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1. Introduction 
 
Straight equispaced fringe patterns occur in many interference cases. These are the simplest 

fringe patterns, but have a great importance because any other fringe patterns of any complexity may 
be decomposed in terms of these simple patterns. Furthermore, processing of these fringe patterns is 
very important in optical metrology [1,2,3]. 

There are many methods for fringe processing. The most modern is considered the phase 
shifting interferometry, a method that has to process at least three phase shifted fringe patterns to 
retrieve the phase map of an object wavefront relative to a reference wavefront. The statistical 
properties of the errors of this method are well described in Refs. 4-8. 

Since the fringe patterns that we concern ourselves with have an a priori known phase map 
(linear ramp), we don’ t have to determine the phase map, but only it’s gradient and phase offset, 
which must be constant parameters. For this purpose we use least squares fitting (LSF) to compute 
the basic parameters of the fringe patterns as statistical quantities [9,10]. LSF, a method widely used 
for data processing, is well described in the appendix using a matrix language well suited for 
computer programming. We also have implemented this method in computer programs that we used 
to process fringe patterns and to study the related errors. We do not give details on these computer 
programs, since the main purpose of this paper is to evaluate the statistical errors for the LSF 
computed fringe parameters. 

Because these fringe patterns are simple (periodic), the Fourier transform method [11] is 
optimal to process them and may be faster than LSF, which is a very general method. However, we 
consider that LSF is very important as a classical method and the main point of the present work 
resides in the fact that we could obtain analytical expressions for the statistical errors of LSF. We 
can say that the errors found on LSF may serve as reference errors to compare the errors of any other 
methods used to process fringe patterns. Moreover we think that LSF is one of the most accurate 
statistical methods. 

 
 

2. Fringe pattern processing 
 
2.1. Periodic harmonic fringes 

 
The simplest fringe pattern has a harmonic distribution of intensity along a direction x or 

over a plane (x, y): 
                                                
* Corresponding author: nv@email.ro 
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1D fringe pattern: )2cos()(I 10 ϕπν +⋅+= xIIx  (1a) 
 

2D fringe pattern: ( )ϕννπ +⋅+⋅⋅+= )(2cos),(I 10 yxIIyx yx  (1b) 

 
I0 is the background intensity, I1 is the intensity of the fundamental harmonic, �  is the spatial 
frequency of the fringes having two components for 2D fringe pattern, and ϕ is a phase parameter 
that specifies the global positioning of the fringe pattern. Such fringe patterns occur by the 
interference of two uniform plane wavefronts.  

Fringe pattern acquisition by a CCD leads to a sequence of sampled and digitized values of 
the intensity distribution: 
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where � x and � y denote the sampling steps, which are the spacing between two adjacent CCD pixels, 
on two orthogonal directions. Instead of the spatial frequency we prefer further using the 
adimensional parameter Nf that is the number of fringes in the fringe pattern. It has also two 
components in the case of 2D fringe pattern. 

We should mention that actually the sampling performed on the fringe pattern by the CCD is 
not just the simple sampling of the functions (1), because the CCD pixels have finite size and they 
output the average light intensity over their active area. We describe this effect for the 1D case 
assuming a linear data acquisition system. According to the theory of linear systems, the output J(x) 
can be written as a convolution of the input I(x) with the impulse response function g(x) of the 
acquisition system: 
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Let’ s consider a rectangular impulse response function: 
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that signifies light averaging over the active area of a CCD pixel, whose size equals a fraction �  of 
the spacing � x between two adjacent pixels. With this impulse response function we obtain the 
following sequence of N samples: 
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Therefore the contrast in the acquired data of the fringe pattern is reduced, but very slightl y 

if the CCD resolution N is large enough. Of course, beside light averaging due to the finite size of 
pixels, there are many other effects, such as light diffraction. All effects superpose and give a more 
complicated impulse response function, but for any linear acquisition system, the acquired data 
remains harmonic like the fringe pattern and the parameters (Nf, ϕ) remains unaffected, in spite of 
the actual impulse response function. Further we shall use the formulae (2) to describe the fringe 
patterns, taking into account that the fringe contrast never reaches 1 (always I1<I0). 
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Let’s show how LSF is applied to determine the set of 4 parameters A=(I0, I1, Nf, ϕ) in (2a), 
respectively 5 parameters A=( I0, I1, Nfx, Nfy, ϕ) in (2b). These parameters are statistical quantities 
and the LSF computer program for fringe processing gives their statistical means and variances. 
Their variances are due to the fluctuations of the acquired data, that we suppose to have Gaussian 
distribution with 0 mean and 2

Iσ  variance. In fact only making this assumption is the LSF correctly 
applicable. 

The LSF applicable on (2) to determine A is nonlinear (see appendix), because the relations 
(2) cannot be written in the form of a linear combination of independent functions having the 
parameters A as coefficients, as the equation (A1) shows. Nonlinear LSF needs a set of approximate 
starting values for A to iteratively compute high precision final results. It’s easy to get the starting 
values using course precision methods, for example applying Fast Fourier Transform to a subset of 
the sequence (2). A 10% precision has been proved to be enough to successfully start the iterations. 
Usually 5-10 iterations lead to the final result. 

The formula (A7) allows us to calculate the covariance matrix of the parameters A, that is, 
their statistical errors. This formula is applicable as well for nonlinear LSF, since it expresses the 
first order approximation of the error propagation law. For the 1D fringe pattern we calculate firstl y 
a 4-component vector of functions that are the partial derivatives of the function I(x) with respect to 
each of the A parameters: 
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Then we have to compute the 4.4 matrix of the statistical weights PA: 
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Assuming a very large number of samples (N → ∞), we have approximated the 16 sums 

above with integrals, which we could calculate analytically. However some of them are still  
complicated, but using the limit of very large fringe number Nf → ∞ they simplify very much. Next 

one needs only inversing the PA matrix in order to get the covariance matrix 2
Aσ . The covariance 

matrix for the parameters of 2D fringe patterns are calculated similarly, except that the sums and 
integrals become double according to the (x, y) coordinates, and the amount of computation is much 
greater. As described above we have found analytical expressions for the statistical errors of the 
parameters A using an asymptotic approximation valid for large number of fringes Nf and large 
number of samples N: 
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The correlations between (Nf, ϕ) are irrelevant for the statistical errors assessment, only the 
diagonal elements of the covariance matrix are sufficient. All the parameters have variance inversely 
proportional to N, consequent to an universal statistical law. 

It is now easy to find out the probability density function of the statistical fluctuations of A 
providing that the intensity fluctuations of all the pixels in the fringe pattern are statisticall y 
independent and each of them has the Gaussian distribution function fG of � I variable and µ = 0,           
�  = �

I parameters: 
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We see that according to relation (A15) there is a linear relationship between the variations 

of the parameters A and that of the intensity I: 
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� I in relation (9) should not be mistaken for � I in relation (10). The former quantity is a scalar 
representing the intensity variation of a pixel in the fringe pattern, while the latter denotes the 
intensity variations all over the fringe pattern. 

It is known that the probability density function of the sum of two independent random 
quantities equals the convolution of their probability density functions. Hence each of the parameter 
in the set of A has a probability density function that is the convolution of N Gaussian distribution 
function of different widths � : 
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It is also known that convolving two Gaussian functions leads to another Gaussian function, 

according to the following rule: 
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Therefore each component � A,k has the distribution fG( � A,k; 0, � A,kk) and moreover, the 

fluctuations of the whole set of A have the multivariate normal distribution [12]: 
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r being the number of parameters A, equal to 4 or 5 whether the fringe pattern is 1D or 2D. To 
obtain the covariance matrix with more precision, one needs to perform very difficult analytical 
calculation, which leads to very complicated results. That’s why we restrict ourselves to the simple 
approximate results (8). In order to check the level of accuracy of these analytical formulae, we have 
processed a large number of computer simulated fringe pattern and we have performed a statistical 
analysis on the results to compare the actual errors with the theoretically predicted ones in Eq. (8). 

We simulate 10,000 1D fringe patterns of the form (2a), each of them with 256 samples. For 
all the fringe patterns in the set the parameters (I0, I1) were assigned the values (0.5, 0.4), which give 
a good fringe contrast and calibrate the intensity I(x) within the range 0÷1 that we suppose to be the 
data acquisition range (we take into account the previous mention that always I1<I0). The parameter 
Nf was given uni form random values in the interval of 3÷32 fringes. We chose this interval because 
there is no sense to process fringe patterns with too few fringes (Nf< 3) and we limit the upper limit 
of fringe number to 32 to avoid aliasing associated with undersampling (we only consider well 
sampled fringes with sampling rate >8 samples/fringe spacing). The parameter ϕ was given uniform 
random values in the interval - � ÷ � . We add Gaussian noise of 0 mean and � I = 0.05 standard 
deviation. The noise due to usual 8-bit quantisation is very small, but the simulation took it into 
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account too. (Statistical mathemathics shows that by uniform quantisation with step q, the 
quantisation error is uniform in the interval -q/2÷q/2 and has the variance 12/22 qq =σ ) . 

In these conditions the relations (8a) give for the deviations of the parameters A the values:         
theor
Aσ =(0.0031, 0.0044, 0.0061, 0.022), equal to the squared root of the diagonal elements in the 

covariance matrix. 
Let’s denote with A0 the parameters given to the simulated fringe patterns, while A  and A

σ  
denote their statistical mean values and standard deviations provided by the computer program 
(applying (A7) to the data I). We define the displacement between the exact values and the 
computed values of the fringe parameters: AAA −=δ 0 and we do statistics on the reduced 
parameters A

Ay σδ= / over the whole set of the 10,000 simulated fringe patterns. Here are the 
results for average and standard deviation: y =(-0.63, -0.013, -0.0046, 0.0041), yσ =(0.997, 0.991, 
0.998, 0.998). The mean values y  show that the estimations of the parameters A are biased, but 
except the first component, these biases are quite small considering that they are expressed as 
fractions of A

σ . 
 

Fig. 1. Results on processing a set of 10,000 harmonic fringe patterns. 
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The –0.63 bias of the I0 intensity is mainly due to quantization. Quantization error is actually 
not a statistical error. It may be regarded as statistical only when the image has large variations. The 
DC component of an image is systematically biased by quantization. This bias is not greater than        

qIq NN ,/1
0

σ±  being the number of quantization levels. If we repeat the whole procedure of 

statistics once again without quantizing the fringe patterns, we obtain the means y =(0.0076, 0.0020, 

0.0070, -0.0082) and the standard deviations yσ =(1.0075, 1.00077, 0.997, 0.997). This time all 

biases are very small and we can regard them as being only due to statistical 

fluctuations: py N/y σ< , where Np=10,000 is the number of processed fringe patterns.  

All the deviations yσ are close to 1, proving the fact that the computed values of the 

statistical errors on a single fringe pattern processing estimate very well the actual fluctuations that 
have been observed over the set of 10,000 simulations. Moreover, we have proved that the 
histograms of the statistical quantity y fit well with Gaussian distribution functions of parameters 

),y( yσ , very close to standard normal distribution functions, which have (0, 1) parameters. 

The Fig. 1 shows the result of the 10,000 simulations in form of graphs that show in what 
manner the number of fringes Nf and the phase parameter ϕ influence the numerically computed 
standard deviations of the parameters A. The top left plot has the narrower range from 6 to 16 
fringes for the abscissa to give more details. Thus it is easy to see that the errors become minim 
when the fringe number Nf takes integer values. That’s because the harmonic functions are 
orthogonal over ranges of integer periods. The covariance matrix (8) is calculated just assuming 
exact orthogonality between the functions sine and cosine involved in the sums (7). 

We conclude that the formulas (8) estimate very well the actual statistical errors, even if the 
number of fringes is not large and there are only 256 sampling points. We should mention that for            
Nf =3 fringes, the difference between the theoretical and computed evaluation of the deviation for the 
parameter Nf is only 3%. 

 
 
2.2. Non-harmonic periodic fringes 

 
Often fringe patterns may be periodic, but not harmonic so that their intensity profile can be 

written as a Fourier series: 

 �
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There are two main reasons why the fringe patterns to be processed have high-order 

harmonics: 
- The non-harmonic profile is specific to certain interference conditions, for example in 

multiple beam interference. 
- By acquiring data with a non-linear device the output signal becomes higher order 

harmonics. 
Often we may need to process fringe patterns with unknown profile and determine the set of 

parameters A=(I0, I1, Nf, ϕ) as if the fringe were harmonic. Let’s analyze if there is any sense in 
doing this. 

If the number of fringes is very large, then the harmonic functions cos k ⋅ (2� � x + ϕ) build 
up an orthogonal system over the domain of the fringe pattern. If the Fourier series (14) were finite, 
then due to the orthogonality of the harmonics, the accuracy of this series would increases only by 
adding new terms in the series, not by adjusting the former ones. Thus, the parameters (I0, I1) 
computed with the algorithm for harmonic fringes will exactly match the 0th and the first orders of 
harmonic intensities in the non-harmonic fringe pattern. Also, the last two parameters (Nf, ϕ) 
estimate correctly the number of fringes and the phase offset parameter in the non-harmonic fringe 
pattern and they have the same accuracy as the fringes would have harmonic profile with the 
intensity I1.  
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If the fringe number is not very large, then the orthogonality of the harmonic functions       
cos k ⋅ (2� � x + ϕ)  is distorted and the parameters (I0, I1) do not match exactly the orders 0 and 1 of 
the harmonic intensities in the non-harmonic fringe pattern, nor do the last two parameters (Nf, ϕ) 
estimate correctly the number of fringes and the phase parameter. All parameters (I0, I1, Nf, ϕ) 
computed with the assumption of harmonic fringes are biased estimations of the corresponding 
parameters in the non-harmonic fringe pattern, and they tend to the exact values as the number of 
fringes increases (surely, the sampling rate must be increased correspondingly to avoid aliasing). 

To see the conditions suitable for good results on processing non-harmonic fringes with the 
computer algorithm for harmonic fringes, we use a statistical analysis on the results of processing a 
large set (10,000) of computer simulated fringe patterns. 

We simulate 10,000 1D Fabry Perot fringe patterns, each of them with 256 samples. For all 
the fringe patterns in the set the parameters (I0, I1) were assigned the values (0.25, 0.15), so that the 
intensity is confined within the range 0÷1. Fig. 2 displays the actual fringe profile of the simulated 
fringes. The parameter Nf was given uniform random values in the interval of 3÷32 fringes and the 
parameter ϕ was given uniform random values in the interval - � ÷ � . We add Gaussian noise with 0 
mean and � I =0.05 standard deviation. In these conditions the relations (8a) gives for the deviations 

of the parameters A the values: theor
Aσ =(0.0031, 0.0044, 0.016, 0.059). 

 

 
Fig. 2. Periodic Fabry -Pérot fringes. 

 
The Fig. 3 shows the result of the 10,000 simulations in form of graphs that indicate how the 

number of fringes Nf and the phase parameter ϕ influence the displacements of the parameters A. We 
see that these influence becomes insigni ficant if Nf >8. This time we preferred to display the 

displacements 
A

/A σδ  instead the normalized standard deviations theor
A

/A σδ as we did for harmonic 

fringes, because we expected greater variations in respect to parameter Nf, so that the histograms of 
the displacements (which are the actual statistical errors) don’ t fit with Gaussian distribution 
functions if the number of fringes is not large enough. 

Next we repeat a statistic over a new set of 10,000 computer-simulated fringes, with the 
same parameters, except Nf that was given uniform random values in the range 8÷20 fringes. We 
have changed the range of Nf thinking that so the errors A/A σδ  will become a distribution closer to 

the standard normal distribution one. This time for the reduced parameter A
/Ay σδ= we obtain the 

following results for average and standard deviation: y =(-0.46, 33.4, 0.017, -0.0079),                      

yσ =(1.04, 1.12, 1.35, 1.29). In comparison with the harmonic fringes, the estimations of the 

parameters A are more biased, especially I1 has a displacement of 
1

33 Iσ . The parameters (Nf, ϕ) 

have small displacements. The deviations yσ are greater than 1, showing that the computed statistic 

errors are underestimated. The histogram of the statistical quantity y for each component fits well 
with a Gaussian distribution. 
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Fig. 3. Results on processing a set of 10,000 Fabry-Pérot fringe patterns. 
 
 

 
 
We conclude that the LSF algorithm made for harmonic fringe patterns can be used to 

process strongly non-harmonic fringe patterns as well, being able to compute accurately the number 
of fringes and the phase offset (Nf, ϕ), if at least 12 well sampled fringes are present in the fringe 
pattern to be processed. It’s obvious one can make a LSF routine that takes into account more 
parameters related to high order harmonics, but the amount of computation increases as the squared 
number of parameters. 

 
 
2.3. Modulated fringes 
 
Most fringe patterns do not have uni form contrast, they are modulated so that their intensity 

profile may be written with variable coefficients (I0, I1) and the fringes are said to be quasiperiodic: 

δ I
0/σ

I0(t
he

or
) 

δ I
0/σ

I0(t
he

or
) 

δ I
1/σ

I1(t
he

or
) 

δ I
1/σ

I1(t
he

or
) 

δ N
f/σ

N
f(t

he
or

) 

δ N
f/σ

N
f(t

he
or

) 

δ φ
/σ

φ(t
he

or
) 

δ φ
/σ

φ(t
he

or
) 



Statistical processing of straight equispaced fringe patterns 
 
 

 

849

 )2cos()(I)(I)(I 10 ϕπν +⋅+= xxxx  (15) 

 
Obviously, the most general fringe profile may be written as a Fourier series (14) with 

variable intensities Ik. 
Often we may use to process various quasiperiodic fringe patterns and determine the set of 

parameters A=(I0, I1, Nf, ϕ) as if the fringes were harmonic. Let’s analyze i f there is a reason for 
doing this. 

In the Fourier spectrum of the function (15), the component of frequency �  is widened, its 
spectral profile being the spectrum of the function I1(x) (due to the convolution of the function I1(x) 
with the harmonic function). Similarly, the component of frequency 0 takes the spectrum of the 
function I0(x). 

By least squares fitting of the function (15) with the harmonic function (2a) the computed 
parameters A=(I0, I1, Nf, ϕ) have the following meanings: I0, I1 become the average of the functions 
I0(x), I1(x) respectively, while Nf and ϕ estimate the number of fringes and the phase parameter in the 
formula (15), but all these values are biased estimations and they tend to be exact as the number of 
fringes increases. 

To see the conditions suitable for good results on processing quasiperiodic fringes with the 
computer algorithm for harmonic fringes, we made statistics on the results of processing of a large 
set (10,000) of computer simulated fringe patterns. 

We simulate 10,000 1D modulated fringe patterns, each of them with 256 samples, with 
such a profile as that of the interference pattern of two Gaussian beams. Fig. 4 displays the actual 
fringe profiles used for the simulated fringes. For all the fringe patterns in the set the parameters (I0, 
I1) were assigned the values (0.42, 0.334), so that the intensity l ies in the range 0÷1. The parameter 
Nf was given uniform random values in the interval of 3÷24 fringes and the parameter ϕ was given 
uniform random values in the interval - � ÷ � . We add Gaussian noise of 0 mean and � I  =0.05 standard  
deviation. In these conditions the relations (8a) give for the deviations of the parameters A the 

values: theor
Aσ =(0.0031, 0.0073, 0.016, 0.026). 

 
 

Fig. 4. Modulated fringes. 
 
 
The Fig. 5 shows the result of the 10,000 simulations in form of graphs that show how the 

number of fringes Nf and the phase parameter ϕ influence the displacements of the parameters A. We 
see that these influence becomes insignificant if Nf >12. 
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Fig. 5. Results on processing a set of 10,000 modulated fringe patterns. 
 

 
 
We further made a statistical analysis over a new set of 10,000 computer-simulated fringes, 

with the same parameters, except for Nf that was given uni form random values in the range 12÷24 
fringes, so that the distribution of the errors A

/A σδ becomes closer to the standard normal 

distribution. This time for the reduced parameter 
A

Ay σδ= / we obtain the following results for the 

average and deviation: y =(-0.14, 0.15, -0.89, 0.99), yσ =(1.03, 1.15, 1.80, 1.44). In comparison 

with the harmonic fringes, the estimations of the parameters A are more biased, especially the 
parameters (Nf, ϕ) have displacements of about 1� . The deviations yσ  are greater than 1, thus the 

numerically computed statistical errors are underestimated up to 80% in the case of parameter Nf. 
The histogram of the statistical quantity y for each component fits well the Gaussian distribution. 

We conclude that the LSF algorithm for harmonic fringe patterns is also suitable for 
rocessing quasiperiodic fringe patterns to compute accurately the number of fringes and the phase 
offset (Nf, ϕ),  if at least 20 well sampled fringes are provided in the fringe pattern to be processed. 
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3. Conclusions 
 

We develop analytical expressions for the statistical errors concerning the measurement of 
the parameters A=(I0, I1, Nf, ϕ) for the simplest fringe pattern (2a,b). These theoretical results 
obtained using an asymptotic approximation (valid for a large number of fringes) give the upper 
limit of accuracy the fringe parameters can be determined with this method. 

Performing statistics on a set of 10,000 simulated fringe patterns, we have proved that the 
analytical formulae (8) estimate correctly the statistical errors for harmonic fringes if the fringe 
pattern has at least 3 fringes, which are well sampled (the sampling rate considered was                           
>8 sample/period). 

We stated the valid conditions for processing non-harmonic fringes with the LSF algorithm 
for harmonic fringes. Doing statistics on the results of processing a set of 10,000 simulated Fabry 
Perot fringes, we proved that we get the fringe parameters with high accuracy if there are at least 8 
fringes in the fringe pattern. We should mention that although the numerically computed statistical 
errors are underestimated (and not always reliable), the theoretical statistical errors (8) always 
estimate very well the actual statistical errors if the number of fringes are greater than 8. 

In the same manner we treated the processing of quasiperiodic fringe with the LSF 
algorithm made for harmonic fringes. By statistical processing of a set of 10,000 computer simulated 
fringe patterns, we proved that we can calculate the fringe parameters with good accuracy if there 
are at least 12 fringes in the fringe pattern. Also in this case, the numerically computed statistical 
errors are underestimated, but the theoretical results (8) always estimate very well the actual 
statistical errors if the number of fringes are greater than 12. 

The general conclusion is that the fringes must be harmonic with maximum contrast to 
obtain maximum precision in measuring its parameters. However, even for strongly non-harmonic 
fringes, the estimation of the parameters (Nf, ϕ) is very good i f the fringe profile is periodic and i f 
there are at least 10-12 fringes available. Special care must be taken for processing of quasiperiodic 
fringes (fringes with non-uniform contrast, or modulated fringes). In this case especially the 
parameters  (Nf, ϕ) can have large displacements and fluctuations if there are not at least 20 fringes 
in the fringe pattern to be processed. 

The results of this paper are applicable, for example, to predict the precision that one can 
achieve when measuring wavelengths, lengths and displacements using high precision 
interferometers with stabilized lasers. They give the answer to the following questions: What 
resolution (number of pixels) must have the CCD used to acquire the fringe pattern to measure 
wavelengths, lengths or displacements with a given accuracy? How do these errors depend on the 
number of fringes? It has been shown that these errors do not depend on the number of fringes, if 
this number is large enough. They depend only on the number of samples N and the fringe contrast. 

 
 
4. Appendix 

 
4.1. Least squares fitting for linear combinations of functions 
 
Let x, y be two quantities which have a functional relationship that we approximate by a 

linear combination of r independent functions: 
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The symbol T represents the operation of matrix transposition. Let us consider that y(x) is a 
scalar function and x may be a single variable or a set of independent variables. 

Let y be a set of experimental results (statistical data), measured with variance 2
yσ to which a 

set of data x is associated. We suppose the data x, belonging to the variables x, have zero variance. 
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In the most general case 2

yσ is the covariance matrix of the values y, has the dimension N × 

N, and contains the variances on the main diagonal while the other elements are the covariations 
between the various data y(i), i=1,2,...,N. In many practical situations all the values y are measured 

with the same accuracy and are statistically independent, so that the quantity 2
yσ  becomes a scalar. 

Alternatively we use as well another equivalent quantity, called statistical weight, defined by  

[ ] 1−
= 2

y
�Py . 

We are attempting to compute the coefficients a from relation (A1) so that this relation best 
approximate the experimental data. For this purpose we use the least squares fitting method from 
statistical mathematics, widely used for data processing. Firstly we define a column vector whose 
elements are the difference between the data y and the assumed function y(x): 

 

 

( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )TT

N
r

NN

r

r

T

T

xxx

xxx

xxx

y

xfDxfD

yaDyaxfyxa
�

=












�

�

�
�
�
�
�

�

�

==

−⋅=−⋅=−=

,

fff

fff

fff

,

)()(
2

)(
1

)2()2(
2

)2(
1

)1()1(
2

)1(
1

�

����

�

�

 (A3) 

 
As a global assessment of all these deviations one builds up a scalar function � 2(a) which 

represents the sum of the squared normalized deviations of the experimental data y from the 
assumed  function y(x): 
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Least squares fitting consists in finding the values of the parameters a for which the function 

� 2(a) reaches its minimum. The values of the parameters a for which the function � 2(a) is minimum 
are obtained by solving an equation system consisting of r linear equations established by equaling 
to zero the partial derivatives of the function � 2(a) relative to each of the parameters a. This is called 
the “normal equation system”: 
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The solution of this system is: 
 

 [ ] [ ]y
T

y
T PDDPDByBa ⋅⋅⋅⋅=⋅=

−1
,  (A6) 

 
It is interesting to notice that there is a linear relationship between the data y and the 

computed parameters a . The parameters a are statistical quantities. Relation (A6) gives their 
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statistical mean a . Using the error propagation theorem we obtain the covariance matrix of these 
parameters, that contains on the main diagonal their variances: 
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We find out that the function � 2(a) is an r-dimensional parabola in the components of the 

vector a: 
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A section of this parabola to one component, say a1, is a simple 1D parabola, shown in            

Fig. 3: 
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Thus, the parabola � 2(a) reaches its minimum in a and has an extent corresponding to the 

variances 2
aσ .  

 
Fig. 6. For linear LSF the function � 2 is a parabola. 

 
 

Using the criterion of minimizing the function � 2(a) for computing the parameters a that 
give the best fit of the experimental data y by the formula (A1) is based on the maximum plausibil ity 
principle from statistical mathematics. It is right to use this criterion only with the assumption that 
the experimental data y deviates from the formula (A1) only due to normal distributed fluctuations 

with 0 mean and 2
yσ variances. Otherwise, a different criterion is necessary.  

If the deviations ( )aδ  are normally distributed, then the minimum of the function � 2(a), 

namely the value ( )a22
0 χ=χ , which is also a statistical quantity, has a � 2 distribution with N degrees 

of freedom. The value 2
0χ  is useful to check if the relation (A1) fits well the experimental data y. We 

distinguish two main cases:  

χ2(a) 

σa 

2
aχ  

  a       a 
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- If rN ⋅<χ2
0  it is highly probable that the relation (A1) approximates very well the 

experimental data y, which deviate from the relation (A1) only due to normal distributed statistical 
fluctuation with 0 mean and 2 y �  variances. 

- If rN ⋅<χ2
0  the relation (A1) is not suitable for fitting the experimental data y or the 

assumption that the deviations ( )aδ  have normal distribution with 0 mean and 2
yσ  variances is not 

valid. 
 

 
 

Fig. 7. For nonlinear LSF the function χ2 has a quadratic form around it’ s global minimum. 
 

 
4.2. Least squares fitting for nonlinear functions 

 
Let’ s assume a certain nonlinear relationship between two quantities y and x, which cannot 

be expressed as a linear combination of independent functions:  
 

 ),f( axy =  (A10) 

 
The function f(x, a) has a known behavior, but depends on the set of parameters a, which are 

to be determined in order to find the best fit of an experimental data set (x, y) by this function, in the 
sense of minimizing the function � 2(a). We use the assumption that the data y is affected by normal 

distributed fluctuations with 0 mean and 2
yσ variances. 

The normal equations for determining the set of parameters a are generally not l inear. They 
cannot be always solved analytically, and the numerical solution can often prove to be difficult. The 
problem can be tackled iteratively, as shown further. We start from an arbitrary initial approximation 
a(0) of the parameter set a, obtained by some method or other, with an arbitrary accuracy. The non-
linear function f(x, a) is developed as a Taylor series around the values a(0) and the linear term is 
saved: 
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The N-element vector that contains the deviations of the function f(x, a) from the 
experimental values y is: 

 
 ( ) ( ) ( ) ( ) ( ))0(

00
)0( ,f,,f axy

��
aaDyaxyxa

�
−=−−⋅=−=−= y  (A12) 

 
and the sum of the squared and normalized deviations is: 
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The normal equation system has the same form as (A5), but instead of a we have a-a(0), and 

y is replaced with δδδδ0 = y – f(x, a(0)): 
 

 ( )[ ] [ ] ( ) [ ] 0
)0(

0
)0(

2

02
)( �

PDaaDPD
�

aaDPD
a

a ⋅⋅=−⋅⋅⋅�=−−⋅⋅⋅=
∂

∂
y

T
y

T
y

Tχ
 (A14) 

 
Obviously, its solution has the same form as (A6): 
 

 [ ] [ ]y
T

y
T PDDPDB

�
Baa ⋅⋅⋅⋅=⋅=−

−1

0
)0( ,  (A15) 

 
By now we have the result of the first iteration of a series that must be continued. The result 

a thus obtained is input for a new iteration instead of the zero-order approximation a(0) and the 
procedure is repeated until the di fference between the results of two successive iterations becomes 
negligible. Generally the algorithm has a rapid convergence, but not always. After the final result 
was obtained with sufficient accuracy, its variances can be calculated using the same formula as in 
the linear case, (A7). Let’s analyze the form of the function � 2(a). If we develop the nonlinear 
function f(x, a) in first order Taylor series around the values a : 
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then we obtain an r-dimensional parabola form for the function � 2(a), having the minimum in a and 

an extent that depends on the variances 2
yσ : 
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Outside the vicinity of a , the function � 2(a) is no longer parabolic, as shown in figure 4 that 

presents a one-dimensional section of this r-variable function. The basic idea of this algorithm 
consists in the fact that the function � 2(a) which depends on the set a of r parameters has an 
approximately r-dimensional quadratic shape around a (no matter i f the function f(x, a) is linear or 
not) and its minimum can be determined as a solution of a linear equation system. In the non-linear 
case, the result obtained after each iteration progressively draws near the solution, except in some 
inappropriate singularity cases, when the convergence is not attained. As a general rule, to ensure 
convergent iterations, the first approximation a(0) must be close enough to the exact values a,  
otherwise the iterations may diverge, or they may lead to a local minimum. It is remarkable that all 
the operations described for this algorithm are carried out using only linear algebra. 
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