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Three algorithms are presented to determine the distributions of electric potential and charge 
density in the case of an injected space charge in a gas. We consider electrode configurations 
characterised by a sharp electrode injecting charge from the restricted zone where the 
electric field takes very high values and induces a corona discharge. For the point-plane 
configuration with a needle having the shape of an axi-symmetric hyperboloid, a change of 
coordinates transforms the domain of integration into a rectangle, which facili tates the use of 
finite differences or finite volume methods. For a general axi -symmetric shape of the needle, 
a finite element method is used to solve the Poisson equation. In these two cases, an adapted 
method of characteristics makes it possible to solve the charge conservation equation in a 
way which does not smooth out very high lateral gradients of charge density. In a third 
approach developed first for the blade-plane electrode configuration, the mesh is redefined 
with each of the successive approximations. This technique also leads to predictions of 
current density profi le on the plane very similar to the measured ones. 
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 1. Introduction 
 

 In many engineering devices and processes using corona discharge in a gas, the injecting 
electrodes are not wires and the discharges occur in restricted zones of the electrode where the 
electric field takes high values. In such a case the determination of the field and charge distributions 
based on a simplified model of the corona discharge are not easy because the boundary condition 
derived from Kaptzov approximation concerning the field value on the injector cannot be used for 
electrode shapes other than thin cylinders or spheres [1,2]. 
 We consider here this problem for the typical point-plane and blade-plane configurations. 
We propose the use of an injection law leading to realistic field values in the injection zone. We also 
focus on the way to solve the charge conservation equation in order to predict the quasi 
discontinuities observed in practice. 
 
 

 2. Formulation of the problem 
 

 The corona model is simplified by neglecting the thickness of the ionisation layer [2] and 
considering only one ionic species, moving with a constant mobility. Generally in the papers 
describing such a model of the corona discharge [1-6], the equations for the electric field (Poisson) 
and space charge (charge transport) are solved iteratively and many di fferent numerical techniques 
have been used to obtain the solution. The crucial point concerns the boundary conditions for the 
space charge density on the corona electrode [1,7]. 
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 2.1 Governing equations 
 
 The Poisson equation relates the electric potential V with the charge density ρ: 
 

ε
ρ

−=∇ V2                                                                     (1) 

 

where ε � is the ambient gas permittivity. V and ρ also satisfy the charge conservation equation, 
which, when using (1), can be expressed as: 
 

ε
ρρ

2

−=∇⋅E          with         VE −∇=                                           (2) 

 

Eq. (2) is valid under the assumptions that i) the medium conductivity is zero, ii) the ions diffusion is 
negligible and their mobility is constant iii) the convection velocity is much lower than the dri ft 
velocity of charge carriers. 
 

 2.2 Boundary conditions 
 

 The corona (Γinj) and ground (Γcoll) electrodes are equipotential, which leads to: 
 

V = Vappl on  Γinj, V = 0 on Γcoll                                 (3) 
 

Only one boundary condition is associated with � ; from the mathematical viewpoint the charge 
density must be given on the injector Γ inj [7]. Physically the corona discharge depends on the field 
strength and a way to retain this decisive dependence is to prescribe an injection law ρ  = f(E) 
depending on the field value at the considered point on the corona electrode. The simplest injection 
law is: 

)( sEE −= αρ     for   sEE >                                                   (4)         
 

where α is a constant and Es is the local field value corresponding to the local corona onset. In 
practice, retaining very large values for α leads to a generalisation of Kaptzov condition [8] (the 
threshold field can be defined from Peek’s law [9] with the local curvature of the electrode). By 
taking appropriate references for the different variables, the problem is, in non dimensional form: 
 

ρ−=∇ V2                                                                            (5) 
 

1)/1( =∇⋅ ρE     with     VE −∇=                                                       (6) 
 

with the boundary conditions: 
 

injss PEEPEPEAPPV Γρ ∈>−== )()]()([)(,1)(                      (7) 
 

collPPV Γ∈= ,0)(                    (8) 
 

 
 3. Change of variables for hyperbolic needle – plate configuration 
 
 Assuming an axisymmetric needle of hyperbolic shape, it is possible to treat the problem by 
using hyperboloidal coordinates defined by: 
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where c = (1+R)1/2, R being the radius of curvature at the needle tip. The interest of this change of 
variables is to transform the domain of integration between the needle (tip at z = -1) and the plate    
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(z = 0) into a rectangle, which facil itates the use of finite di fference methods to solve the two 
equations which write, in θ − ξ coordinates: 
 

( )ρθξθξ
ξ

θξ
ξθ

θξ
θ

222 cossinhcossinhcossinhcossinh +−=��
�

�
		



�

∂
∂

∂
∂+�

�

�
	



�
∂
∂

∂
∂

c
VV

         (10) 

 

( )θξ
ρξξρθθ

222 cossinh
11 +−=��
�

�
		



�

∂
∂

∂
∂+��

�

�
		



�

∂
∂

∂
∂

c
VV

                                    (11) 

 

 Defining a rectangular mesh, the Poisson equation (10) is converted into classical finite 
difference equations solved by the over-relaxation technique for a given space charge distribution. 
For a given potential distribution, (11) is a first order equation which can be solved by the method of 
characteristics (MOC). The local treatment on the elementary rectangles of the mesh leads to a rather 
important numerical diffusion which prevents to obtain steep charge density gradients as observed 
experimentally. This method has been adapted to lead to better predictions: from each node of the 
mesh the characteristic l ine is determined upwards to the injecting needle; at the intersection point 
the injected charge density is calculated from the condition (7) and the ρ value at the node is then 
derived through a simple analytic expression.  
 Taking the harmonic potential as the starting V distribution, the solution is determined by 
successive approximations (an under-relaxation technique is necessary to obtain convergence of the 
iterative process and particular care has been devoted to the practical use of the injection law). Fig. 1 
shows a charge distribution in the θ − ξ plane. In this plane the harmonic field lines are vertical 
segments and it is clear that there is a very marked influence of the injected space charge on the 
spreading of the field lines (this case corresponds to an applied voltage 3 times greater than the 
corona discharge inception voltage Vs). This figure also exhibits the very steep gradient in ρ with the 
existence of a separatrix between the charged and the charge free zones. This quasi-discontinuity is 
also visible on the radial distribution of current density j on the plate z = 0 (Fig. 2). Note that the 
drop of j occurs at a radius grossly equal to the needle-plate distance.  
 

                 
 

         Fig. 1. Equi-charge density lines in θ - ξ plane                  Fig. 2. Current density profi le on the plate z = 0 
          (the horizontal l ines ξ = 0, ξ  2.05 represent                        facing the needle as a function of the distance 
          the  injecting  and  collecting  electrodes).                            from the axis x = y = 0. Hyperbolic needle of 
           Hyperbolic needle of radius of curvature                                radius of curvature R = 0.005, Vappl = 3 Vs 
            R =0.005, Vappl = 3 Vs (90 × 140 nodes).                                                    (90  ×140 nodes). 
 
 

 The distribution of electric field along the axis, from needle tip to the plate, is shown in    
Fig. 3 (in this figure the field has been non dimensional ised with respect to the threshold voltage Vs). 
It can be seen that the field departs from the harmonic field values above some distance from the 
needle which decreases as the space charge and applied voltage increase. 
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Fig. 3. Variations of the electric field Ez along the axis of symmetry Oz for various values of  
  the applied voltage. Hyperbolic needle of radius of curvature R = 0.005, (90 × 140 nodes). 
                                                          
 

 4. Numerical technique for a needle of any shape 
 
 For a non hyperbolic shape of the needle, the change of variables (9) gives a domain in the 
θ - ξ plane which is not simply a rectangle; this would result in rather intricate expressions when 
retaining the finite difference method. A more general approach [10] has been developed, based on 
three numerical techniques: the Boundary Element Method (BEM), the Finite Element Method 
(FEM) and the Method of Characteristics (MOC). A hybrid BEM-FEM technique is used to 
determine the electric potential satisfying (5): the solution of the Laplace equation is obtained by the 
BEM and a structured mesh is defined from the corresponding equipotential and field l ines; then the 
modification of the electric potential associated with the space charge is determined by the FEM 
[10]. Once the new field distribution is obtained, the MOC is used to solve equation (6); in practice 
the charge density ρ is determined on the injector and then along a series of field lines issuing from 
the needle electrode and the ρ values at the nodes are obtained from interpolation [10]. Both 
problems associated with eqs. (5) and (6) are solved iteratively unti l the convergence is reached for 
all involved variables : potential V, space charge density ρ and charge density ρs(P) on the electrode 
surface. 

                                      
 
Fig. 4. Field lines in the charged and  the  charge           Fig. 5 – Magnified view around the needle tip of 
Free   zones.   Cylinder    (φ = 2 mm)   and  cone            the field lines showing that the  charge  injection 
Needle with a spherical cap of radius R =100 µm,          emanates from a part of  the spherical cap  (same 
       distance d = 30 mm, Vappl = 15 kV.                                                 solution as in fig. 4). 
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 The Figs. 4 to 7 exhibit some results obtained for a practical set-up using a needle with a 
conical end smoothed by a spherical cap having a radius of 100 µm. Figs. 4 and 5 give the shape of 
the field lines : beyond a first zone with grossly radial field lines, the strong space charge induces a 
marked divergence of the field lines which spread out; the separatrix between the charged and 
charge free zones reaches the plate at distance from the axis nearly two times the needle-plate 
distance. By taking the classical Peek’s formula for the field value of corona discharge threshold and 
applying relation (4) with very large α � values, the current density j �  on the grounded plate is fairl y 
well predicted (Figs. 6 and 7). In particular the predicted radius of the space charge zone (where j 
drops to zero) is close of the measured one (see also [10]). 
 

                        
 
Fig. 6. Current density profile on the plate facing              Fig. 7. Current density profile on the plate facing 
the  needle  as  a  function  of  the  distance  from              the needle as a function of the distance from axis 
  axis  (R = 20 µm,  d = 20 mm,  Vappl = 8 kV).                         (R = 20 µm, d = 20 mm, Vappl = 10 kV). 
 
 
 5. Mesh redefinition technique 
 
 In sections 3 and 4, particular ways of solving the charge equation (6) have been used in 
order to  avoid the numerical diffusion existing when solving the first order equation (6) with a fixed 
mesh (the ρ distribution then does not exhibit the quasi-discontinuity revealed by Figs. 2, 6 and 7). 
Another technique suggested for the space charge problems [11] consists in redefining the structured 
mesh at each iteration step. Here we define the new nodes as intersections of the field and equi-
potential lines of the new approximation of the potential. The nodes on the field lines are defined by 
predetermined values of the potential. In this way, (6) is easily (and rapidly) integrated along the 
characteristics (the finite volume method can also been used to obtain ρ).  
 As in section 4, at the iteration step #k, the finite element method is used to solve the 
Poisson equation and the potential is obtained at the nodes of the structured mesh #(k-1). The field 
lines are determined not directly from the piecewise linear approximation of V but from local linear 
approximations of the potential by least squares method applied to the 6 nodal values of two 
neighbouring quadrangles. This method is sensitive to the space charge. For high values of the 
injected charge density, if the nodes on the injecting electrode are not redefined, after some iterations 
the field l ines exhibit a strong divergence in the charged zone (Fig. 8) and the computation fails 
(numerical instability). 
 To obtain a more regular mesh, it is necessary to redefine the nodes position on the injecting 
electrode. This is done through relations involving the nodes separations on the plane (where the 
electrical lines arrive) at step #(k-1) and predetermined separations. Furthermore an under-relaxation 
process is used to damp out oscillations of successive occurrences of the mesh.  
 With this technique we build a new structured mesh after each new determination of the 
potential until convergence of the iteration process. Several distributions of predetermined potential 
values and nodes separations on the plane were tested in order to obtain a regular enough mesh with 
fine distribution of nodes in the zones of strong field and charge density. 
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 By adequately choosing the various parameters influencing the rate of convergence, we 
obtained good convergence of the algorithm for the 2-D blade-plane configuration (the mean relative 
difference between two successive approximations of the charge density distribution becomes lower 
than 10-4 after 40 to 50 iterations for a 50×50 mesh). The MOC technique with redefinition of the 
mesh gives very satisfactory results : the current flowing from the blade to the plate is conserved 
(fluctuations ~ 10-3). In the case of a rectangular distribution for ρinj, there is no diffusion of charge 
across the field line separating the charged and charge free zones and Fig. 9 clearly shows the 
sudden drop of current density on the collecting plate. 

                        
Fig. 8 . Mesh deformation after several iterations                 Fig. 9. Current density profi le on the plane for a 
for fixed nodes on the injecting electrode (blade                   blade  of  hyperbolic  cross - section  (R  = 0.02). 
      of hyperbolic cross-section, radius of                              Rectangular distribution of  charge  density   ρinj 
                curvature R = 0.02).                                                      on the blade ( ρmax = 15, 31×31 mesh). 
 
 
 6. Conclusions 
 
 The technique of mesh redefinition is very well suited for the problem of electric field 
modified by an injected space charge. It has two noticeable advantages: i) the resolution of the 
charge conservation equation is very straightforward; ii) the mesh immediately gives the 
equipotential curves and the field lines. This approach is under development and should give the 
solution involving the injection law as expressed by (4). The resolution by successive 
approximations should be very similar to the one used in the two other algorithms (§3 and §4). 
 Last but not least, the mesh redefinition approach should be extended to three-dimensional 
configurations without major difficulty and without marked changes. 
 
 
 References 
 
  [1] K. Adamiak, P. Atten, Actes du congrès S.F.E. 2002, Congrès 2002 de la Société Française  
        d'Electrostatique, Toulouse, 3-4 juillet 2002, 8 pages (CD-ROM). 
  [2] P. Atten, K. Adamiak, V. Atrazhev, 2002 Annual Report, Conference on Electrical     
        Insulation and Dielectric Phenomena, Cancun, Mexico, pp. 109-112, October 2002. 
  [3] J. R. McDonald, W. B. Smith, H. W. Spencer III, L. E. Sparks, J. Appl. Phys.  
        48, 2231 (1977). 
  [4] S. Cristina, G. Dinell i, M. Feliziani, IEEE Trans. on Ind. Appl. 27, 147 (1991). 
  [5] J. L. Davis, J. F. Hoburg, J. Electrostatics 14, 187 (1983). 
  [6] P. L. Levin, J. F. Hoburg, IEEE Trans. Ind. Appl. IA26, 662 (1990). 
  [7] P. Atten, Revue Gén. Electr. 83, 143 (1974). 
  [8] N. A. Kaptzov, Elektricheskiye Yavleniya v Gazakh i Vacuume. Moscow: OGIZ, 1947. 
  [9] A. M. Meroth, T. Gerber, C. D. Munz, P. L. Levin, A. J. Schwab, J. Electrostatics  
        45, 177 (1999). 
[10] K. Adamiak, P. Atten, J. Electrostatics 61, 85 (2004). 
[11] M. Abdel-Salam, Z. Al-Hamouz, J. Phys. D: Appl. Phys. 26, 2202 (1993). 


