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ULTRASONIC INVESTIGATION OF n-Si SAMPLES

P. Petculescu’, J. Matei

Department of Physics, the Ovidius University of Constanta, 8700, Romania

The paper aims to cast anew light on the accuracy of ultrasound based measurement of elastic
parameters for crystalline materials. We have measured the values of eastic parameters and
their temperature variation for n-Si sample. We present two sets of empirical reations vs. the
adiabatic approximation and the thermal coefficient of elastic constants. Our results are in
agreement with the modern theory of crystd lattices elaborated by Leibfriend and Ludwig,
which gives a genera reationship between the eastic constants and the temperature
considering the anharmonic nature of the atomic oscillations. Knowing the temperature
variation of nonlinesrity parameter, we estimated the degradation of the material. The results
of our measurements of the elastic constants demonstrate that, in the investigated temperature
range, the anisotropy factor is a constant and is equal to 1.54 + 0.06.
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1. Introduction

Ultrasonic is a nondestructive method for the evaluation of the microstructure and associated
mechanical parameters. Microstructura characterization of the material which includes the
determination of dislocations, grain size material anisotropy, cracks, inclusions and geometry, plays
an important role in ensuring the quality of the estimation of mechanicd properties and the
determination of the amount and the rate of the degradation of structures and components [1].
Ultrasonic velocity techniques enable us to determine the dastic [2] and indastic parameters of the
materials including éastic module, the nonlinearity parameter and the anisotropy factor without
harming the materials being tested.

2. Experimental

2.1. Theory

2.1.1 Elastic constants and the adiabatic approximation

By pulse-echo method the dastic constants of a solid can be determined. To this aim it is
necessary to experimentally measure the longitudina and transversal sound vel ocities in the sample.
The sample subjected to the experiments that is Si semiconductor, bears three eastic constants

corresponding to the cubical system. Crystall ographically, the cubic system employs the following
relations for the outcome of the first conversion, namely the dastic constants C;; [3]:

Cy= pVi [100] ' Cu = pV$ [100]  Cp+Cp+Cy = 3pVﬁ [111] @

where p — is the sampl e density.
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One can easily natice the fact that Cy; and Cy4 can be obtained in a more direct manner from
velocity data, were Cy, can be obtained only indirectly. In order to measure the dastic constants using
the above — stated rdations, the propagation direction is considered parald to the required
crystallographic axis and the ultrasound waves are plane waves [4].

Given the fact that the actual experimental conditions do not generally follow these requirements
there are errors between the transducer and the examined sample, dueto the following causes:

- the misalignment between the crystal orientation and the required crystall ographic axis;

- the diffraction which appear because the transducer has a finite diameter and the acoustic
pressure received in different points do not have the same phase;

- thefact that in the near fidd (Fresnd zone), the presence of the lateral surfaces limiting the
propagation medium influences the oscillation mode and the propagation velocity becomes
dependent on the lateral size of the sample and the wavd ength.

In the adiabatic approximation we assumed zero change in the therma energy during the
successive contraction-dilatation processes which occurs while ultrasonic waves propagate through
the material. In ambient temperature conditions, the dastic constants are influenced by the energy of
the atomic oscillations, which are assumed to have the foll owing temperature dependence [5]

Ci(T) =C;°(A -BT) )

where C;° corresponds to 0 K.

Making allowances for the fact that the dilatation process and the temperature variation of the dagtic
congtants are included by the anharmonic nature of atomic oscillations, a more general modd can be
applied:

Cj (T) = Ci° [1- Dy E(T)] ®3)

where D — are the anharmonic coefficients. According to [6], the appearance of higher order termsin
the series expansion for the mean energy E(T), leads to a curvature in the high-temperature range of
the dastic constants vs. temperature. Experimentaly the graph has been shown to exhibit a linear
portion in this temperature range, which enables us to disconsider the higher order terms of the series
[6]. Thus E(T) = KgT, where Kg is the Boltzmann constant, will be a reasonabl e linear approximation
for the energy of the atomic oscillation, allowing the temperature dependence of the dastic constants
to be expressed as:

Ci (T) = C° (1 - DjjkeT) (4)
2.1.2 Thethermal coefficient of the elastic constant

The veocity of a longitudina wave propagating along the [100] axis of the cubic system is
given by the equation (1)

Vij100 = (C1a/p) vz )

where Cy; — is an dastic constant and p is the material density. Differentiating the equation (5) with
respect to temperature, one obtains:
1
dVL — i C]_]_ 2 dC]_]_ _ C]_]_ Bd—p
dar  2p p daT p dT

(6)

Because p =po(1 - 30AT), where po is the density at temperature T and a is the thermal coefficient of
linear expansion, on can write

dp
— =-30pp.
aT Po (7)
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Hence the ecuation (6) can be written as:

v, dT C, dT

dv _Av 2 dv, 2 Av,
Because— = — — =—
v v v, dl v,

one obtains:

1 AC, _ 24v, _

C, AT v, AT

3a ©)

Av 1 Ci1 . .
where i—" isthe vd ocity temperature coefficient and — E—M isthethermal coefficient of
Vi AT Cll
the corresponding dagtic constant. Identically, for the transversal ultrasonic vd ocity vt for [100] axis,
one can write

1 #Cu _ 2 Avr

—_— -3 (20)
Cquy AT vt AT
with AT = T — To. In this approximation:
AC.
c,(T)=co(T 1- L i, (12)
C; AT

2.1.3 Nonlinearity parameter

The ultrasonic wave propagating through a solid can produce a waveform distortion induced
by the micro structural properties of the solid. This waveform distortion is characterized by the
existence of a second harmonic whose amplitude is proportiond to the square of the amplitude of the
fundamentd and to the nonlinearity parameter B. The degree of material degradation can be evaluated
by measuring the nonlinearity parameter of the ultrasonic wave propagating through the material [7].
In this work we want to estimate the temperature effect on the nonlinearity parameter for all
directions. The nonlinearity parameter has the form [8]:

= {3+Ks
B= (3+K j (12)

2

where K, —is alinear combination of the second dastic constants and Kz —is alinear combination of
the third-order dastic constants [9]. According to the crystallographic axis, K, and Ks are given as it
follows:

Koo = Cu1s Kaaog = ¥A(Cas + Coz+ 2Ca); Kopuay = 1/3(Cra + 2Chp + 4Cus)
K100 = Cua1; Kaaa0) = ¥4 Cra1 + 3Cra2+ 12C166) (13)
Kay = Y9(Cuaz + 6Cr1p + 12C14 + 24C;66 + 2C123 + 16C4ss)

and the nonlinearity parameter:

Brioa = -(3 + Kspoa/Kz100); Prazo = -(3 + Kapa1g/K2p1107)
Briay = -(3 + Kapany/Kopa) (14)
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2.1.4 Thermoelastic modulus

It is known that excessive therma gradients induce stresses that may initiate didocation
generation during the growth of semiconducting materias. The thermal stress calculations entail the
dastic constants of the single crystal in the form of a factor designated as thermoel astic modulus M.
For the cubic system the thermoelastic modulus can be expressed in terms of the dastic constants
[10],[11]:

M = q 00C# (c11 +2C12) (15)
C11+2C1p +4Cyy
where a isthe thermal coefficient of the linear expansion.
2.1.5 Bulk modulus
The other parameter is the compressibility modulus B which has the form [12]:
B =1/3(Cy +2Cyp2) (16)

All these parameters mentioned above, which can characterize the material microstructure,
depend on the dastic constants Cjj. That iswhy it is important to determine these constants and ther
dependence on temperature.

2.2. Modeling

The fixed-mark interferometer pulse-echo method was employed for an experimenta
determination of [100] and [111] ultrasonic velocities, a f = 4 MHz center frequency launched by a
20 mm diameter transducer. The ultrasonic equipment consisted of an ultrasonic instrument SONIC
136 Ultra (Stavel ey Instrument Corporation) The fixed-mark interferometer method [13] representing
an improvement of the classicd interferometer method has been used in order to determine
experl mentally the propagation ve ocities. This new method consists of the following steps:

make the first pulse-echo to appear on the oscilloscope scae;

- displace (shift) thereflector pointer until the liquid overlaps with the one through the sampl g

- read the position on the gradation ruler and on the micrometric quadrate marking it by “x”;

- dowly operate the horizontal switch to bring the two overlapped echoes at position 0 on the
oscilloscope sca e (this position is considered to be brought in front of the upwards flank of
the pul se-echo);

- shift the reflector pointer until the echo through the liquid reaches position 10 on the
oscilloscope scale, mark the distance read on theruler by ‘n’.

Thus, the oscilloscope scale has been fitted i.e. ten positions on the scd e correspond to n-
millimeters on the quadrate ruler of the reflector pointer. Then we have the echo going through the
liquid at the position O, where it overlaps with the one through the sample. The fitting has been
performed at the room temperature by increasing the temperature of the sample. Thus we get a
displacement to the right of the sample echo, eg. the sample echo reaches position 2 on the
oscilloscope screen, for temperature Ti. In this case, the distance spanned through the water is
D = x + 2n/10. For another temperature T, the pulse-echo is at position 3.5 and D = x + 3.5n/10.
Marking “n,” the pulse-echo position and “I” the pulse length, we get the general expression
D = x + nyn/10 and the propagation vel ocity of the ultrasoni c waves through the sample at temperature
Tis

V(t) = Vyo(20°C)[ /X + nyn/10] 17)
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If by heating at a higher temperature the echo through the sample overtakes the one through
the liquid corresponding to position 10, the range scae of the device is changed. Probing at high
temperatures was made possible using an Al buffer-rod interposed between the transducer and the
sample. We conceived a practica solution for the transducer-buffer-sample (TBS) system in order to
overcome the difficulties arising from the fluctuation and non-uniformity of the acoustic pressure
across and aong the sample in high temperature conditions as well as to maintain and accurately
measure a constant temperature d ong the sample. The oven was provided with an internal ceramic
cylinder with the diameter equal to that of the sample. One end of the buffer is inserted into the
cylinder which isin contact with the sample, the other end (approx. 65% of its length) being fitted to
the ultrasonic transducer. To avoid excessi ve heeting of the transducer, the externa end of the buffer
is submitted to an uniform air-draft (Fig. 1a).

HEI0 TRANSIUCER
COUFLIN G FLUID
Fig. 1a. The oven with the ceramic cylinder Fig. 1b. Transducer — buffer-rod
and the transducer-buffer-sample — sample system.

(TBS) system.

The Al buffer-rod has low acoustic attenuation; e even grooves were performed dl over its
lateral surface in order to minimize acoustic losses due to lateral reflections. The ultrasonic energy
concentration on the sample is enhanced through the 30°-cut truncated cones profile on the sampling
end (Fig. 1b). A chromium-al uminium thermocoupl e is inserted at the center of the examined sampl e
in an orifice practiced in the ceramic filter shidding the sample The inside diameter of the ceramic
filter fits the sample diameter. T 4203 silicone paste was employed to provide the acoustic coupling of
the buffer with the sample. On the fixed-mark interferometer based on the determination of ultrasound
propagation velodities, water exhibits a2.5 m/s ve ocity variation per C°. Therefore, ve ocity stability
requirement was imposed. That problem was solved by replacing water with a mixture of water (80%)
and ethanal (20%).

The ultrasonic velocity data and the conversion outcomes were plotted against temperature,
employing three methods: (experimental method); method T, — empirical method using adiabatic
approximation (4) and method T, — empirical method using the therma coefficient of eastic constants
(relation 11). The eastic constants were determined in the temperature range 273 K —900 K.

3. Results on n-Si sample

The n-Si sample has the following parameters: p=2330 Kg/m?®, a111 = 13 mm, g0 = 13 mm
with diameter @ = 11.5 mm and N = 6.8 10" cm and resistivity = 0.52 Q cm. Using the adiabatic
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approximation (method T,) we obtai ned the following empiricd reations for the dastic constants of
semiconductor Si and this results were corroborated the theoretical relation issued by Simon [6]:

C11(TK) = 172.6 (1 - 70.3x10°T)

C(TK) = 66.2 (1 - 94.4x10°T) (18)
Cu(TK) =82.4 (1 - 80x10°T)

Table 1.

0K 273K
6] [ (27 [ 128 [ we | (19 [ [26] | [17] [ we
Cu | 166 |1675| 165 | 172 | 167.4 | 165.7 | 165.6 | 167.7

Cu | 801 | 80.3]| 79 | 84 | 796 | 796 | 795 | 80.7
Cp, | 642 | 648 | 645 | 662 | 652 | 639 | 639 | 652

Authors

Ci? values for the 0 K and 273 K, compared to other authors.

We determined from the slope of the ultrasound vdocity as a function of temperature, the
velocity temperature coefficient /v Av/AT and knowing the thermal coefficient of linear expansion a
for the Si sample, we find the thermal coefficient of dastic constant 1/C;; AC/AT. So, by applying

equation (11) where Ci? (T) are dastic constants values at 273 K, we can give empirical method T:

Cu(TK) = 167.7 (1 - 64x10° AT) (19)
Cus(TK) = 80.7 (1 - 58.4x10°AT)

where AT =T -273 K.

We can conclude that for the Si sample we can draw three plots against temperature for the
dastic constants: the experimentd, the adiabatic approximation (method T;) and the therma
coefficient of the dastic constants (method T,). Using method T, we can determine only Cy; and Caa,
which are directly derived from v, and vr. To prove that the values, which were found for C;; at OK
through extrapolation and those for 273 K, are valid, we give in Table 1 the results obtained by of
other authors. Fig. 2 a,b,c for Si, shows the plots of eastic constants C;; against temperature made by
these three methods, above mentioned.

a C
b 66 -
,&\170— . ——Bp| 65
o It I R I S S I S, | R
Qo Q7 &
= 1654 T QO - T2| g el
8 -T2 36 5, S 62
o
160 ! 55 61
273 30 373 40 473 523 623 73 83 273 300 373 40 473 53 63 723 83 60
T ® 275 00 972 00 a7a 523 620 T2 e

Fig. 2. Temperature plots of the elastic constants for each of the three methods.

The anaysis of the plot shows that the curves drawn from experimental determination present
the same shape and monactonically decrease with empirical methods T, and T». the distinction at Cy;
consist in the fact that at lower temperatures (T < 523 K) a dlight deviation appears between theory
and experiment which disappears with increasing temperature. For Cy, a slight deviation appears
between experiment and method T, towards higher temperatures (T > 523 K). Regarding Ci,, the
experimental and method T, are in the same good approximation. With the exception at some slight
deviations we can say that there is an identity between the three methods found, which prove the
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validity of the empirica methods T, and T, and the exactness of the values of the thermal coefficients
of éastic constants.

4. Discussion

4.1. Nonlinearity parameter, thermoe astic modulusand bulk modulus

6 800 -
451;4'—"—"—_' " e 1ws 750
@3¢ oo —+—+—+—* | 5 110Sj
2y = = = = s ®—8—8 |, 111Sj
14
0

700

M (MPa)

650

273 300 373 400 473 523 623 723 823 600
TK) 273 300 373 400 473 523 623 723 823 T(K)

Fig. 3. Dependence of the nonlinearity Fg. 4. The semilogaritmic plot of temperature

parameter 3 on the temperature for the dependence of the termoelastic modulus M.
three crystallographic.

Fig. 3 shows the dependence of the nonlinearity parameter B on the temperature for the three-
crystallographic axis for n-Si. For the n-Si sampl e the plots show that the highest values are obtained
for the [110] axis. Temperature variations are insignificant after the presented orientation, thus after
[100] itisjust 9.2%, after [111] is 8.5% and after [110] isjust 6.8%.

1,2

1
0,8
0,6
0,4
0,2

0
273 300 373 400 473523 623 723 823
T(K)

B (MPa)

Fig. 5. Temperature plots of the bulk modulus.

For n-Si the semilogaritmic plot of temperature dependence of the thermoelastic modulus M
is shown in Fig. 4. The small deviations between the extreme temperatures for Si (0.2%) show that
this parameter isinvariant to temperature variation. Fig. 5 shows the dependence of the compressional
modulus bulk B on the temperature; this parameter appears constant for n-Si.

Table 2. Valuesfor the nonlinearity parameter Ko, K3 and 3 by the three axes at 300 K.

[100] [110] [111]
Kz 1.69 1.96 2.05
Ks -8.25 -14.74 -1237
B 1.88 447 3.03

5. Conclusions

The vaues of the nonlinearity parameter B, K, and K3 by the three axes at 300 K for Si are
presented in Table 2 and can be compared with the values reported in [9]. For the temperature
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variation of the nonlinearity parameter, we consider that the elastic constants of the 3 order are
temperature independent. The sameisvaid for K; valuesin [9].

Regarding dastic constants C;j we can conclude as it follows:
- the empiricd relations found by the two methods (T, and T,) present similarly graphics to those
obtained by experimental determination;
- thereisasmall variation at C,; and Cy4 in the graphics according to the method T, around T = 523 K
while maintaining it almost constant in therest of temperature range;
- the compressi on bulk modul us appears constant for n-Si;
- we have determined the thermal coefficients of eastic constants for n-Si;
- we have found empirical relations by the two methods of C; variation for n-Si in the considered
temperature range and we consider that by this assumption which have been made we can extend the
whol e range of temperature;
- the temperature variations for the nonlinearity parameter are insignificant by the axes (9.2% [100],
8.5%[111]);
- we have calculated the dastic anisotropy factor and we observed that this factor is a constant in the
temperature range and is equa to 1.54+0.06 being in good agreement with those found in literature
[14], [15];
- we considered that the anisotropy factor is independent of the temperature for the n-Si and for al
dements of the cubic system.

The differences, which appear in the vaues of the parameter found by us and those from
literature are due to the following causes:
- the conversion from the propagati on vel ocity in eastic constants [11];
- multiple reflections occuring as a result of the increase of the ultrasound beam path because of the
use of a buffer-rod;
- the influence of the nonparallelism of the latera surfaces of the buffer-rod and of the samples.
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