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In many fields of science and engineering, accurate information about l ight scattering 
properties of small nonspherical particles are necessary. In the so-called resonance region of 
particle size parameters, numerical methods for computing nonspherical scattering must be 
based on directly solving Maxwell 's equations, because Rayleigh and geometric optics 
approximations are inapplicable. In this paper, we review the status of Waterman's T-matrix 
approach and we present some results obtained by computing orientationally-averaged l ight 
scattering characteristics for ensembles of nonspherical particles. 
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 1. Introduction 
 

 The matrix method is an exact method based on the assumption that both the incident and 
the scattered fields can be expanded in vector spherical  functions. In this sense, it can be considered 
as an extension to the Mie theory. This method was introduced by Waterman [3] in 1971 for an 
homogenous particle and then generalized for nonspherical particle clusters by Peterson and Strom 
[4] in 1974. The advantages of this method reside in the fact it is an exact and rapid method, and it 
can be applied to particles having the dimensional parameter < 125. This means that a T-Matrix + 
Geometrical Optics combination could cover the entire dimensional spectrum for particles with 
rotational symmetry. 
 To use this method, we define some important parameters for the scattering of light on 
nonspherical particles: 
� phase asymmetry parameter, defined as:  
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It is positive for particles which scatter the light predominantly forward, negative for those which 
scatter the light predominantly backward, and zero for symmetrical phase functions. 
� the assembly average of absorption cross section per particle, defined as the di fference 
between corresponding transversal extinction cross section and scattering cross section: 
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� the albedo of simple scattering, defined as the probability for an incident photon on the 
elemental scattering volume to be present at the end of the process, and which satisfies the 
relationship: 
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� the irradiance of the scattered radiation, as function of the incident radiation, average cross 
section of one particle, the density of particles per unit volume and the remote distance, and which is 
determined via the amplitude matrix:  
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The computation of the transfer matrix T for a particle involves expanding the incident and scattered 
field in vector spherical functions [1]. 
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Due to the linearity of Maxwell's equations and of the boundary conditions, the relation between the 
coefficients pmn si qmn of the scattered field and the amn si bmn of the incident field is linear and is 
given by a transfer matrix (the T matrix) 
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having the following characteristics: 
- the matrix elements are independent of the incident and scattered field, so once calculated they 
can be used for any incident or scattered angle; 
- the matrix elements depend only on the shape, dimensional parameter and refractive index of the 
scatterer, as well as on its orientation in the coordinate system; 
- the mathematical functions from the matrix expression are well-known, so their computation is 
very easy, and the analytical average of the scattered light on a randomly oriented particle assembly 
becomes possible. 
 
 
 2. Experimental 

 
2.1 Theory 

 
 In order to compute the T matrix in the natural frame we use the extended boundary 
condition method (EBCM) developed by Waterman [2] for homogenous particles. In addition to the 
expansion of the incident and scattered field, the internal field is also expanded in vector spherical 
functions [7]: 
 

( ) ( ) ( )[ ]� �
∞

= −=

+=
1n

n

nm
relmnmnrelmnmn RknRgNdRknRgMcRE

����
int   (8) 

 

 The relation between the expansion coefficients of the incident and internal fields is linear 
and is given by: 
 

�
�

�
�
�

�
�
�

�
�
�

�
=�

�

�
�
�

�

d

c

QQ

QQ

b

a
2221

1211

    (9) 

 

where the elements of the Q matrix are two-dimensional integrals which must be numericall y 
evaluated over the particle surface and depend on the particle size, shape, refractive index, and 
orientation. So: 
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where, again, the elements  of  Q and RgQ are two-dimensional integrals over the particle surface, 
which, in the case of rotational - symmetric particles become: 
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where θ  is the polar angle. These intervals are evaluated using the Gauss method: 
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where kθ  and wk are discrete points, and weights on the interval [ ]π,0 .  

 Although the T matrix is infinite, a finite truncated value must be chosen in practical 
computer calculations. The convergence dimension for the T matrix is obtained by increasing a 
computational parameter, nmax, in unitary steps until both the optical cross sections and expansion 
coefficients are converging with some accuracy.  
 Further, one can average over the nonspherical, randomly orientated particles. The scattering 

matrix elements can be expanded using the generalized spherical functions ( )θcoss
pqP .  
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 In the standard (I, Q, U, V) polarization representation [6], the matrix have a block-diagonal 
form: 
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where the matrix elements are infinite series: 
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 In the most frequent case in the atmosphere - randomly oriented particles - the orientation 

distribution function ( )γβα ,,P  equals ( ) 128
−π . In this case we obtain the T matrix for the average 

orientation [10]: 
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 Consequently, for randomly oriented particles, we can calculate the orientation averaged 
extinction cross section: 
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or, after the scattering: 
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 So, instead of numerically integrating the optical cross section and the matrix elements for 
various orientation, we compute the T matrix for a single particle, and then introduce the result in the 
analytical average procedure above. This method, developed by M. Mishchenko et al. [8], reduces 
drastically the computer time. 
 
 
 2.2 Modelling 
 
 The model is applied to particles with rotational symmetry, which are frequentl y 
encountered in the atmosphere. In order to characterize the size and dimension related to the specific 
dimensional parameters, we used the radius of a sphere having the same volume as that of a given 
particle. 

         
              a.         b.                  c. 

 
Fig. 1. Spheroids with varying axial ratios, a. oblate spheroid; b. sphere; c. prolate spheroid. 

 
 

 Taking this into account, we average over the dimension of the particles the transversal 
optical cross section and the coefficients in the development (15). For this, we numerically evaluate 
the integrals: 
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and we model the dimensional distribution of aerosols using the specific functions: the gamma 
distribution, the modified gamma distribution, the log-normal distribution, or the power distribution. 
M. Mishchenko et. al. [9] realized a code in order to evaluate the series coefficients (a1

s, a2
s, a3

s, a4
s, 

b1
s, b2

s), the T matrix elements (F11, F22, F33, F44, F12, F34), the mean over the orientation of the 
extinction cross section (Cext) and scattering (Csca), of the albedo (w) and of the asymmetry 
parameter of the phase function  (<cosθ>). The authors of this paper have used this code, modified 
as to calculate (Isca/Iinc). Several runs were made, for different kind of particles, considering the 
power law: 
 

( )
322

22 12

RRR

RR
Rn ⋅

−
=

minmax

maxmin   [ ]maxmin ,RRR∈   (23) 

 

 In the runs, we considered a monochromatic electromagnetic (laser) radiation with 
mµλ 532.0=  (green) which scatters on an assembly of monarch with the index of refraction 

inrefr ⋅+= 53.057.1 , in colloidal suspension in air (of unitary refractive index). The computer 

calculations were done for volume-equivalent spheroidal and spherical particles, for two size ranges: 
'large' particles ( mR µ1> ) and 'small' particles ( mR µ1< ) , considering in parallel the prolate and 
the oblate spheroids to evidence the influence of the non-sphericity and the influence of the particle 
size on the scattered field. In all of the cases considered, the absolute accuracy of computing the 
expansion coefficients was 310−=∆ . 
 For the power law size distribution, the effective equal-volume-sphere-radius Reff [5] is equal 
to the equal-volume-sphere-radius of the monodisperse spheroids: 
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and the effective variance is: 
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 By taking into account particles with values of Veff  smaller but close to the unity, we have a 
moderately wide size distribution. In our computations we considered the following cases: 
 
 

Table 1. Study cases. 
 
Particle type Rmin Rmax Reff Veff Axial ratio a/b 
prolate big spheroids 0.5 1.5 0.9102 0.0986 0.6; 0.7; 0.8;1.0 
oblate big spheroids 0.5 1.5 0.9102 0.0986 1.7; 1.4; 1.2; 1.0 
prolate small spheroids 0.2 0.6 0.3641 0.0986 0.6; 0.7; 0.8;1.0 
oblate small spheroids 0.2 0.6 0.3641 0.0986 1.7; 1.4; 1.2; 1.0 
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 3. Results 
 
 In Fig. 2 are shown for comparison the results obtained in computation of the scattering 
matrix elements for "big" particles in two cases: prolate (a) and oblate (b) spheroids. The black line 
is associated with spherical particles of the same Reff and Veff (case: a/b = 1). 
 In Fig. 3 the same analysis is shown, but for "small" polydisperse particles, also prolate, 
oblate and spherical. Some calculations for the angular dependence of the scattered intensity were 
done by considering the particles concentration in an elementary volume equal to 10-3 mg/m3. 
The scattered – incident intensity ratio for each case is plotted in Fig. 4. 
 Other computation results, as the values for the optical extinction and scattering cross 
section for each case, the single-scattering albedo and the asymmetry parameter of the phase 
function, are given in Table 2.  
 

  

  

  
 

Fig. 2. Elements of the scattering matrix vs. scattering angle for "big" smoke particles         
(nRe = 1.57, nIm = 0.53) investigated with laser radiation (λ = 0.532 µm) a. prolate spheroids: 
a/b = 0.6 (dash - dot line),  0.7  (dash l ine),  0.8  (dot  l ine),  1 (solid line) b. oblate spheroids:         
                  a/b = 1.7 (dash-dot l ine), 1.4 (dash line), 1.2 (dot line), 1 (solid line). 
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Fig. 3 Elements of the scattering matrix vs. scattering angle for "small" smoke particles     
(nRe = 1.57, nIm = 0.53) investigated with laser radiation (λ = 0.532 µm): a. oblate spheroids: 
a/b = 1.7 (dash-dot l ine),  1.4  (dash line),  1.2  (dot line),  1  (solid line),  b. oblate spheroids:          
                    a/b = 1.7 (dash-dot line), 1.4 (dash line), 1.2 (dot line), 1 (solid line). 
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Fig. 4 Scattering and incident intensity ratio vs. scattering angle for prolate smoke particles 
(nRe = 1.57, nIm = 0.53)  investigated  with  laser  radiation (λ = 0.532 µm): a. “big” particles;  
                                                               b. “small”  particles 
 

Table 2.  Scattering parameters for prolate smoke particles. 
 

a/b 
Optical extinction 

cross section  [µm2] 
Optical scattering cross 

section  [µm2] 
Single-scattering 

albedo 

Asymmetry 
parameter of the 
phase function 

Prolate 
“ Big”  

spheroids 
“ Small”  
spheroids 

“ Big”  
spheroids 

“ Small”  
spheroids 

“ Big”  
spheroids 

“ Small”  
spheroids 

“ Big”  
spheroids 

“ Small”  
spheroid

s 
0.6 7.63660 1.34148 3.97685 0.635799 0.520762 0.473953 0.895174 0.848856 
0.7 7.48985 1.31677 3.89991 0.622123 0.520692 0.472462 0.895399 0.849041 
0.8 7.38583 1.29944 3.84502 0.612352 0.520594 0.471242 0.895542 0.849196 
1.0 7.34576 1.29284 3.82376 0.608560 0.520539 0.470715 0.895590 0.849254 

Oblate 
“ Big”  

spheroids 
“ Small”  
spheroids 

“ Big”  
spheroids 

“ Small”  
spheroids 

“ Big”  
spheroids 

“ Small”  
spheroids 

“ Big”  
spheroids 

“ Small”  
spheroid

s 
1.7 7.69898 1.35146 4.01466 0.642997 0.521453 0.475779 0.895309 0.850484 
1.4 7.48445 1.31592 3.89831 0.622028 0.520855 0.472693 0.895466 0.849566 
1.2 7.38575 1.29947 3.84518 0.612414 0.520621 0.471280 0.895552 0.849290 
1.0 7.34576 1.29284 3.82376 0.608560 0.520539 0.470715 0.895590 0.849254 

  
 
 4. Discussion 
 
 Concerning the matrix element associated with the scattered intensity (F11), the angular 
variation is the same for both prolate and oblate particles having the same dimensions, and relatively 
close to the polydisperse particles. Note that in Figs. 1 and 2 the scale of F11 is logarithmic. We can 
observe that the profile of the graph is less pronounced in the case of large particles than in the case 
of small particles, in good agreement with the Mie theory for spherical particles. Generally, we see a 
strong forward scattering, the other directions being less represented, because the absorption cross 
section for this kind of particles (having a relatively large imaginary part of the refractive index) is 
large, especiall y for nonspherical particles (see Table 2). 
 Despite the fact that for spherical particles F22/F11 = 1, in the case of spheroids this ratio 
depends on the asphericity, as we can see from Figs. 2 and 3, where the three curves corresponding 
to different axial ratios are di fferent. The deviation from unity is lesser for oblate spheroids than for 
prolates having the same dimensions and increases with the increase of the asymmetry ratio (a/b). 
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 The linear polarization, associated to the ratio (-F12/F11), have a similar behavior for prolate 
and oblate spheroids, as in the case of F11. 
 The scattered and incident irradiance ratio shows a similar behavior in all cases, but the 
forward direction is encouraged, while the normal to incident radiation direction scattering is less 
pronounced. A small increase in the radiation backscattered is also observed. Likewise, we observe 
the maximum are less pronounced as the sphericity deviation becomes larger. For equalsize 
particles, the difference between prolate and oblate is not significant, but we can observe that for 
larger particles the scattering angle dependence of the ratio is very different, both in profi le and in 
value, for large particles and for small particles. In the case of large particles, the forward and 
backward directions maxima, and the minima for the normal directions are more pronounced. 
Likewise, we have to note that for nonspherical particles, the backscattering is weaker than for 
spherical ones, a fact resulted from the profile near the 180o scattering angle. 
 Concerning the extinction and scattering cross sections, as well as for the albedo for simple 
scattering, from Table 2 we see that their values are greater the greater the sphericity deviation is. 
Nevertheless, if the sphericity deviation is less or moderate, the differences from the polydisperse 
particles case are negligible.  
 
 
 5. Conclusions 
 
 By computer calculations, we have found that the angular behavior of the elements of the 
scattering matrix for nonspherical particles di ffers significantly from that of the scattering matrix for 
equivalent spherical particles. In particular, by comparison to the spherical particles: 
 - the size distribution of spheroids exhibits stronger side scattering and weaker  
               backscattering; 
 - the ratio F22/F11 deviates from the unity; 
 - the element F33 differs from the element F44 of the scattering matrix (in general is greater); 
 - the ratios F22/F11, F33/F11 and F34/F11 can differ substantially for prolate and oblate 
spheroids of the same aspect ratio, thus they can be indicators of particle shape - for oblate 
spheroids, the ratio F22/F11 is closer to the unity than for prolate spheroids, and F33 is closer to F44; 
 - the angular pattern of F11, intensity and linear polarization (-F12/F11) are similar, so they 
cannot give a valid information about the shape of the particles, although with increasing asphericity 
of oblate and prolate spheroids the profile of l inear polarization curves becomes be more smooth; 
 - the scattering and extinction cross sections, as well as the single-scattering albedo and the 
asymmetry parameter of the phase-function are very similar for the moderately aspherical spheroids 
and spherical particles; 
 - in general, all the light-scattering characteristics are more shape-dependent for larger 
particles. 
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