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TEMPERATURE DEPENDENCE OF GRUNEISEN'S PARAMETERS
INASOLIDWITH POLYATOMIC BASIS
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The temperature dependence of Griingisen’s parameters yac[(?l_—Dj and VOF’[%J for

acoustic and optical lattice vibrations, as part of total Griineisen’s parameter in a solid with
polyatomic basis is analysed in the frame of the Debye-Einstein approximation. The results

are obtained using Debye's ©p(T) and Einstein’'s O (T) temperatures and the separated
theoretical and experimental contributions of the isochoric specific heats CGZ°(T) and

CoP(T) for acoustic and optical vibrations, respectively. Both Griingisen’'s parameters

decresse with the temperature and this behaviour is discussed in the frame of competition
between the temperature dependence of vibrational frequencies due to volume change and
lattice anharmonicity effects. There are compared the theoretical curves and experimenta
curves in the case of undoped bismuth silicon oxyde (Bi1,SiOz) crystal.
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1. Introduction

Introduced many decades ago to describe some thermodynamic coefficients (adiabatic and
isothermal compressibility, thermal expansion, specific heats and others) Grineisen’'s parameter is
still of interest being treated in various theordica and experimental papers or monographs [1-6].
During the time, various physica problems have been connected to mean Griineisen’s parameter
defined by
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where v, :_illlm\*j is thermal Griineisen’s parameter for an individual excited lattice mode i =g
n

(G isthe wave vector and A is the polarization branche of the i -th vibrationa frequency ), C; is
the specific heat of i-th vibration mode and V is the crystal volume. Thus, the mean Griineisen's
parameter vy, referred in this paper as Griineisen’s parameter, is consistent with the quasiharmonic
approximation [1] being connected with the isochoric thermal expansion coefficient ay,, the bulk
modulus By and the specific heat C, (or isobaric corresponding coefficients).

It iswell-known that atemperature increase alters the equilibrium volume due to the thermal
expansion and simultaneously incresses the vibrational amplitudes of the atoms about ther
equilibrium positions. The effect on the frequency of a change in the temperature T, at constant

pressure P, is thus described by (a_wj :(a_wj (a—vj +(a_wj , Where the first term giving the
oT Jp 0V )\ aT Jp \aT )y
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“implicit” contribution accounts for the volume driven frequency changes due to thermal expansion
and the second one the “explicit” contribution accounts for the changes in the vibrationa
amplitudes, and thus for the phonon-population driven anharmonic frequency shifts at constant
volume [7]. Some thermodynamic properties as the thermal state equation, the isobaric specific heat
Cp(T) and the linear expansion coefficient op(T)of a solid with polyatomic basis have been

andysed theoretically in the frame of the Debye-Einstein approximation, taking into account
simultaneously, the contributions of acoustic and optical vibrations [7,8]. The theoretica difference
Cp —Cy =3CyapyT between the isobaric and the isochoric heats has depends on the parameters:

Debye's ©p, Einstdn's O temperatures and Grineisen's y* and y°° parameters. However,
because the experimental data giveCp ¢ (T) , @ comparison with the theoretical results implies often
to know the separate contributions of the experimenta isochoric specific heats CZ%(T)and

%P (T). This problem has been analysed in [9] for the case of undoped Bi,SiOx, (acrysta with
CVlex

polyatomic basis) in the frame of the Debye-Einstein approxi mation, considering that both Debye's
Op and Einstein's O temperatures depend themselves of the temperature T . In fact, this means

that implicitly the vibrational anharmonicity has been taken into account in a semi-empirica way
through ap(T) and y(T).
The purpose of thiswork is to study the temperature dependence of acoustic, optical

yOP[%j and totd {(?I_—D,%j Grineisen's parameters obtained in the Debye-Einstein
approximation for a solid with polyatomic basis using Debe's ©Op(T) and Einstein's
O (T) temperatures and the separate theoretical and experimental contributions of the isochoric

specific heats C3%(T) and CJf,(T), respectively. The paper discusses the influence of the

vibrationa anharmonicity on the Griingsen’'s parameters in the case of undoped Bi,SiO,g crystal in
the temperatures range between 300 K and 900K .

2. Theoretical

For anormal vibration mode i =g\ the dispersion law in the Debye approximation is given
by wgs = Ve (85, 94)d, Where vg, (85,¢5) for A =123 isthe sound velocity, whereasin the Einstein
approximation wgs =, =wg for A=45,..3s, where ¢ is the number of atoms in the e ementary

cdl. In agreement with the reation (1) the total Grineisen’s parameter of the crysta with
polyatomic basis may be expressed by
3 3s
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where B B B is the isochoric specific heat for the normal
mode | = A (acoustic and optical, respectively) and the denominator expresses the total isochoric

—_ ~ac op
hest, Cv=&r+Cy . The numerator of the expression (2) cannot be evaluated without some
approximations. For evaluation, we shall consider the acoustic and optica vibrationa frequencies

expressed by some Debye's ©0(M and Einstein's @M temperatures, these dependences being
ac op
obtained by fitting the theoretica curves with the experimental data for &M and & (M [9].
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Therefore, considering for acoustic vibrations "Omex =KeOp  gng for optical vibrations
hoog =kgOk , Where Ke and h =21 gre Boltzmann and Planck congtants, respectively, one gets

yac[@_oj:_m. yop[& j:_dlneEm -
T dinv ' T dinv

This means that acoustic and optical Griinesen's parameters are considered as depending
themselves of the temperature T through Debye' s and Einstein’s temperature dependences, and, at
the same time, allows the evaluation of numerator from the expression (2). Thus, for the considered
dispersion laws and after some cordations [10] one gets the totd Griineisen’s parameter
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are Debye' s and Einstein’ s functions, respectively. If weintroduce the ratio

ﬁ

where

®)

op( O
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total Grineisen’s parameter for a solid with pol yatomic basis becomes

(o YT HAT ()

T'T 1+B(6D eEj

©p %

Concerning to the values of s, one may see that T

] = yac(eT—D] for a crystal with

simple lattice (s=1) and GT—D,E

= ij"p(eT—Ej for that with polyatomic basis (s>>1), the

inequaliti&syac(eTD] {GTD eTEj<y°p(eTEj being satisfied too. Regarding the temperature

val ues, for low temperatures, because FE(%] <«<F (GT ] we have GTD GTEJ yac(eT—D], ie,

total Griineisen’s parameter is determined practically by the acoustic phonons. In the intermediate
temperatures range, because FE(GTE ] < FD(GTD ] for s>>1, one gets
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-1
{G—D,G—Ej DB(G—D,G—EJPH{G—D,EH yOF’(&], i.e., only a small contribution of acoustic
T T T T T T T

phonons may be considered. At last, for high temperatures, because FE(GT—EJ o FD(GT—DJ and

T'T T
determined practicaly by optical phonons.

Taking into account total Griineisen’s parameter in a solid with polyatomic basis one may
obtan easily the well-known thermodynamical expression for the isobaric linear expansion
coefficient ap :%(3—\;) , including both the contributions of acoustic and optical vibrations,

P

[3(9—'D Ej -1, for s>>1, one gets {GT—D,EJ DyOF’(eT—Ej, i.e, tota Griineisen’'s parameter is

respectively. Thus,

o, O o, O ©p _ O
o &jfv(f!fo’fJ ko o 92+ - 9 |

Pl TT VB, - VB ®
where CV(G—D,EJ:C\?C(G—D} o[ O | and Br :—V(ﬁj is the isotherma bulk modulus
T'T T T dv J;

and N isthetotal number of atomsin a crystal of volume V . Because the isothermal bulk modul us
for many solids presents only a very small temperature dependence, increasing gradually when the
temperature decreases, in the first approximation it may be considered constant. Also, taking into

account the temperature dependence of the functions Fp (G)T—Dj and Fg (%j one may obtain the

3
well-known results ap {GL] for low temperatures, and it changes very little in the high
D

temperatures range so that in a rough approximation o p = const. [10]. At last, we emphasize that the

above results include implicitly the vibrational anharmonicity effects through the temperature
dependence of Griineisen's parameters and of the volume thermal expans on coefficient.

3. Results and discussion

In order to and yse the temperature dependence of Griineisen’s parameters in the case of a
solid with polyatomic basis (s>>1) we shall refer to the undoped bismuth silicon oxyde (Bi12SiO,0)
crystal, with s=66 atoms in an e ementary cell, for high temperatures between 300 K and 900 K

where the study of the specific heats [9] indicates on the predominant role played by the optica
vibrations. In this case, therdation (8) givesthe optical Griingsen’s parameter as.

(%) o) - oo o ©)

T kgN(s-1) FE(GTEJ c{,’p(eTEj

Replacing the experimental vaues CP ©e ] from [9] and considering a weak
CV,EX T

temperature dependence of the isobaric thermal expansion coefficient

a p(%j ~ap(300K)=1.5x10 K™, one obtans the experimentd dependence of optica
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Grineisen’'s parameter ygf(@T—Ej, plotted in Fig. 1 with cirdes. On the other hand, replacing the

experimenta values of the total isochoric specific heat C\,ex(eD eE) C¥ eD)+C\‘,’f’eX Oe
©p eE

from [9] and considering that ap( e

( E) we obtain the experimental dependence of

total Grinesen’'s parameter yex(eTD GEJ plotted in Fig. 1 by filled dots. At lagt, we evaluate the

theoretical temperature dependence of total Grineisen’s parameter, ycam(eTD GT—EJ using the
theoretical  values C\,cceﬂc(e GE) C\,ca|c + G E and taking the values

Op(300K) =293K and GE(300K) 774K , [91, respectlvely. ThIS dependence is plotted in Fig. 1 by
a continuous curve. A comparison of these curves points out that the experimental va ues of total
©p eE

Grineisen's parameter yex( T

j are in very good agreement with those calculated
yca'c(T Tj in the whole considered temperature range. Also, these values are in satisfactory

agreement with those for y‘e’f(%j suggesting the predominant role played by the opticd vibrations

for undoped Bi;SiOy crystd in the considered temperature range. The above results may be
compared with those obtained in Debye approximation assuming that all 3Ns vibrations are acoustic.

(C]
D_E)

In this case using an expression similar to (9) with C\,,ex(eT - CF% eD)from [9] we obtain

the experimental values for ygf(eT—Dj which are plotted in Fig. 1 by filled triangles. One observes

the departure between the values of yg‘f(eT—Dj and those given by yex(eTD GTEJ Dygf(%j this

difference being significant for lower temperatures. One may remark also that al these Griineisen’s
parameters decrease when the temperature increases and this behaviour may be connected with the
above mentioned “implicit” and “explicit” temperature variations of the vibrational frequency. Thus,
the temperature dependence of Griineisen’s parameters in anormal solid (without phase transition or
magnetovolume effect) must be associated with the temperature dependence of the i -th phonon-
mode frequency, which may be taken as w;(T)=w;(0)+aT +a,T?>where w (0)is the phonon
frequency at T =0K with a and a, being some constants [11-13]. For high temperatures range, as
that considered in this work, a linear temperature dependence of ; (T) could be considered as a
good approximation, so that a, =0. Then,

&M =w0) +[‘1—ﬁj dT =03 (0) + T (10)
P

where & :(%—?j >0 because w(T)is an increasing function both for acoustic and optical
P
vibrations and the initial temperature has been considered Ty =0K . The anharmonic shifts of the

frequendies are positive and increase with temperature. The hypothesis on the frequency shift gives
results in agreement with the diagrams of ©p(T) and ©g (T) plotted in [9] and reproduced here in
theinset of Fig. 1. On the other hand, the “implicit” volume dependence of the phonon frequencies
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w =w(V)which generdly is a decreasing function may be considered aso in the linear
approximation given by

@01 =6 V) (2| v =03 0)+ 0V ~Vo) (1)
P

where V;is the crystal volume at T=0K and b, :(i%j <0, in agreement with the physica
P

considerations and with the condition that Griineisen’'s parameter is positive, y; >0. In the frame of

above considerations the temperature dependence vy; =v;(T) of Grineisen’s parameter in the linear

approximation may be written

(T)=v. i) g =y i
v.(T)—v.(0)+(de ar v.(0)+(aTj T (12)

P P

where y;(0) is Grineisen’s parameter at the initial temperature Ty =0K . Taking into account the
dependence of the frequency versus the temperature w; (T) through both the “implicit” contribution

due to therma expansion (i—?j (S—XJ and the “explicit” contribution due to vibrational
T P

anharmonicity at constant volume (z—?j [7], therdation (12) becomes
\%

dy; duwy dav duwy
(T)=v: (0) +| 1 === T 13
WD =vo+( 5] (%) (&) (%] 13
Considering aso the isobaric thermal expansion coefficient ap(T) = %(3—\;) , one obtains
P
the expression
Vi(M) =vyi () —c,T (14
where
\%
G = TR by [30 p (T)Vioy + (15)
1

with a; >0, by <0, ap(T) >0. Therefore, one obtains ¢; >0when the inequality a; >3ap(T)V|by|is

fulfilled, i.e, for high temperatures range the term describing the vibrational anharmonic
contribution a constant volume predominates over that describing directly the thermal expansion
contribution. Thus, in the case when the solid expansion with temperature, the Griingisen’'s
parameters decrease with the temperature as we have obtained for undoped Bi;,SIO, crystal, both

for acoustic y?“(T)and optical y°°(T)in the considered high temperature range. The fact that
vibrational anharmonicity contribution, considered here in a semiempiricd way through the
temperature dependence of Debye's O (T) and Einstein's ©¢ (T) temperatures, may be used aso to
justify the more pronounced decreasing with the temperature for y°°(T) than for y®(T). Otherwise,
if the reverse inequality & <3ap(T)V|o|is fulfilled, i.e, the effect of volume expansion prevails
over that of vibrational anharmonicity, which is expected for a low temperatures range, one gets
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¢; <0 and Grineisen’s parameters increase with the temperature. Such behaviour has been usually
accepted for acoustic Griineisen’s parameter y2°(T) [1].
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Fig. 1. The temperature dependence of Grineisen's parameters for undoped Bi»SiOy
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(curve2) from[9].

The temperature dependence of Griineisen’s parameters presents a different behaviour in the
case when the crystd is characterized by contraction with temperature. Thus, the reation (14)
maintains its form but with a; >0, by >0, ap(T) <0. Asaresult, the vibrational anharmonicity effect

prevails over thetherma contraction effect when theinequality a, > 3ap (T)Vby isfulfilled and leads
to c; <0. Therefore, Griineisen’s parameters increase with the temperature and such behaviour has
been observed for some alkai halides [11]. Obviously, if the reverse inequality a <3ap(T)Vby is
fulfilled in the case of alow temperatures range, i.e., the effect of volume constriction prevails over
that of vibrational anharmonicity, one obtains ¢; >0. As a result, it is possible a situation when

Grineisen’s parameters decrease with the temperature. These considerations alow to explain
qualitativey the temperature dependence of Grineisen’s parameters but are limited by the linear
approxi mation used in the series devel opments. Indeed, if we maintain the linear approximation for
the temperature dependence of the crystal volume given by the coefficient op(T) and we consider

the competition between volume and anharmonicity lattice effects, the case given by the equdity

av dT doy,
i.e, Grineisen's parameters does not depend of the temperature vy;(T) =const. However, at the
same time, the considered equality leads to the condusion tha the vibrationa frequency
w (V,T) =const. which is difficult to be accepted. Therefore, a nonlinear dependence in the series
deveopment of w =w(V), & = (T) and vy;=y;(T) is desirable to be considered even if the
anharmonicity effets are treated in a semiempirical way through the temperature dependence of
Debye's O (T) and Einstein's ©g (T) temperatures.

Ancther fact which must be remarked is that the predominant role played by optical
vibrations in the high temperature range cannot be considered as a general conclusion for any crystal
with polyatomic basis. Indeed, the Debye-Einstein approximation is valid only in the case when the
vibrational spectrum of a solid with polyatomic basis cannot be described soldy by acoustic
vibrations and, respectively, by a Debye's temperature@p (T). Thus, there are some solids with
polyatomic basis as MgO, MgSiOs;, Al,O; and other [1] for which the consideration only of the
acoustic frequency corresponding to Debye's temperature®p (T) leads to results which agree
satisfactorily with the experimental data.

[dw' ] (dvj ( dT ] = -1 leads to the simpl e cond usion about the compensation of those effects,
T P V]
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4. Conclusion

In a solid with polyatomic basis, in the high temperature range, the total Grineisen's
parameter is given practically by optica Grineisen’s parameter y°°(T). Both y°°(T) and
y2(T) parameters decrease when the temperature increases. This behaviour results from the
competition between the vol ume and lattice anharmonicity effects of the temperature on the phonon

frequenci es shifts. The anharmonicity effects prevails over the volume contribution and this effect is
more pronounced for optical than acoustic vibrations.
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