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Eop  for 

acoustic and optical lattice vibrations, as part of total Grüneisen’s parameter in a solid with 
polyatomic basis is analysed in the frame of the Debye-Einstein approximation. The results 
are obtained using Debye’ s )(TDΘ  and Einstein’s )(TEΘ temperatures and the separated 

theoretical and experimental contributions of the isochoric specific heats )(TC ac
V  and 

)(TCop
V  for acoustic and optical vibrations, respectively. Both Grüneisen’s parameters 

decrease with the temperature and this behaviour is discussed in the frame of competition 
between the temperature dependence of vibrational frequencies due to volume change and 
lattice anharmonicity effects. There are compared the theoretical curves and experimental  
curves in the case of undoped bismuth sil icon oxyde (Bi12SiO20) crystal.  
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1. Introduction 
 
Introduced many decades ago to describe some thermodynamic coefficients (adiabatic and 

isothermal compressibility, thermal expansion, specific heats and others) Grüneisen’s parameter is 
stil l of interest being treated in various theoretical and experimental papers or monographs [1-6]. 
During the time, various physical problems have been connected to mean Grüneisen’s parameter 
defined by 
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( q
�
 is the wave vector and λ  is the polarization branche of the i -th vibrational frequency iω ), iC  is 

the specific heat of i -th vibration mode and V is the crystal volume. Thus, the mean Grüneisen’s 
parameter γ, referred in this paper as Grüneisen’s parameter, is consistent with the quasiharmonic 
approximation [1] being connected with the isochoric thermal expansion coefficient Vα , the bulk 
modulus TB and the speci fic heat VC  (or isobaric corresponding coefficients). 

It is well-known that a temperature increase alters the equil ibrium volume due to the thermal 
expansion and simultaneously increases the vibrational amplitudes of the atoms about their 
equil ibrium positions. The effect on the frequency of a change in the temperature T , at constant 

pressure P, is thus described by 
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“ implicit”  contribution accounts for the volume driven frequency changes due to thermal expansion 
and the second one the “explicit”  contribution accounts for the changes in the vibrational 
amplitudes, and thus for the phonon-population driven anharmonic frequency shifts at constant 
volume [7]. Some thermodynamic properties as the thermal state equation, the isobaric specific heat  

)(TCP  and the linear expansion coefficient )(TPα of a solid with polyatomic basis have been 
analysed theoreticall y in the frame of the Debye-Einstein approximation, taking into account 
simultaneously, the contributions of acoustic and optical vibrations [7,8]. The theoretical difference 

TCCC PVVP γα=− 3 between the isobaric and the isochoric heats has depends on the parameters: 

Debye’s DΘ , Einstein’s EΘ  temperatures and Grüneisen’s acγ  and opγ  parameters. However, 
because the experimental data give )(, TC exP , a comparison with the theoretical results implies often 

to know the separate contributions of the experimental isochoric specific heats )(, TC ac
exV and 

)(, TCop
exV . This problem has been analysed in [9] for the case of undoped  Bi12SiO20, (a crystal with 

polyatomic basis) in the frame of the Debye-Einstein approximation, considering that both Debye’s 
DΘ  and Einstein’s EΘ  temperatures depend themselves of the temperature T . In fact, this means 

that implicitly the vibrational anharmonicity has been taken into account in a semi-empirical way 
through )(TPα and ( )Tγ . 

 The purpose of this work is to study the temperature dependence of acoustic, optical 
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� ΘΘγ
TT

ED ,  Grüneisen’s parameters obtained in the Debye-Einstein 

approximation for a solid with polyatomic basis using Debe’s )(TDΘ  and Einstein’s 
)(TEΘ temperatures and the separate theoretical and experimental contributions of the isochoric 

specific heats )(, TC ac
exV and )(, TCop

exV , respectively. The paper discusses the influence of the 

vibrational anharmonicity on the Grüneisen’s parameters in the case of undoped Bi12SiO20  crystal in 
the temperatures range between K300  and K900 . 

               
   

  2. Theoretical 
 

For a normal vibration mode λ= qi
�

 the dispersion law in the Debye approximation is given 
by qv qqssq ),( ��� ϕθ=ω λ , where ),( qqsv �� ϕθλ  for 3,2,1=λ  is the sound velocity, whereas in the Einstein 

approximation Esq ω=ω=ω λ0
�  for s3,...5,4=λ , where s  is the number of atoms in the elementary 

cell. In agreement with the relation (1) the total Grüneisen’s parameter of the crystal with 
polyatomic basis may be expressed by 
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is the isochoric specific heat for the normal 

mode λ= qi
�

(acoustic and optical, respectively) and the denominator expresses the total isochoric 

heat, 
op
V

ac
VV CCC += . The numerator of the expression (2) cannot be evaluated without some 

approximations. For evaluation, we shall consider the acoustic and optical vibrational frequencies 

expressed by some Debye’s )(TDΘ  and Einstein’s )(TEΘ temperatures, these dependences being 

obtained by fitting the theoretical curves with the experimental data for )(TC ac
V  and )(TC op

V [9]. 
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Therefore, considering for acoustic vibrations DBk Θ=ωmax�  and for optical vibrations 
EBE k Θ=ω� , where Bk  and �π= 2h are Boltzmann and Planck constants, respectively, one gets 
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This means that acoustic and optical Grüneisen’s parameters are considered as depending 

themselves of the temperature T  through Debye’s and Einstein’s temperature dependences, and, at 
the same time, allows the evaluation of numerator from the expression (2). Thus, for the considered 
dispersion laws and after some corelations [10] one gets the total Grüneisen’s parameter  
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are Debye’s and Einstein’s functions, respectively. If we introduce the ratio 
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total Grüneisen’s parameter for a solid with polyatomic basis becomes 
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Concerning to the values of s , one may see that �
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determined practically by optical phonons. 
Taking into account total Grüneisen’s parameter in a solid with polyatomic basis one may 

obtain easily the well-known thermodynamical expression for the isobaric linear expansion 
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and N  is the total number of atoms in a crystal of volume V . Because the isothermal bulk modulus 
for many solids presents only a very small temperature dependence, increasing gradually when the 
temperature decreases, in the first approximation it may be considered constant. Also, taking into 

account the temperature dependence of the functions �
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temperatures range so that in a rough approximation .constP ≈α  [10]. At last, we emphasize that the 
above results include implicitly the vibrational anharmonicity effects through the temperature 
dependence of Grüneisen’s parameters and of the volume thermal expansion coefficient. 

 
                
3.  Results and discussion 

 
  In order to analyse the temperature dependence of Grüneisen’s parameters in the case of a 
solid with polyatomic basis ( 1>>s ) we shall refer to the undoped bismuth silicon oxyde (Bi12SiO20) 
crystal, with 66=s  atoms in an elementary cell, for high temperatures between K300  and K900  
where the study of the specific heats [9] indicates on the predominant role played by the optical 
vibrations. In this case, the relation (8) gives the optical Grüneisen’s parameter as: 
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Replacing the experimental values ��
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Grüneisen’s parameter �
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a continuous curve. A comparison of these curves points out that the experimental values of total 
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ex suggesting the predominant role played by the optical vibrations 

for undoped Bi12SiO20 crystal in the considered temperature range. The above results may be 
compared with those obtained in Debye approximation assuming that all Ns3 vibrations are acoustic. 
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difference being significant for lower temperatures. One may remark also that all these Grüneisen’s 
parameters decrease when the temperature increases and this behaviour may be connected with the 
above mentioned “implicit” and “explicit”  temperature variations of the vibrational frequency. Thus, 
the temperature dependence of Grüneisen’s parameters in a normal solid (without phase transition or 
magnetovolume effect) must be associated with the temperature dependence of the i -th phonon-

mode frequency, which may be taken as 2
21)0()( TaTaT ii ++ω=ω where )0(iω is the phonon 

frequency at KT 0= with 1a and 2a being some constants [11-13]. For high temperatures range, as 
that considered in this work, a linear temperature dependence of  )(Tiω could be considered as a 
good approximation, so that 02 =a . Then, 
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a  because )(Tω is an increasing function both for acoustic and optical 

vibrations and the initial temperature has been considered  KT 00 = . The anharmonic shifts of the 
frequencies are positive and increase with temperature. The hypothesis on the frequency shift gives 
results in agreement with the diagrams of )(TDΘ  and )(TEΘ plotted in [9] and reproduced here in 
the inset of Fig. 1. On the other hand, the “implicit”  volume dependence of the phonon frequencies 



I. Licea, A. Ioanid 
 
 

862 

)(Vii ω=ω which generally is a decreasing function may be considered also in the linear 
approximation given by 
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considerations and with the condition that Grüneisen’s parameter is positive, 0>γ i . In the frame of 
above considerations the temperature dependence )(Tii γ=γ of Grüneisen’s parameter in the linear 
approximation may be written 
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where )0(iγ  is Grüneisen’s parameter at the initial temperature KT 00 = . Taking into account the 
dependence of the frequency versus the temperature )(Tiω  through both the “ implicit”  contribution 
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Considering also the isobaric thermal expansion coefficient 
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with 0)(,0,0 11 >α<> Tba P . Therefore, one obtains 01 >c when the inequality 11 )(3 bVTa Pα> is 

fulfil led, i.e., for high temperatures range the term describing the vibrational anharmonic 
contribution at constant volume predominates over that describing directly the thermal expansion 
contribution. Thus, in the case when the solid expansion with temperature, the Grüneisen’s 
parameters decrease with the temperature as we have obtained for undoped Bi12SiO20 crystal, both 

for acoustic )(Tacγ and optical )(Topγ in the considered high temperature range. The fact that 
vibrational anharmonicity contribution, considered here in a semiempirical way through the 
temperature dependence of Debye’s )(TDΘ  and Einstein’s )(TEΘ temperatures, may be used also to 

justify the more pronounced decreasing with the temperature for )(Topγ  than for )(Tacγ . Otherwise, 

if the reverse inequality 11 )(3 bVTa Pα< is fulfi lled, i.e., the effect of volume expansion prevails 

over that of vibrational anharmonicity, which is expected for a low temperatures range, one gets 
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01 <c  and Grüneisen’s parameters increase with the temperature. Such behaviour has been usually 

accepted for acoustic Grüneisen’s parameter )(Tacγ  [1]. 

Fig. 1. The temperature dependence of Grüneisen’s parameters for undoped Bi12SiO20 
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ex .  In  the  inset:  Debye’ s )(TDΘ  (curve 1)  and   Einstein’ s  )(TEΘ   

                                                              (curve 2)  from [9]. 
 
The temperature dependence of Grüneisen’s parameters presents a different behaviour in the 

case when the crystal is characterized by contraction with temperature. Thus, the relation (14) 
maintains its form but with 0)(,0,0 11 <α>> Tba P . As a result, the vibrational anharmonicity effect 

prevails over the thermal contraction effect when the inequality 11 )(3 VbTa Pα>  is fulfilled and leads 

to 01 <c . Therefore, Grüneisen’s parameters increase with the temperature and such behaviour has 

been observed for some alkali halides [11]. Obviously, if the reverse inequality 11 )(3 VbTa Pα<  is 

fulfilled in the case of a low temperatures range, i.e.,  the effect of volume constriction prevails over 
that of vibrational anharmonicity, one obtains 01 >c . As a result, it is possible a situation when 
Grüneisen’s parameters decrease with the temperature. These considerations allow to explain 
qualitatively the temperature dependence of Grüneisen’s parameters but are limited by the linear 
approximation used in the series developments. Indeed, if we maintain the linear approximation for 
the temperature dependence of the crystal volume given by the coefficient )(TPα and we consider 
the competition between volume and anharmonicity lattice effects, the case given by the equality 

1−=�
�
�

�
�
�
�

�

ω
�
�

�
�
�

�
�
�

�
�
�

� ω

ViPT

i

d

dT

dT

dV

dV

d
 leads to the simple conclusion about the compensation of those effects, 

i.e., Grüneisen’s parameters does not depend of the temperature: constTi =γ )( .  However, at the 
same time, the considered equality leads to the conclusion that the vibrational frequency 

.),( constTVi =ω  which is difficult to be accepted. Therefore, a nonlinear dependence in the series 
development of )(),( TV iiii ω=ωω=ω  and )(Tii γγ =  is desirable to be considered even if the 
anharmonicity effets are treated in a semiempirical way through the temperature dependence of 
Debye’s )(TDΘ  and Einstein’s )(TEΘ temperatures.  

Another fact which must be remarked is that the predominant role played by optical 
vibrations in the high temperature range cannot be considered as a general conclusion for any crystal 
with polyatomic basis. Indeed, the Debye-Einstein approximation is valid only in the case when the 
vibrational spectrum of a solid with polyatomic basis cannot be described solely by acoustic 
vibrations and, respectively, by a Debye’s temperature )(TDΘ . Thus, there are some solids with 
polyatomic basis as MgO, MgSiO3, Al2O3 and other [1] for which the consideration only of the 
acoustic frequency corresponding to Debye’s temperature )(TDΘ  leads to results which agree 
satisfactorily with the experimental data. 
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  4. Conclusion 
 
In a solid with polyatomic basis, in the high temperature range, the total Grüneisen’s 

parameter is given practically by optical Grüneisen’s parameter )(Topγ . Both )(Topγ  and 

)(Tacγ parameters decrease when the temperature increases. This behaviour results from the 
competition between the volume and lattice anharmonicity effects of the temperature on the phonon 
frequencies shifts. The anharmonicity effects prevails over the volume contribution and this effect is 
more pronounced for optical than acoustic vibrations.  
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