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In this work we have used differentia and integral operators of fractional order (between O
and 1) for modeling the real and imaginary parts of E* and &* considering the three more
important relaxation phenomena in semi-crystalline polymers. To justify the vaidity of the
proposed models we have used measurements of E* and &* under isochronal conditions of a
semi-crystdline specimen of PEN in abroad temperature range.
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1. Introduction

The organic didectric materials such as the semi-crystalline polymers have a significant
place in industry, in particular in the fidd of dectrica engineering. The excellent physicochemical
properties of the semi-crystalline polymers give a satisfactory response to high demands of
mechanical and e ectrical engineering requirements, for example in the miniaturization of dectronic
components or as film base for magnetic recording tapes [1,2]. These applications require, however,
a wide knowledge of the viscodastic behavior of polymers, for instance the relaxation phenomena
that these materials can undergo. The relaxation phenomena are associated with molecular motions
leading to a new structurd equilibrium with lower energy content. The morphology of organic
didectric materialsis very complex, it makes them very difficult to handle analyticaly. In this sense
the use of differential and integral operators of fractional order (fractiona calculus) is an aternative
Using these fractional operators we can modd systems with partia energy dissipation, for instance
the non-exponential reaxation phenomena (mechanicd and didectrica) in semi-crystalline
polymers. The fractional order of a fractional integral can be considered to an indication of the
remaining or preserved energy of asignal passing through a viscod astic materia [3]. Similarly, the
fractional order of a derivative reflects the rate at which a portion of the energy has been lost in the
sysem. Due to sensihbility to molecular motions, the modelling of the complex modulus,
E*=E'+E"’, and the rdative complex permitivity, &*=g'-i&'", is an dternative for studying the
relaxation phenomena in polymeric materials. The dynamics of the relaxation process observed by
didectric and mechanica spectroscopies are in principle not the same. The did ectric spectroscopy
monitors (&*) the fluctuating dipole moment of the polymer while the dynamic mechanical
spectroscopy (E;*) follows the evol ution of the shear stress. The spectra of real and imaginary parts
of E* and &* give complementary information about the molecular mobility of relaxation
phenomena In this work we have used fractional caculus for the mathematical description of E*
and g*, taking into account three rdaxation phenomena. To test the vdidity of the proposed
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fractiona modes we have used measurements of E* and &* under isochronal conditions of a semi-
crystalline polymer, Poly(ethylene-2,6-naphthal ene dicarboxylate) or PEN.

2. Modelling of mechanical and dielectrical manifestations of
viscoelasticity

The differential and integral operators of fractiona order provide an appropriate description
of the mechanical and didectricdl manifestations of several relaxation phenomena present in
polymeric materials. In this work we have used the Riemann-Liouville definition of a fractional
integral which is a straightforward generalization to no integer values of Cauchy formula for
repeated integration [4]:

D{af(t)=£%f(y)dy with F(a)=£e‘“ua'1du and abd(0,®) (1)

From Eg.1 one can a so define a derivative of fractiona order (between 0 and 1) by

pt-y)”
D f(t)=D|~——= f(y)d atl(o,1 2
21 (t) !F(l—a) (y)dy (0.1) @

In the following, we are aso going to use the Fourier transform of a fractional differential
operator, Df f (t) which can be written as a product of (i a))a and the Fourier transform of the

function f(t) [4].
Using EQ.2, we can obtain an intermediate behaviour between linear dasticity and
Newtonian viscosity (spring-pot) [5-10], as well as that between an dectric capacitor and Ohms law

(cap-resistor).
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Fig. 1.Thefractiona elements obtained using fractional calculus.

In the fractional dements “sprig-pot” and “cap-resistor”, 7is a characteristic time called
relaxed time, which could be associated to time required by chain segments in movement for a
compl ete reorgani zation and a full reorientation to a new structural equilibrium state. Note that from
a “spring-pot” one obtains the Hook’s law when b=0 and when b=1, Newton’s law is obtained. On
the other hand, an d ectrical-resistor behaviour is obtained from a *“cap-resistor” when a=1 and when
a=0, the dectric behaviour corresponds to that of a capacitor.
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Using fractiond dements of Fig. 1 we have obtained the mechanical and didectrical
fractional models for modeling three relaxation phenomena. Fig. 2a and Fig. 2b show the proposed
models.
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Fig. 2. Modelling of three relaxation phenomena. a)The Mechanic Fractional Modd (MFM),

b) The Dielectric Fractional Model (DFM).

The Mechanical Fractional Modd (MFM) and the Didectric Fractional Model (DFM) are
based on three e ements arranged in paralld for modeling the three rel axation phenomena of PEN.
The first dements of either MFM and DFM are mainly associated with a-rdaxation, the second
e ements are associated with *-relaxation and the last d ements are associated with the [3-rel axation.
In dynamical analyss, the polymer is subject to an dternating excitation (mechanical or dectrica)
and the response can be expressed as a complex variable. The real part corresponds to an
instantaneous response, and the imaginary part corresponds to a delayed response associated with
the partial energy dissipation. For a mechanical excitation, we can cdculate the complex dastic
modulus, E¥*=E’+E"’ from the MFM and for an dectric excitation, we obtain the rd ative complex
permittivity, §*=&'-i&"’, from the DFM. Table 1 shows the fractiond differential equations for each
dement of MFM and DFM. In either MFM or DFM the 7 parameters have been associated with the
relaxation times of molecular motions associated to each mechanica or didectrical relaxation

phenomenon.
Table 1. The fractiond differential equations for the MFM and DFM.
Element The fractional differential equations
MFM DFM
O e N e e | e e e e |
e _ e 2-C2,V2 g .
2 o2(t)+reDfo2(t) = E2,s2(t) + E2, r°Des2t) V2= chs "o, toaca (Q2-c2,v2)
3 o3(t)+ Dl o3(t) = E3,s3(t) + E3, 7! D! s3(t) va=L-CEV3, T prgs-cava)

C3,-C3,

C3,-C3,
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Applying the Fourier transform to the fractiona differential equations shown in Table 1, we
have calculated E* and &*, which could be expressed as a function of the corresponding complex
modulus and complex permittivities of each e ement of the MFM and DFM.

et s s < B rERliar) o)) 2, vE2 o) By ER o) (g

Lt(iwr,)" +(icr,)” 1+ (icr,) 1+ icr,)’

e, + gLS((i wr,)© + (i wr, )’f ) £2, +€2,, (i wr, )g L 3.+ €3, (icr,) (4)
1+(i a)re)"’+(ia)rf)’f 1+(i wrg)g 1+(icr, )’

C

EX¥ =€l *+£2 *+£3* =

From Eg. 3 and EQ. 4 we can obtain the temperature dependence of the real and imaginary
parts of E* and £*. However, at first we need to define the rel ationship between the rd axation time
and temperature, which in turn depends on cooperative or non-cooperative nature of the molecular
motions. The cooperative movements are simultaneous motions of segment-chains due to the
interference of neighbouring segment-chains. In a non-cooperative process the segment-chains are
able to move without being intefered by ther neghbours because they are very localized
movements. In the case of PEN, the molecular motions of a-relaxation are cooperative movements,
[B*-relaxation is associated with partial cooperative movements and (B-rdaxation represents very
localized motions having a negligible cooperativity, consequently they can be considered as non-
cooperative movements [11].

The relaxation time, 7(7), for non-cooperative motions follows an Arrhenius law
behaviour:

r(r)= Toap[kEfrJ ©)

were the apparent activation energy, E,, could be in the range of a rea energy barrier, kg is the
Boltzman constant, T the absolute temperature, and 7, the pre-exponential factor, typicaly it fals
within the range 10™°s< 7, <10™s. Values of 1 in the vidinity of the upper limit correspond to
molecular vibrational times and the lower limit may be rationalized by an additiona entropy
contribution [12].

On the other hand, cooperative motions involve simultaneous movements of chain segments.
The probability of success for cooperative motions is P>, P21 is the probability of a single
dementary movement. The Z exponent can be considered as the number of dementary movements,
consequently, Teooperaive FEPresents a power law [13,14].

z E Z
T ingle mov t
T M= | = | =r1.|exp —2sndemovement (6)
cooperatl\e( ) O[Toj 0|: p[ kBT j:|

where 7 is the relaxation time of the eementary movement defined by an Arrhenius behavior. Z
exponent is dependent of the polymer structure and is calculated from the next equation [13,14]:

*
zM)=d "0 T <T<T* @

T T-T,

Above a cross-over temperature, T*, cooperative and non-cooperative movements merge
together [14] and Z=1. Bdow T* the relaxation times of cooperative movements verify the empirica
Vogd-Fulcher-Tammann equation. T* is of the order of 1.3T, in amorphous polymers wheress it
corresponds to the melting temperature in semi-crystalline polymers [14]. Ty is a temperature bel ow

Tywherez .  and dsor, - 00,

cooperatie
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In order to verify the isochrona behaviour of the MFM and DFM we proceeded to vary
systematically the fractiona order of “spring-pots’ and “cap-resistors’. It is important to point out
that these parameters can only take values between 0 and 1. Fig. 3a and Fig. 3b show respectively
the isochronal descriptions obtained from the MFM and DFM. In this case, we have considered
different values of b and a, ¢, and d remain constants for the MFM. For the DFM, we have
considered different values of f and remaining e, g, and h constants. For both MFM and DFM,
cooperative movements have been considered for a-reaxation; partial cooperative movements for
[3*-relaxation and non-cooperati ve motions for [3-rel axation.
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Fig. 3. The effect of fractional orders of spring-pots and cap-resistors of the MFM and DFM.
a) Therea and imaginary parts of E*, b)Thereal and imaginary parts of &*.

Each relaxation mode manifests by an incresse of &' and a decrease of E’ with increasing
temperature. These behaviours are assod ated with the three peak valuesin &'’ and E'’ diagrams, the
peak at low temperatures corresponds to [B-relaxation, the second pesk is associated with (3*-
relaxation and the last one at higher temperatures with a-relaxation. In Fig.3a, the shape of the
isochrona curvesE' and E’ at the point where a-rd axation starts when the temperature decreases is
strongly dependent on b, while at the end of the curves, a determines the changein E' and E'’. For
the did ectric manifestation of a-rdaxation (Fig. 3b), the shape of the curves &’ and &'’ are strongly
dependents on f when the temperature decreases, while at the end of the curves, e determines the
changein & and &'’. The parameters b and a are associated with the mechanical manifestation of a-
relaxation, and the didectric manifestation of a with e and f parameters. For 3*-relaxation, the
mechanical manifestation is associated with ¢, and the dieectric manifestation with g. For -
relaxation, the mechanical manifestation is associated with d, and the die ectric manifestation with h.
In the next section, we compare the theoretical predictions of the MFM and DFM with experimental
measurements of E* and &*, for a semi-crystalline specimen of PEN. For mechanical measurements,
we have used 70um-thick films, the measurements were made using a mechanicd andyzer
(DMA2980-TA Instruments). For didectric measurements, we used 45um-thick films and the
metallization with gold was carried out one each of the two faces of the sample to guarantee a better
contact with the electrodes of the die ectric anal yzer used (DEA2970-TA Instruments).

3. Comparison between theoretical predictions and experimental
results

In order to vaidate the MFM and DFM, we compared the theoretical predictions with the
experimentd results of real and imaginary parts of E* and &*, obtained under isochronal conditions
a a frequency of 10 Hz. Fig. 4a and Fig. 4b show a good agreement between theoretical and
experimentd isochronal spectra of the mechanical and did ectric manifestations of viscodasticity of
PEN. In the case of didectric spectra (Fig. 4b) a T>160°C, &’ (T) increases with increase in




1042 M. E. Reyes-Melo, J. J. Martinez-Vega, C. A. Guerrero-Salazar, U. Ortiz-Mendez

temperature, this behaviour is associated with the conductivity phenomenon and is not predicted by
our DFM.
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Fig. 4. Comparison of the model predictions and experimental results. a) The real and
imaginary parts of E*, b) The real and imaginary parts of &*.

Table 2 shows the vaues of fractional orders of “spring-pots’ and “cap-resistors’ and
activation parameters used to obtain the predictions of the MFM and DFM in Fig. 4a and Fig. 4b.
For the MFM, we obtain b>a>c>d and for the DFM, f>e>g>h.

Table 2. The parameters of the MFM and DFM.

Relaxation MFM DFM
a=0.17 e=0.24
b=0.27 f=0.41
o E1,-E1,~1.96x10%Pa £, £1,,=0.58
) 7=1x10"%s 7=1x10"*s
COOpG'atl ve movements Ea gng,emovement:O.GGeV Easinglemovement:0.47ev
T*=267°C T*=267°C
T=77°C To=76°C
c=0.142 g=0.19
. E2y-E2,=1.64x10°Pa 2, E2,.,=0.25
Partially Eooperati ve 7=1x10"'s 1,=1x10™""s
movements Ea singlemovement:2-04ev Ea singlemovementzo- 56eV
T*=267°C T*=267°C
Ty=-238°C To=-83°C
B d=0.13 h=0.17
— ]
Non-cooperative ES, 33_011'3?;10 Pa 53,5;53,00—2;124
movements o=1x10" s =1x10_s
Ea apparen=0.715€V Ea apparen=0.5eV

As a first approximation, the molecular motions assodated with (-rdaxation can be
represented by parameter d in the case of the mechanica spectra, and h in the case of didectric
spectra. The partidly cooperative motions associated with 3*-redaxation can be represented by
parameter ¢ for mechanical spectraand g in the case of didectric spectra. Finally parametersa and b
could be used to represent mechanica motions associated with a-relaxation, and parameters e and f
to represent dipolar movements associ ated with did ectric manifestation of a-relaxati on.

The molecular mobility associated with the mechanical and did ectric manifestation of a-
relaxation are cooperative processes in the temperature range from Tg=T4-50 °C to T*=267 °C, in



Modelling of relaxation phenomenain organic dielectric materials. Application of differential ... 1043

this case, T* is equal to the fusion temperature of PEN. For [3*-relaxation, the molecular movements
are |less cooperative than a-movements in the temperature range from To< T4-50 °C to T*=267 °C.
For B-rdaxation, the apparent activation energies for both the MFM and DFM are of low value
corresponding to non-cooperative processes.

4. Conclusions

The fractional modes proposed: MFM and DFM give predictions of the mechanica and
didectric behaviour of semi-crystalline polymers having three important rel axation phenomena. The
comparison between experimental results and theoretical predictions show good agreement and
consequently a success for our MFM and DFM. We noted that the fractional orders of the “spring-
pots’” and “cap-resistors’ of the MFM and DFM are rd ated to mol ecular motions associated with a,
3*, and 3 relaxati ons.
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