and to the nonlinearity parameter � . The degree of material degradation can be evaluated 
by measuring the nonlinearity parameter of the ultrasonic wave propagating through the material [7]. 
In this work we want to estimate the temperature effect on the nonlinearity parameter for all 
directions. The nonlinearity parameter has the form [8]: 
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+−=β

2

3

K

K
3                                                           (12) 

 
where K2 – is a l inear combination of the second elastic constants and K3 – is a linear combination of 
the third-order elastic constants [9]. According to the crystallographic axis, K2 and K3 are given as it 
follows: 
 

K2[100] = C11; K2[100] = ½(C11 + C22 + 2C44); K2[111] = 1/3(C11 + 2C12 + 4C44) 
K1[100] = C111; K3[110] = ¼(C111 + 3C112 + 12C166)                                    (13) 
K3[111] = 1/9(C111 + 6C112 + 12C144 + 24C166 + 2C123 + 16C456) 

 
and the nonlinearity parameter: 
 

� [100] = -(3 + K3[100]/K2[100]); � [110] = -(3 + K3[110]/K2[110]) 
� [111] = -(3 + K3[111}/K2[111])                                                    (14) 
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2.1.4 Thermoelastic modulus 
 

It is known that excessive thermal gradients induce stresses that may initiate dislocation 
generation during the growth of semiconducting materials. The thermal stress calculations entail the 
elastic constants of the single crystal in the form of a factor designated as thermoelastic modulus M. 
For the cubic system the thermoelastic modulus can be expressed in terms of the elastic constants 
[10],[11]: 

 
( )

441211

121144

C4C2C

C2cC6
M

++
+

⋅α=                                               (15) 

 
where �  is the thermal coefficient of the linear expansion. 
 
 

2.1.5 Bulk modulus 
 
The other parameter is the compressibility modulus B which has the form [12]: 
 

B = 1/3 (C11 + 2C12)                                                     (16) 
 

All these parameters mentioned above, which can characterize the material microstructure, 
depend on the elastic constants Ci j. That is why it is important to determine these constants and their 
dependence on temperature. 
 

2.2. Modeling 
 

The fixed-mark interferometer pulse-echo method was employed for an experimental  
determination of [100] and [111] ultrasonic velocities, at f = 4 MHz center frequency launched by a 
20 mm diameter transducer. The ultrasonic equipment consisted of an ultrasonic instrument SONIC 
136 Ultra (Staveley Instrument Corporation) The fixed-mark interferometer method [13] representing 
an improvement of the classical interferometer method has been used in order to determine 
experimentally the propagation velocities. This new method consists of the following steps: 

-     make the first pulse-echo to appear on the oscil loscope scale; 
- displace (shi ft) the reflector pointer until the liquid overlaps with the one through the sample; 
- read the position on the gradation ruler and on the micrometric quadrate marking it by “x” ; 
- slowly operate the horizontal switch to bring the two overlapped echoes at position 0 on the 

oscilloscope scale (this position is considered to be brought in front of the upwards flank of 
the pulse-echo); 

- shift the reflector pointer until the echo through the liquid reaches position 10 on the 
oscilloscope scale, mark the distance read on the ruler by ‘n’ . 
Thus, the oscil loscope scale has been fitted i.e. ten positions on the scale correspond to n-

millimeters on the quadrate ruler of the reflector pointer. Then we have the echo going through the 
liquid at the position 0, where it overlaps with the one through the sample. The fitting has been 
performed at the room temperature by increasing the temperature of the sample. Thus we get a 
displacement to the right of the sample echo, e.g. the sample echo reaches position 2 on the 
oscilloscope screen, for temperature T1. In this case, the distance spanned through the water is            
D = x + 2n/10. For another temperature T2, the pulse-echo is at position 3.5 and D = x + 3.5n/10. 
Marking “np”  the pulse-echo position and “l”  the pulse length, we get the general expression                 
D = x + npn/10 and the propagation velocity of the ultrasonic waves through the sample at temperature 
T is: 

 
v(t) = vw(20°C)[1/x + npn/10]                                                     (17) 
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If by heating at a higher temperature the echo through the sample overtakes the one through 
the liquid corresponding to position 10, the range scale of the device is changed. Probing at high 
temperatures was made possible using an Al buffer-rod interposed between the transducer and the 
sample. We conceived a practical solution for the transducer-buffer-sample (TBS) system in order to 
overcome the difficulties arising from the fluctuation and non-uniformity of the acoustic pressure 
across and along the sample in high temperature conditions as well as to maintain and accurately 
measure a constant temperature along the sample. The oven was provided with an internal ceramic 
cylinder with the diameter equal to that of the sample. One end of the buffer is inserted into the 
cylinder which is in contact with the sample, the other end (approx. 65% of its length) being fitted to 
the ultrasonic transducer. To avoid excessive heating of the transducer, the external end of the buffer 
is submitted to an uni form air-draft (Fig. 1a).  
 

        
 

Fig. 1a. The oven with the ceramic cylinder                    Fig. 1b. Transducer – buffer-rod 
     and the transducer-buffer-sample        – sample system. 
                     (TBS) system. 
 
 

The Al buffer-rod has low acoustic attenuation; eleven grooves were performed all over its 
lateral surface in order to minimize acoustic losses due to lateral reflections. The ultrasonic energy 
concentration on the sample is enhanced through the 30°-cut truncated cones profile on the sampling 
end (Fig. 1b). A chromium-aluminium thermocouple is inserted at the center of the examined sample 
in an ori fice practiced in the ceramic filter shielding the sample. The inside diameter of the ceramic 
fi lter fits the sample diameter. T 4203 silicone paste was employed to provide the acoustic coupling of 
the buffer with the sample. On the fixed-mark interferometer based on the determination of ultrasound 
propagation velocities, water exhibits a 2.5 m/s velocity variation per Cº. Therefore, velocity stabili ty 
requirement was imposed. That problem was solved by replacing water with a mixture of water (80%) 
and ethanol (20%). 

The ultrasonic velocity data and the conversion outcomes were plotted against temperature, 
employing three methods: (experimental method); method T1 – empirical method using adiabati c 
approximation (4) and method T2 – empirical method using the thermal coefficient of elastic constants 
(relation 11). The elastic constants were determined in the temperature range 273 K – 900 K. 
 
 

3. Results on n-Si sample 
 

The n-Si sample has the following parameters: � =2330 Kg/m3, a[111] = 13 mm, a[100] = 13 mm 
with diameter φ = 11.5 mm and N = 6.8 1015 cm-.3 and resistivity = 0.52 �  cm. Using the adiabati c 
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approximation (method T1) we obtained the following empirical relations for the elastic constants of 
semiconductor Si and this results were corroborated the theoretical relation issued by Simon [6]: 

 
C11(TK) = 172.6 (1 - 70.3×10-6T) 

                                                       C12(TK) = 66.2 (1 - 94.4×10-6T)                                                   (18) 
   C44(TK) = 82.4 (1 -  80×10-6T) 

 
 

Table 1. 
 

0 K 273 K 
Authors 

[16] [17] [18] we [19] [16] [17] we 
C11 166 167.5 165 172 167.4 165.7 165.6 167.7 
C44 80.1 80.3 79 82.4 79.6 79.6 79.5 80.7 
C12 64.2 64.8 64.5 66.2 65.2 63.9 63.9 65.2 

 
0
ijC   values for the 0 K and 273 K, compared to other authors. 

  
We determined from the slope of the ultrasound velocity as a function of temperature, the 

velocity temperature coefficient 1/v 
�

v/
�

T and knowing the thermal coefficient of linear expansion �  
for the Si sample, we find the thermal coefficient of elastic constant 1/Cij  

�
Ci j/

�
T. So, by applying 

equation (11) where 0
ijC (T) are elastic constants values at 273 K, we can give empirical method T2: 

 
C11(TK) = 167.7 (1 - 64×10-6 

�
T) 

C44(TK) = 80.7 (1 - 58.4×10-6�
T)                                                  

 
where 

�
T = T – 273 K. 
We can conclude that for the Si sample we can draw three plots against temperature for the 

elastic constants: the experimental, the adiabatic approximation (method T1) and the thermal 
coefficient of the elastic constants (method T2). Using method T2 we can determine only C11 and C44, 
which are directly derived from vL and vT. To prove that the values, which were found for Cij at 0K 
through extrapolation and those for 273 K, are valid, we give in Table 1 the results obtained by of 
other authors. Fig. 2 a,b,c for Si, shows the plots of elastic constants Ci j against temperature made by 
these three methods, above mentioned.  

 
 

Fig. 2. Temperature plots of the elastic constants for each of the three methods. 
 
  

The analysis of the plot shows that the curves drawn from experimental determination present 
the same shape and monotonically decrease with empirical methods T1 and T2. the distinction at C11 
consist in the fact that at lower temperatures (T < 523 K) a slight deviation appears between theory 
and experiment which disappears with increasing temperature. For C44 a slight deviation appears 
between experiment and method T2 towards higher temperatures (T > 523 K). Regarding C12, the 
experimental and method T1 are in the same good approximation. With the exception at some slight 
deviations we can say that there is an identity between the three methods found, which prove the 
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validity of the empirical  methods T1 and T2 and the exactness of the values of the thermal coefficients 
of elastic constants. 
 
 

4. Discussion 
 
4.1. Nonlinearity parameter, thermoelastic modulus and bulk modulus 
 

 
 
 

 
 

 

    Fig. 3. Dependence of the nonlinearity                         Fig. 4. The semilogaritmic plot of temperature 
    parameter β on the temperature for the             dependence of the termoelastic modulus M. 
               three crystallographic.                      

 
 

Fig. 3 shows the dependence of the nonlinearity parameter �  on the temperature for the three-
crystallographic axis for n-Si. For the n-Si sample the plots show that the highest values are obtained 
for the [110] axis. Temperature variations are insignificant after the presented orientation, thus after 
[100] it is just 9.2%, after [111] is 8.5% and after [110] is just 6.8%. 

 

 

 

 

 

 

Fig. 5.  Temperature plots of the bulk modulus. 
 

For n-Si the semilogaritmic plot of temperature dependence of the thermoelastic modulus M 
is shown in Fig. 4. The small deviations between the extreme temperatures for Si (0.2%) show that 
this parameter is invariant to temperature variation. Fig. 5 shows the dependence of the compressional 
modulus bulk B on the temperature; this parameter appears constant for n-Si.  

 
 

Table 2. Values for the nonlinearity parameter K2, K3 and β by the three axes at 300 K. 
 

 [100] [110] [111] 
K2 1.69 1.96 2.05 
K3 -8.25 -14.74 -1237 
β 1.88 4.47 3.03 

 
 

5. Conclusions 
 
 The values of the nonlinearity parameter � , K2 and K3 by the three axes at 300 K for Si are 
presented in Table 2 and can be compared with the values reported in [9]. For the temperature 
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variation of the nonlinearity parameter, we consider that the elastic constants of the 3rd order are 
temperature independent. The same is valid for K3 values in [9]. 

Regarding elastic constants Cij we can conclude as it follows: 
- the empirical relations found by the two methods (T1 and T2) present similarly graphics to those 
obtained by experimental determination; 
- there is a small variation at C11 and C44 in the graphics according to the method T2 around T = 523 K 
while maintaining it  almost constant in the rest of temperature range; 
- the compression bulk modulus appears constant for n-Si; 
- we have determined the thermal coefficients of elastic constants for n-Si; 
- we have found empirical relations by the two methods of Cij variation for n-Si in the considered 
temperature range and we consider that by this assumption which have been made we can extend the 
whole range of temperature; 
- the temperature variations for the nonlinearity parameter are insigni ficant by the axes (9.2% [100], 
8.5%[111]); 
- we have calculated the elastic anisotropy factor and we observed that this factor is a constant in the 
temperature range and is equal to 1.54±0.06 being in good agreement with those found in literature 
[14], [15]; 
- we considered that the anisotropy factor is independent of the temperature for the n-Si and for all  
elements of the cubic system. 
 The differences, which appear in the values of the parameter found by us and those from 
literature are due to the following causes: 
- the conversion from the propagation velocity in elastic constants [11]; 
- multiple reflections occuring as a result of the increase of the ultrasound beam path because of the 
use of a buffer-rod; 
- the influence of the nonparallelism of the lateral surfaces of the buffer-rod and of the samples. 
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