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 The Wentzel, Kramers, Brillouin (WKB) approximation is used for calculating energies and 
tunneling probabilities through potential which varies slowly over a distance. Also, this method is one 
of the most used approaches for approximating the TE and TM mode spectra in optical waveguides 
[1-3]. The errors of effective refractive indices of TE modes determined by this  approximation were 
investigated by Janta and 

�
tyroký [1] for buried and unburied gaussian index profiles. 

 Recently [4], a modified Hermite – Gauss – exponential (MHGE) trial field has been used for 
obtaining the propagation characteristics of single – mode inhomogeneous planar waveguides, based 
on the variational method.  
 In this short communication the WKB method [1] and a variational method [4] are used to 
determine the propagation constants in an Er 3+ - doped Ti : LiNbO3 waveguide with the reconstructed 
unburied gaussian refractive index profile (in depth and width) from the near field measurements [5]. 
The recording of the near field was performed using a standard optical fiber placed at a distance < 3λ, 
λ = 1.53 µm being the wavelength of the laser. For the displacement of the optical fiber we used an 
electrostrictive actuator controller commanded by a computer. In this case we have an inhomogeneous 
optical waveguide where the refractive index varies slowly over a distance comparable to a 
wavelength.  
 The scalar – wave equation of the waveguide is given by 

 
where n(x,y) is the refractive index profile, β is the propagation constant and k0 is the free space wave 
number. We take a separable variable solution for the transverse electric field Ψ(x,y) of the mode, 
[Ψ(x,y) = Ψ(x) Ψ(y)] and obtain two unidimensional wave equations 
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where the refractive indices n(x) and n(y) are given by the relations [5] 

 
∆x = 0.0012 and ∆y = 0.00108 are a measure of the increase in refractive indices, dx = 3.5 µm and dy 
= 6.5 µm are the effective depth of diffusion and  ns = 2.27 is the index of the substrate for a 
wavelength of λ = 1.53 µm. From these parameters we compute the normalized frequencies Vx and Vy   

 
where n1x = ns + ∆x = 2.2712 and n1y = ns + ∆y = 2.27108 are the maximum refractive indices. 
 The adimensional form of the equations (2) can be written as eigenvalue equations 
 

 
where nax = ns, nay = 1, X = x / dx, Y = y / dy, Ux

2 = dx
2 (k0

2 n1x
2 - βx

2), Uy
2 = dy

2 (k0
2 n1y

2 - βy
2) and bx = 

1 - Ux
2/Vx

2, by = 1 – Uy
2/Vy

2 are the normalized propagation constants. Ux and Uy are the modal 
parameters of the index profile. 
 The trial MHGE wave function ψ(X) is given by [4] where p1, p2, p3 are variational parameters 
and the relations (6) satisfy the boundary conditions. We have similar relations for the variable Y. 
 The WKB – analysis yields the effective refractive index Nm of the mth mode as the solution of 
TE mode equations [1, 2]  
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where m = 0, 1, 2, …, M – 1 is the mode number, M is the total number of modes, xt and yt are the 
turning points defined by the relations 

 
nax = ns , nay = 1 are the superstrate refractive indices. 
 Our modes are unburied [1] because we have a single real turning point for each x or y 
directions. We have real solutions of the equations (7) only for m = 0, which confirm the single mode 
behaviour of our waveguide. The normalized propagation constants bmx and bmy are given by the 
relations 

 

 
Fig. 1. Measured intensity field (solid line) I and superposition between the processed 
smoothing  curve  (dotted  line)  and  variational  calculated  (dashed  line)  intensity fields,  
                                                      versus the width distance x. 
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Fig. 2. Measured intensity field (solid line) I and superposition between the processed 
smoothing  curve  (dotted  line)  and  variational  calculated  (dashed  line)  intensity fields,  
                                                 versus the depth distance y. 

 
 
 We have calculated for an Er 3+ - doped Ti : LiNbO3 waveguide with the reconstructed 
unburied gaussian refractive index profile (in x - width and y - depth) from the near field 
measurements [5], the modal parameters Ux , Uy  of the index profile, the effective refractive indices 
Nx ,Ny of the m = 0 mode, the normalized propagation constants bx , by, and the propagation constants 
βx , βy , by using WKB (Nx = 2.27009073, Ny = 2.27000443, bx = 0.0756098, by = 0.0041019, βx = 
9.32248 µm-1, βy = 9.32213µm-1) and MHGE variational (Ux

2 = 0.9961, Uy
2 = 3.4226, Nx = 2.27014, 

Ny = 2.27002, bx = 0.1150, by = 0.0203, βx = 9.3227µm-1, βy = 9.3222µm-1) methods.  
 The variational values of the calculated parameters are more accurate in comparison with those 
given by WKB method [4] due to the abrupt change in the refractive index at x = 0, y = 0 [2]. One 
observe that in both approximations βx  > βy. 
 A comparison between the measured [5], processed [5] and calculated (variational) intensity 
fields is shown in Fig. 1 and Fig. 2 (the intensity field I is proportional with ψ2). The discordance 
from Fig. 1 is only from the X< 0 contribution to the wavefunction. 
 The agreement between the measured [5] and our variational intensity is quite good in the range 
of the maximum intensity fields. 
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