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Statistic and matrix mixtures were modelled using a FEM based software from the ANSOFT 
Corporation and their static permittivity was computed. The study presented in this paper 
emphasizes the influence that shapes, dimensions, distances between particles, fill ing factor 
and space distribution of inclusions have upon the static average permittivity of the 
composite dielectrics. The results of the computations are compared with analytical solution 
obtained from well-known formulas.  
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 1. Introduction 
 

Considering the rising importance of composite materials for insulating systems, a precise 
study of their dielectric properties is required. [1] 

An often requirement of engineering consists in manufacturing new materials, with 
improved properties, for specific applications. This goal can be achieved by designing some 
dielectric mixtures specially fitted for the desired application. The main problems that need to be 
studied regard: finding the average permittivity of the mixture when the permittivities and 
concentrations of the homogenous components are known; studying the relaxation phenomenon that 
appear in mixtures in order to locate the peaks of dielectric losses. Therefore, the possibility of 
numerical model composites can be a very useful tool. 

The model that we used is called MAXWELL 2(3)D, and it’s based on the Finite Element 
Method. The static permittivity of mixtures (statistical and matrix mixtures, with di fferent shapes, 
space distribution, sizes and concentrations of the inclusions) was computed using two di fferent 
methods. Where analytical solution is available, a comparison is done with the numerical results. 

 
 
2. Theoretical approach 
 

Dielectric properties of mixtures depend on the properties of the components. This section 
presents the computational methods that we used. 

 
 

   2.1 Numerical approach 
 

The key parameter, which should be obtained for calculation of the dielectric properties of a 
mixture, is the electric field distribution ( )yxE ,  within a domain. Once this one is known, it can be 
used in different ways. The equation to be solved in order to obtain this parameter is known as 
Gauss’  law [1, 4]: ( ) ( )yxyxEr ,),(0 ρεε =⋅∇ , where ( )yx,ρ  represents the charge densi ty on the 

domain. This equation was solved using a FEM based software from the ANSOFT Corporation 
named Maxwell 2D. The average permittivity of the composite can now be computed using one of 
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the following two methods: 

1. The first method (M1) requires the calculation of the average electric field E
~

 and electric 

flux density D
~

 over the entire computational domain, with: 
 �
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The average permittivity can now be calculated with the formula: 
 

m
D

E
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2. The second method (M2) requires the calculation of the electrostatic energy over the 
computational domain, and the permittivity is obtained from: 
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The two methods mentioned above led to the results that will be presented in a following 
section of the paper. 
 
 

2.2 Analytical approach 
 
In order to compute the average permittivity of mixtures, some formulas are available, 

formulas based on different models of non-homogenous dielectric. The analytical solutions, obtained 
with the following formulas, were compared with the numerical ones. 

For statistical mixtures, the following formulas are available [1, 5]: 
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and for matrix mixtures: 
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with d being the dimension of the space (d=2 or 3). 
 
 

3. Geometrical model 
 

First, statistical mixtures were considered. The disordered media was considered to be a 
crossword puzzle-like structure. The networks were composed of 16 X 16 cells, and the variation of 
the permittivity was studied as a function of the number (fil ling factor) and distribution of 
inclusions. Fig. 1 displays the considered structures for the lowest and largest filling factor, and also 
some examples of random structures having the same fi lling factor. 
 In order to establish the influence of size and shape of the inclusions, we considered 
structures with the same filling factor (yi =0,1) bat with quite different cylinder radius (Fig. 2,a) and 
structures with spherical, ell iptical or cylindrical inclusions (Fig. 2,b). For the last case, the 
modelling was three-dimensional. 
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              (a)           (b)          (c)        (d) 

 
Fig. 1. Structures with minimum (a) and maximum (b) number of inclusions. Structures with  
                                    random distribution of the inclusions (c) and (d). 
 

 

                        
           a       b 

Fig. 2. Structures with: a – cylindrical inclusions of different size for the same fi lling factor;      
                               b – spherical, elliptical and cylindrical inclusions. 

 
 

Afterwards, ordered structures were considered, the mixture being composed of spatially 
distributed spherical inclusions in a host media. The host media forms a matrix (16 X 16 elements) 
with square lattice, a fragment being plotted in Fig. 3. 
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    Fig. 3. Square lattice structure. Grey circles         Fig. 4. Boundary conditions assigned to the model. 
represent the inclusions distributed in the host media.       
 
 

The filling factor of this structure, y, varies from 0,1 up to the maximum possible value 
0,785 (when the diameter of the inclusion equals the side of the square cell).  

The boundary conditions assigned to the models are presented in Fig. 4 (the material was 
considered to form the dielectric of a plane capacitor, with constant and uniform internal electric 
field). The host material has the permittivity 41 =rε  and the inclusions 5,62 =rε .  

 

 
4. Results and discussions 
 

The goals of this paper consist in evaluating the average permittivity of mixtures and 
analysing the influence of various factors. The values obtained for statistical and matrix mixtures – 
computed analytically and numerically for different concentration of the fil ler– are emphasized in 
Table 1.  
 One can realize that values computed with M1 are larger, and also closer to the analytical 
solution, than those obtained with M2. For statistical mixtures, the minimum error is established 
with respect to Lichtenecker formula (0,03% for yi = 0,039 and 0,36% for yi = 0,5) and the 
maximum error with respect to Landau - Lifshitz formula (0,12% respectively 0,62%). For matrix 
mixtures, the errors with respect to Maxwell–Wagner formula are 0,38% for yi=0,1 and 1,1% for 
yi=0,5. 
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Table 1. Values of mε  for statistical and matrix mixtures and different concentration of the filler. 
 

Statistical mixtures 
Lichtenecker Landau - Lifshitz Samahadze M1 M2 Concentration 

of inclusions 
4.076584519 4,082902 4,079335 4.0778179 4.062402 0.0390625 

4.234180523 4,252145 4,240883 4.2352363 4.188535 0.1171875 

4.482071175 4,514677 4,491119 4.4846462 4.39797 0.234375 

4.65534282 4,69557 4,663849 4.6659871 4.554538 0.3125 

5.099019514 5,149284 5,10119 5.1173728 4.978366 0.5 
Matrix mixtures 

Maxwell - 
Wagner 

Error Landauer– M1 Error Landauer–M2 M1 M2 Concentration 
of inclusions 

4.210526 0.001342 0.004819 4.19467 4.151041 0.1 
4.888889 0.004415 0.015104 4.83679 4.683629 0.4 
5.132075 0.004792 0.016453 5.075234 4.900267 0.5 
5.384615 0.004716 0.016324 5.328452 5.14572 0.6 
5.878365 0.002883 0.01022 5.846789 5.719308 0.785 

 
The results of the study regarding the influence of shape and sizes of the inclusions are given in 

Table 2. 
 

Table 2. Values of mε  for different shapes and sizes of the inclusions. 
 

Method Inclusions’  shape Nr. of cylindrical inclusions in a structure for yi = 0,1 
 sphere cylinder ellipsoid 33 80 100 130 200 
M1 4.6297 4.59880 4.61337 4.1942 4.19521 4.19441 4.19464 4.1943 
M2 4.5332 4.46465 4.53556 4.1506 4.15217 4.15082 4.15112 4.1505 

 
One can notice that lower values for εm are obtained for the cylindrical shape of the inclusions, 

whereas the higher values belong to the spherical shape. Meanwhile, the size of the cylinder radius has 
little or no influence on the values of εm (the error between the maximum and minimum values is about 
0.0023% for M1 and 0.0024% for M2). 

Finally, we considered 8 different distribution of the inclusions, for yi = 0,1. The results are 
given in Table 3. One can see that the influence of space distribution is not significant.  

 

Table 3. Variation of mε  for different space distributions of inclusions (numerical results). 
 

Structure’s number 1 2 3 4 5 6 7 8 
M1 4.484646 4.480265 4.482976 4.480672 4.490875 4.490211 4.571502 4.413095 
M2 4.397970 4.389486 4.395266 4.390189 4.407595 4.408347 4.556962 4.285807 

 
 

5. Conclusions 
 
The numerical computation indicates that Lichtenecker’s formula (for statistical mixture) and 

Maxwell – Wagner’ s formula (for matrix mixtures) are the most appropriate for evaluating the average 
permittivity. The numerical method M1 is more accurate that M2. The error increases along with the 
increase of concentration. For the same value of the filling factor (yi = 0.5) the static permittivity of 
statistical mixtures is larger than that of matrix mixtures (relative error 0.82%). The influence of shape, 
size and space distribution of the inclusions is not significant (errors below 6%). 
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