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1. Introduction

Straight equispaced fringe patterns occur in many interference cases. These are the simplest
fringe patterns, but have a great i mportance because any other fringe patterns of any complexity may
be decomposed in terms of these simple patterns. Furthermore, processing of these fringe patternsis
very important in optical metrology [1,2,3].

There are many methods for fringe processing. The most modern is considered the phase
shifting interferometry, a method that has to process at least three phase shifted fringe patterns to
retrieve the phase map of an object wavefront rdative to a reference wavefront. The statistical
properties of the errors of this method are well described in Refs. 4-8.

Since the fringe patterns that we concern ourselves with have an a priori known phase map
(linear ramp), we don’'t have to determine the phase map, but only it's gradient and phase offset,
which must be constant parameters. For this purpose we use least squares fitting (LSF) to compute
the basic parameaers of the fringe patterns as statistical quantities [9,10]. LSF, a method widdy used
for data processing, is wel described in the appendix using a matrix language well suited for
computer programming. We aso have implemented this method in computer programs that we used
to process fringe patterns and to study the related errors. We do not give details on these computer
programs, since the main purpose of this paper is to evaluate the statisticd errors for the LSF
computed fringe parameters.

Because these fringe patterns are simple (periodic), the Fourier transform method [11] is
optima to process them and may be faster than L SF, which is a very general method. However, we
consider that LSF is very important as a classicd method and the main point of the present work
resides in the fact that we could obtain analytical expressions for the statistical errors of LSF. We
can say that the errors found on LSF may serve as reference errors to compare the errors of any other
methods used to process fringe patterns. Moreover we think that LSF is one of the most accurate
statistical methods.

2. Fringe pattern processing
2.1. Periodic harmonic fringes

The simplest fringe pattern has a harmonic distribution of intensity along a direction x or
over aplane(x, y):
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1D fringe pattern: [(x) =1, + 1, [Gos(27rwx + @) (1a)
2D fringe pattern: 1(x,y) = o +1, Bos{27z(v, x+V, ) + ¢) (1b)

lo is the background intensity, |, is the intensity of the fundamental harmonic, v is the spatia
frequency of the fringes having two components for 2D fringe pattern, and ¢ is a phase parameter
that specifies the globad positioning of the fringe pattern. Such fringe patterns occur by the
interference of two uniform plane wavefronts.

Fringe pattern acquisition by a CCD leads to a sequence of sampled and digitized val ues of
the intensity distribution:

1D: Ik:I(kBX):IO+|1EO{2WITka+¢j; Nf:Nm’BX, k:O,L...,N—l (2a)
| =1 (MEBNDY) =1, +1, (08 27mE" +n T |+ |
2 ; R NN (20)

Ny =N, @, Ny=N,, 0@, m=01..N,-1, n=0L...,N,-1
where 6x and 8y denote the sampling steps, which are the spacd ng between two adjacent CCD pixds,
on two orthogonal directions. Instead of the spatia frequency we prefer further using the
adimensiona parameter N; that is the number of fringes in the fringe pattern. It has also two
components in the case of 2D fringe pattern.

We should mention that actually the sampling performed on the fringe pattern by the CCD is
not just the simple sampling of the functions (1), because the CCD pixds have finite size and they
output the average light intensity over their active area. We describe this effect for the 1D case
assuming alinear data acquisition system. According to the theory of linear systems, the output J(X)
can be written as a convolution of the input 1(x) with the impulse response function g(x) of the
acquisition system:

309 = (109)(3) = [1(x=X) g(x)dx 3)

—co

Let’s consider arectangular impulse response function:

X, <eldx/2
g(x):{l/ =<5/ (@)

0, X > £ [Bx/2

that signifies light averaging over the active area of a CCD pixd, whose size equds a fraction ¢ of
the spacing 8x between two adjacent pixes. With this impulse response function we obtain the
following sequence of N samples:

(®)

3 :J(k[EBx):JO+J1IItos(2Wﬂka+¢j; k=01. . ,N-1
N, =N Bx

Jo=€0,, I =¢el8inc(erN, /N)0O,,

Therefore the contrast in the acquired data of the fringe pattern is reduced, but very slightly
if the CCD resolution N is large enough. Of course, beside light averaging due to the finite size of
pixds, there are many other effects, such as light diffraction. All effects superpose and give a more
complicated impulse response function, but for any linear acquisition system, the acquired data
remains harmonic like the fringe pattern and the parameters (N;, @) remains unaffected, in spite of
the actua impulse response function. Further we shall use the formulae (2) to describe the fringe
patterns, taking into account that the fringe contrast never reaches 1 (always I1<ly).



Statistical processing of straight equi spaced fringe patterns 843

Let’s show how LSF is applied to determine the set of 4 parameters A=(lo, 1, N;, @) in (2a),
respectively 5 parameters A=( lo, I1, Ni, Ny, @) in (2b). These parameters are statistical quantities
and the LSF computer program for fringe processing gives ther statistical means and variances.
Their variances are due to the fluctuations of the acquired data, that we suppaose to have Gaussian
distribution with 0 mean and ¢? variance In fact only making this assumption is the LSF correctly
applicable.

The LSF applicable on (2) to determine A is nonlinear (see appendix), because the rel ations
(2) cannot be written in the form of a linear combination of independent functions having the
parameters A as coefficients, as the equation (A1) shows. Nonlinear LSF needs a set of approximate
starting values for A to iteratively compute high precision final results. It's easy to get the starting
values using course precision methods, for example applying Fast Fourier Transform to a subset of
the sequence (2). A 10% precision has been proved to be enough to successfully start the iterations.
Usually 5-10 iterations lead to the final result.

The formula (A7) allows us to ca culate the covariance matrix of the parameters A, that is,
their statistical errors. This formula is applicable as wdl for nonlinear LSF, since it expresses the
first order approximation of the error propagation law. For the 1D fringe pattern we ca culate firstly
a 4-component vector of functions that are the partia derivatives of the function 1(x) with respect to
each of the A parameters:

D(x,A):[1.(X,A),ail.(x,A),L.

0
OIO ] aNf (X!A)!wl (X!A)] (6)

Then we have to compute the 4.4 matrix of the statistical weights Pa:

N-1 N
P :%DZDi (% A) D, (x,A) =%EIDi(k|]§(,A)DDj (kx Ak, i,j=1234 (7)
k=0 I 0

Assuming a very large number of samples (N — ), we have approximated the 16 sums
above with integrals, which we could calculate andyticaly. However some of them are till
complicated, but using the limit of very large fringe number Ni — oo they simplify very much. Next
one needs only inversing the P, matrix in order to get the covariance matrix 4 . The covariance
matrix for the parameters of 2D fringe patterns are calculated similarly, except that the sums and
integra s become doubl e according to the (x, y) coordinates, and the amount of computation is much
greater. As described above we have found analytical expressions for the statistical errors of the
parameters A using an asymptotic approximation valid for large number of fringes N; and large
number of samples N:

o 1N O 0 0
| 0 2/N 0 0
1D: A=| 1| o2 =g? 8
N, AT o0 0 /AN -6/72N (&)
¢ 0 0 -6/74>N 8/IN
o 1N 0 0 0 0
I 0 2/N 0 0 0
2D:  A=|N, ol=0’0l 0 0 6/7I2N 0 -6/71/N|, N=N,IN, (8b)
N, 0 0 0 6/ 12N -6/ 7t2N
¢ 0 0 -6/#A’N -6/4N 14/I7N
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The corrdations between (N;, @) are irrdevant for the statistical errors assessment, only the
diagona dements of the covariance matrix are sufficient. All the parameters have variance inversey
proportiond to N, consequent to an universa statistical law.

It is now easy to find out the probability density function of the statistical fluctuations of A
providing that the intensity fluctuations of al the pixels in the fringe pattern are statistically
independent and each of them has the Gaussian distribution function fg of & variable and p = 0,
o = o) parameters:

7
f(0)=——M ™ = 1,(3,;0,0,) ©

UIB/ET

We see that according to rdation (A15) thereis alinear relationship between the variations
of the parameters A and that of the intensity I:

N-1
8,=BBd, 8,,=) B

. k=1234,05 (10)

& in reation (9) should not be mistaken for §, in relation (10). The former quantity is a scalar
representing the intensity variation of a pixd in the fringe pattern, while the latter denotes the
intensity variations al over the fringe pattern.

It is known that the probability density function of the sum of two independent random
quantities equa s the convol ution of their probability density functions. Hence each of the parameter
in the set of A has a probability density function that is the convolution of N Gaussian distribution
function of different widths o:

f(8ax) = c(9; 0By [8,)* f5(3:0,Byy 1) ... * 15(5;0,By 1 [5)) (11)

It is aso known that convolving two Gaussian functions leads to another Gaussian function,
according to the following rule:

fo (X 14, 00)* T (X 15, 0,) = T6(X fh + ty,y 07 +07) (12)

Therefore each component 8,k has the distribution fo(8ax; 0,0a) and moreover, the
fluctuations of the whole set of A have the multivariate normal distribution [12]:

1 ~
L —“@,0s}) "B,
)

£(8,) = (2rrtlet(e2)) 2 (& 2 r = 4(5) (13)
r being the number of parameters A, equa to 4 or 5 whether the fringe pattern is 1D or 2D. To
obtain the covariance matrix with more precision, one needs to perform very difficult analytical
calculaion, which leads to very complicated results. That’s why we restrict ourselves to the simple
approximate results (8). In order to check the level of accuracy of these anal ytical formulae, we have
processed a large number of computer simulated fringe pattern and we have performed a statistical
analysis on the results to compare the actua errors with the theoretically predicted onesin Eq. (8).
We simulate 10,000 1D fringe patterns of the form (2a), each of them with 256 samples. For
al the fringe patterns in the set the parameters (1o, 1) were assigned the values (0.5, 0.4), which give
agood fringe contrast and calibrate the intensity I(x) within the range 0+1 that we suppose to be the
data acquisition range (we take into account the previous mention that aways I:<lg). The parameter
N; was given uniform random values in the interval of 3+32 fringes. We chose this interval because
there is no sense to process fringe patterns with too few fringes (Ni< 3) and we limit the upper limit
of fringe number to 32 to avoid diasing associated with undersampling (we only consider wdl
sampl ed fringes with sampling rate >8 sampl es/fringe spacing). The parameter ¢ was given uniform
random values in the interval -r+m. We add Gaussian noise of 0 mean and ¢; = 0.05 standard
deviation. The noise due to usua 8-bit quantisation is very small, but the simulation took it into
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account too. (Statistical mathemathics shows that by uniform quantisation with step g, the
quantisation error is uniformin theinterval -o/2+q/2 and has the variance o7 = q*/12) .

In these conditions the rdations (8a) give for the deviations of the parameters A the values:
0% =(0.0031, 0.0044, 0.0061, 0.022), equal to the squared root of the diagonal dements in the
covariance matrix. _

Let’s denote with Ao the parameters given to the simulated fringe patterns, while A and o,
denote their statisticd mean values and standard deviations provided by the computer program
(applying (A7) to the data 1). We define the displacement between the exact values and the
computed values of the fringe parameters: dA=A, - Aand we do statistics on the reduced
parameters y =0A /o4 over the whole set of the 10,000 simulated fringe patterns. Here are the
results for average and standard deviation: y =(-0.63, -0.013, -0.0046, 0.0041), o,=(0.997, 0.991,
0.998, 0.998). The mean vaues ¥ show that the estimations of the parameters A are biased, but
except the first component, these biases are quite small considering that they are expressed as
fractionsof o .

Fig. 1. Resultson processing a set of 10,000 harmonic fringe patterns.
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The-0.63 bias of the |y intensity is mainly due to quantization. Quantization error is actually
not a statistical error. It may be regarded as statistical only when the image has large variations. The
DC component of an image is systematically biased by quantization. This bias is not greater than
+1/Nyo, ,N, being the number of quantization levels. If we repeat the whole procedure of

statistics once agai n without quantizing the fringe patterns, we obtain the means y =(0.0076, 0.0020,
0.0070, -0.0082) and the standard deviations o, =(1.0075, 1.00077, 0.997, 0.997). This time 4l
biases are very small and we can regard them as beng only due to statistical
fluctuations:y <ay / JN_ , where Ny;=10,000 is the number of processed fringe pétterns.

All the deviations oy are close to 1, proving the fact that the computed values of the

statistica errors on a single fringe pattern processing estimate very well the actua fluctuations that
have been observed over the set of 10,000 simulations. Moreover, we have proved that the
histograms of the statistical quantity y fit well with Gaussian distribution functions of parameters
(Y,0y), very doseto standard normal distribution functions, which have (0, 1) parameters.

The Fig. 1 shows the result of the 10,000 simulations in form of graphs that show in what
manner the number of fringes N; and the phase parameter ¢ influence the numerically computed
standard deviations of the parameters A. The top left plot has the narrower range from 6 to 16
fringes for the abscissa to give more details. Thus it is easy to see that the errors become minim
when the fringe number N; takes integer values. That's because the harmonic functions are
orthogonal over ranges of integer periods. The covariance matrix (8) is calculated just assuming
exact orthogonality between the functions sine and cosine involved in the sums (7).

We cond ude that the formulas (8) estimate very wel the actua statistical errors, even if the
number of fringes is not large and there are only 256 sampling points. We should mention that for
Nr =3 fringes, the difference between the theoretical and computed eval uation of the deviation for the
parameter N; is only 3%.

2.2. Non-harmonic periodic fringes

Often fringe patterns may be periodic, but not harmonic so that their intensity profile can be
written as a Fourier series:

I(X):I0+ilkl]:os(2kﬂvx+¢k) (14

There are two main reasons why the fringe patterns to be processed have high-order
harmonics:

- The non-harmonic profile is specific to certain interference conditions, for example in
multiple beam interference.

- By acquiring data with a non-linear device the output signa becomes higher order
harmonics.

Often we may need to process fringe patterns with unknown profile and determine the set of
parameters A=(lg, 1, N;, @) as if the fringe were harmonic. Let’s analyze if there is any sense in
doing this.

If the number of fringesis very large, then the harmonic functions cos k [{2avx + ¢) build
up an orthogonal system over the domain of the fringe pattern. If the Fourier series (14) were finite,
then due to the orthogonality of the harmonics, the accuracy of this series would increases only by
adding new terms in the series, not by adjusting the former ones. Thus, the parameters (lo, I1)
computed with the algorithm for harmonic fringes will exactly match the Oth and the first orders of
harmonic intensities in the non-harmonic fringe pattern. Also, the last two parameters (N;, ¢)
estimate correctly the number of fringes and the phase offset parameter in the non-harmonic fringe
pattern and they have the same accuracy as the fringes would have harmonic profile with the
intensity |,.
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If the fringe number is not very large, then the orthogondity of the harmonic functions
cos k 2nvx + @) is distorted and the parameters (lp, 1) do not match exactly the orders 0 and 1 of
the harmonic intensities in the non-harmonic fringe pattern, nor do the last two parameters (N;, @)
estimate correctly the number of fringes and the phase parameter. All parameters (lo, 11, Ni, @)
computed with the assumption of harmonic fringes are biased estimations of the corresponding
parameters in the non-harmonic fringe pattern, and they tend to the exact vaues as the number of
fringes increases (surdy, the sampling rate must be increased correspondingly to avoid aliasing).

To see the conditions suitable for good results on processing non-harmonic fringes with the
computer algorithm for harmonic fringes, we use a statistical analysis on the results of processing a
large set (10,000) of computer simulated fringe patterns.

We simulate 10,000 1D Fabry Perat fringe patterns, each of them with 256 samples. For dl
the fringe patterns in the set the parameters (lo, ;) were assigned the values (0.25, 0.15), so that the
intensity is confined within the range 0+1. Fig. 2 displays the actual fringe profile of the simulated
fringes. The parameter N; was given uniform random values in the interval of 3+32 fringes and the
parameter ¢ was given uniform random values in the interval -n+n. We add Gaussian noise with O
mean and ¢, =0.05 standard deviation. In these conditions the rdations (8a) gives for the deviations

of the parameters A the values: o™ =(0.0031, 0.0044, 0.016, 0.059).
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Fig. 2. Periodic Fabry -Pérot fringes.

TheFig. 3 shows the result of the 10,000 simulations in form of graphs that indi cate how the
number of fringes N; and the phase parameter ¢ influence the displacements of the parameters A. We
see that these influence becomes insignificant if N; >8. This time we preferred to display the

displacements A /0 instead the normalized standard deviations dA / 0%‘90’ aswe did for harmonic

fringes, because we expected greater variations in respect to parameter Ny, so that the histograms of
the displacements (which are the actua statistical errors) don't fit with Gaussian distribution
functions if the number of fringesis not large enough.

Next we repeat a statistic over a new sa of 10,000 computer-simulated fringes, with the
same parameters, except N; that was given uniform random values in the range 8+20 fringes. We
have changed the range of N; thinking that so the errors dA /o, will become a distribution closer to
the standard normal distribution one. This time for the reduced parameter y = A /0 we obtain the
following results for average and standard deviation: y=(-0.46, 33.4, 0.017, -0.0079),

0,=(1.04, 1.12, 1.35, 1.29). In comparison with the harmonic fringes, the estimations of the
parameters A are more biased, especially I, has a displacement of 330, . The parameters (N;, ¢)
have small displacements. The deviations o are grester than 1, showing that the computed statistic

errors are underestimated. The histogram of the statistical quantity y for each component fits well
with a Gaussian distribution.
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Fig. 3. Results on processing a set of 10,000 Fabry-Pérot fringe paterns.
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We conclude that the LSF agorithm made for harmonic fringe patterns can be used to
process strongly non-harmonic fringe patterns as well, beng able to compute accurately the number
of fringes and the phase offset (N:, ¢), if at least 12 well sampled fringes are present in the fringe
pattern to be processed. It's obvious one can make a LSF routine that takes into account more

parameters related to high order harmonics, but the amount of computation increases as the squared
number of parameters.

2.3. Modulated fringes

Most fringe patterns do not have uniform contrast, they are modulated so that their intensity
profile may be written with variabl e coefficients (lo, 11) and the fringes are said to be quasiperiodic:
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1(X) =15(X) +1,(x) [os(27x + @) (15)

Obviously, the most general fringe profile may be written as a Fourier series (14) with
variableintensities Iy.

Often we may use to process various gquasiperiodic fringe patterns and determine the set of
parameters A=(lo, 11, N;, ¢) as if the fringes were harmonic. Let’s analyze if there is a reason for
doing this.

In the Fourier spectrum of the function (15), the component of frequency v is widened, its
spectral profile being the spectrum of the function I1(X) (due to the convolution of the function 1,(X)
with the harmonic function). Similarly, the component of frequency O takes the spectrum of the
function l(X).

By least squares fitting of the function (15) with the harmonic function (2a) the computed
parameters A=(lq, I1, N;, ¢) have the following meanings: 10, 11 become the average of the functions
10(X), 11(X) respectively, while Ns and ¢ estimate the number of fringes and the phase parameter in the
formula (15), but all these values are biased estimations and they tend to be exact as the number of
fringes increases.

To see the conditions suitable for good results on processi ng quasiperiodic fringes with the
computer agorithm for harmonic fringes, we made statistics on the results of processing of a large
set (10,000) of computer simulated fringe patterns.

We simulate 10,000 1D modulated fringe patterns, each of them with 256 samples, with
such a profile as that of the interference pattern of two Gaussian beams. Fig. 4 displays the actual
fringe profil es used for the simulated fringes. For al the fringe patterns in the set the parameters (1o,
I;) were assigned the values (0.42, 0.334), so that the intensity lies in the range 0+1. The parameter
N; was given uniform random values in the interval of 3+24 fringes and the parameter ¢ was given
uniform random values in the interval -n+xn. We add Gaussian noise of 0 mean and ¢, =0.05 standard

deviation. In these conditions the reations (8a) give for the deviations of the parameters A the
vaues: ¢ =(0.0031, 0.0073, 0.016, 0.026).
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Fig. 4. Modul ated fringes.

The Fig. 5 shows the result of the 10,000 smulations in form of graphs that show how the
number of fringes N; and the phase parameter ¢ influence the displacements of the parameters A. We
seethat these influence becomes insignificant if Ny >12.
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Fig. 5. Results on processing a set of 10,000 modulated fringe patterns.
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We further made a statistical anaysis over a new set of 10,000 computer-simulated fringes,
with the same parameers, except for N; that was given uniform random values in the range 12+24
fringes, so that the digtribution of the errors dA /o4 becomes closer to the standard normal
distribution. This time for the reduced parameter y =0A / o5 we obtain the following results for the
average and deviation: y=(-0.14, 0.15, -0.89, 0.99), 0;=(1.03, 1.15, 1.80, 1.44). In comparison
with the harmonic fringes, the estimations of the parameters A are more biased, espeddly the
parameters (Nr, ¢) have displacements of about 1c. The deviations oy are greater than 1, thus the
numerically computed statistical errors are underestimated up to 80% in the case of parameter N:.
The histogram of the statistical quantity y for each component fits well the Gaussian distribution.

We conclude that the LSF agorithm for harmonic fringe patterns is also suitable for

rocessing quasiperiodic fringe patterns to compute accurately the number of fringes and the phase
offset (N, ¢), if a least 20 well sampled fringes are provided in the fringe pattern to be processed.
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3. Conclusions

We deveop analytical expressions for the statistical errors concerning the measurement of
the parameters A=(lo, 11, Ni, @) for the smplest fringe pattern (2a,b). These theoretical results
obtained using an asymptotic gpproximation (valid for a large number of fringes) give the upper
limit of accuracy the fringe parameters can be determined with this method.

Performing gatistics on a set of 10,000 simulated fringe patterns, we have proved that the
anaytical formulae (8) estimate correctly the statistical errors for harmonic fringes if the fringe
patern has at least 3 fringes, which are wdl sampled (the sampling rate considered was
>8 sampl &/peri od).

We stated the vaid conditions for processing non-harmonic fringes with the LSF agorithm
for harmonic fringes. Doing statistics on the results of processing a set of 10,000 simulated Fabry
Perot fringes, we proved that we get the fringe parameters with high accuracy if there are at least 8
fringes in the fringe pattern. We should mention that athough the numerically computed statistica
errors are underestimated (and not always rdiable), the theoretica statistical errors (8) aways
estimate very wdl the actud statistical errors if the number of fringes are greater than 8.

In the same manner we treated the processing of quasiperiodic fringe with the LSF
agorithm made for harmonic fringes. By statistica processing of a set of 10,000 computer simulated
fringe patterns, we proved that we can calculate the fringe parameters with good accuracy if there
are a least 12 fringes in the fringe pattern. Also in this case, the numerically computed statistical
errors are underestimated, but the theoretica results (8) aways estimate very well the actua
statistica errorsif the number of fringes are greater than 12.

The genera conclusion is that the fringes must be harmonic with maximum contrast to
obtain maximum precision in measuring its parameters. However, even for strongly non-harmonic
fringes, the estimation of the parameters (N;, ¢) is very good if the fringe profile is periodic and if
there are at least 10-12 fringes available. Special care must be taken for processing of quasiperiodic
fringes (fringes with nonruniform contrast, or modulated fringes). In this case especialy the
parameters (N;, ¢) can have large displacements and fluctuations if there are not at least 20 fringes
in the fringe pattern to be processed.

The results of this paper are applicable, for example, to predict the precision that one can
achieve when measuring wavdengths, lengths and displacements using high precision
interferometers with stabilized lasers. They give the answer to the following questions: What
resolution (number of pixes) must have the CCD used to acquire the fringe pattern to measure
wave engths, lengths or displacements with a given accuracy? How do these errors depend on the
number of fringes? It has been shown that these errors do not depend on the number of fringes, if
this number is large enough. They depend only on the number of samples N and the fringe contrast.

4. Appendix
4.1. Least squaresfitting for linear combinations of functions

Let x, y be two quantities which have a functiona relationship that we approximate by a
linear combination of r independent functions:

&
6?2 L f(x)= f,(x) (A1)
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The symbol " represents the operation of matrix transposition. Let us consider that y(X) is a
scalar function and x may be asingle variable or a set of independent variables.

Let y beaset of experimental results (statistical data), measured with variance of,to which a
set of data x is associated. We suppose the data x, bel onging to the variables x, have zero variance

y(1) X(1)
(2) (2)

y={ V| x= ¥ (A2)
y('N) X('N)

In the most generd case of,is the covariance matrix of the valuesy, has the dimension N x

N, and contains the variances on the main diagona while the other elements are the covariations
between the various data y, i=1,2,...,N. In many practical situations all the values y are measured

with the same accuracy and are statistical ly independent, so that the quantity of, becomes ascalar.
Alternatively we use as well another eguivalent quantity, caled statistical weight, defined by
=lez]™.
We are attempting to compute the coefficients a from rdation (A1) so that this rd ation best
approximate the experimenta data. For this purpose we use the least squares fitting method from

statistica mathematics, widdy used for data processing. Firstly we define a column vector whaose
e ements are the difference between the datay and the assumed function y(x):

-y =f x Ei y=D@&-vy,

f,(x® x®) . (x®

f é (2){ éx(z); fré):((z)§ o :f(XT) (A3)
f, x(N)) fz(x(N)) f,(x(N))

As a global assessment of al these deviations one builds up a scalar function ¥?(a) which
represents the sum of the squared normalized deviations of the experimental data y from the
assumed function y(x):

()= B 39 (@) 2 (a) = 5" (a) P, [3(a) (A)

ij=1

Least squares fitting consists in findi ng the values of the parameters a for which the function

x2(a) reaches its minimum. The val ues of the parameters a for which the function ¥*(a) is minimum
are obtained by solving an equation system consisting of r linear equations established by equaling

to zero the partia derivatives of the function x*(a) relative to each of the parameters a. Thisis called
the “normal equation system”:

% =20" P, [D@-y]=0=[D" P, D]m=[0" |1y (A5)
The solution of this systemiis:
a=Bly, B=[0" P, O]"p" P (A6)

It is interesting to notice that there is a linear relationship between the data y and the
computed parameters a. The parameters a are statistical quantities. Rdation (A6) gives ther
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statisticd mean a. Using the error propagation theorem we obtain the covariance matrix of these
parameters, that contains on the main diagonal their variances:

62 =B B = [DT P, [lD]'1 =[r]* (A7)

We find out that the function y*(a) is an r-dimensiona parabola in the components of the
vector a:

x'@=[pa-y[ P, p@-y]=
=[pfa-3)+D@-y| P, {Dfa-3)+D@E-Yy]= (A8)
=[a-a] ,fa-a]+ 1, X =[p@-y] P, (D@E-y]=cons

A section of this parabola to one component, say a;, is a smple 1D parabola, shown in
Fig 3

X(@) = ) ~3 ) + X2 (A9)
O3

Thus, the parabola ¥?(a) reaches its minimum in a and has an extent corresponding to the
variances o> .

X*(@

|
Y /

ol - -
o]

Fig. 6. For linear LSF the function * is a parabola.

Using the criterion of minimizing the function ¥*(a) for computing the parameters a that
give the best fit of the experimenta datay by the formula (A1) is based on the maximum plausibility
principle from statistical mathematics. It is right to use this criterion only with the assumption that
the experimenta datay deviates from the formula (A1) only due to normal distributed fluctuations

with 0 mean and of,varianc&e Otherwise, adifferent criterion is necessary.

If the deviations &(a) are normally distributed, then the minimum of the function x%(a),
namely the value x2 =x?2(a), whichis also a statistical quantity, has ay? distribution with N degrees
of freedom. The value X3 is useful to check if the relation (A1) fits well the experimental datay. We
distinguish two main cases:
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- If x5<N@ it is highly probable that the relation (A1) approximates very well the

experimental datay, which deviate from the rdation (A1) only due to normal distributed statistical
fluctuation with 0 mean and 2 y ¢ variances.

-If x2<N T the relation (A1) is not suitable for fitting the experimental data 'y or the
assumption that the deviations 6(&‘1) have normal distribution with 0 mean and of, variances is not
valid.

2 - 2
X (a) ..-H 1-.- ’ i II|I y
.“"‘-_,_ - .Il.l' i = g
| Oa ¥ 1
i | |
_I'lll .II.'.-I LN
| ."\. _.r .
Xa

I

I

|

a a
Fig. 7. For nonlinear LSF the function x* has a quadratic form around it’ s global minimum.

4.2. Least squaresfitting for nonlinear functions

Let’s assume a certain nonlinear relationship between two quantities y and x, which cannot
be expressed as alinear combi nation of independent functions:

y=f(xa) (A10)

The function f(x, a) has a known behavior, but depends on the set of parameters a, which are
to be determined in order to find the best fit of an experimental data set (x, y) by this function, in the
sense of minimizing the function y(a). We use the assumption that the data y is affected by normal

distributed fluctuations with O mean and of,varianc&e

The normal equations for determining the set of parameters a are generaly not linear. They
cannot be always solved and yticdly, and the numerical solution can often prove to be difficult. The
problem can be tackled iteratively, as shown further. We start from an arbitrary initia approxi mation
a¥ of the parameter set a, obtained by some method or other, with an arbitrary accuracy. The non-
linear function f(x, a) is developed as a Taylor series around the vaues a© and the linear term is
saved:

f(x,a) Of(x,a®) + Dfa-a®)

[9f(x®,a) af(x®,a) af(x?,a) |
0, da, da,
Dzaf(x,a) _ af(;(z’,a) af(x?,a) af(x?,a) (A11)
da |0 & a‘?‘? a?*
afx™,a) af(x™,a)  af(x™,a)
CEN da, oa | _.o
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The N-éement vector that contains the deviations of the function f(x, a) from the
experimentd vauesy is.

8(a)= y(x)-y=f(x.a)-y=Dla-a®)-8, &,=y-f(xa®) (A12)

and the sum of the squared and normalized deviationsis:

x2(2)=4" ()P, B(a) = [pfa-2) -3, P, (D fa-2)-3,) (A13)

The normal equati on system has the same form as (A5), but instead of a we have a-a®, and
y isreplaced with & =y —f(x, a®):

% =20" P, [prfa-a®)-38,]=0= [D" P, D]da-a?)=[0" P, |3, (A14)
Obviously, its sol ution has the same form as (A6):
a-a® =B, B=|D'P,D| 0P (A15)

By now we have the result of the first iteration of a series that must be continued. The result
a thus obtained is input for a new iteration instead of the zero-order approximation a® and the
procedure is repeated until the difference between the results of two successive iterations becomes
negligible. Generdly the algorithm has a rapid convergence, but not always. After the final result
was obtained with sufficient accuracy, its variances can be calculated using the same formula as in
the linear case, (A7). Le’s anayze the form of the function y*(a). If we develop the nonlinear
function f(x, @) infirst order Taylor series around the vdues a:

_ of(x,a)
da |._.

a=a

f(x,a) =f(x,a)+D{a-a), D (A16)

then we obtain an r-dimensional parabola form for the function y*(a), having the minimum in a and
an extent that depends on the variances of,:

x*(@ =[f(x.a)-y]' P, ff(x.a)-y] =
=[pdfa-a)+f(x,3) -y] P, (D{a-a)+f(x,@)-y]|= (A17)
=la-a] ®, fa-a]+ x2, x2=[f(x @) -y] P, f(x,3)-y]=const

Outside the vicinity of a, the function ¥*(a) is no longer parabolic, as shown in figure 4 that
presents a one-dimensiona section of this r-variable function. The basic idea of this agorithm
consists in the fact that the function ¥*(a) which depends on the set a of r parameters has an
approxi mately r-dimensional quadratic shape around a (no matter if the function f(x, a) is linear or
not) and its minimum can be determined as a sol ution of a linear equation system. In the non-linear
case, the result obtained after each iteration progressively draws near the solution, except in some
inappropriate singularity cases, when the convergence is not attained. As a genera rule, to ensure
convergent iterations, the first approximation a® must be close enough to the exact vaues a,
otherwise the iterations may diverge, or they may lead to alocal minimum. It is remarkable that all
the operations described for this algorithm are carried out using only linear al gebra.
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