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In this paper we present a new Preisach-Néel type model that can be successfully applied to 
simulate magnetisation processes of nanostructured magnetic materials. Taking into account 
the results of micromagnetic simulations, this model uses a Preisach distribution of 
interaction fields obtained by superposition of two Gaussian distributions. The amplitudes of 
the two distributions are dependent on the total magnetic moment of the sample. Therefore, 
we can take into account, in a very simple manner, state dependent interaction field 
distributions. The model was used to simulate temperature dependent magnetisation 
processes like the Zero Field Cooled (ZFC). The results show the ZFC dependence on the 
statistical and mean field interactions. 
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1. Introduction 
 

The effect of magnetic interactions between particles on the properties of the nanostructured 
magnetic materials is a very disputed problem. In order to analyse the presence of interparticle 
interactions effects in such systems, many magnetisation processes were proposed. In systems where 
the remanent magnetic moment is usuall y considered time independent (relaxation effects are 
negligible), the magnetisation processes that are frequently used are the remanent curves: IRM 
(isothermal remanent magnetisation) and DCD (DC demagnetisation) processes [1,2]. With this data 
one calculates the well-known Henkel plot [3] and deltaM plot [4] to evaluate the interaction field 
distribution. When the size of particles becomes smaller, relaxation effects become important and 
other magnetisation processes, temperature and time dependent, reflect essentially the magnetic 
properties: the Zero Field Cooled (ZFC) magnetisation [5] and the Field Cooled (FC) magnetisation. 

Various types of models were designed in order to explain complex magnetisation processes 
in systems of magnetic particles where the interactions between particles cannot be neglected [6,7]. 
Recent micromagnetic results have shown that the inter-particle interactions are statistically 
distributed and that both the average value and standard deviation of the interaction field distribution 
are state dependent [8]. We have shown that a two-peaks interaction fields distribution with the 
amplitude dependent on the magnetic moment of the sample can be used efficiently to account for 
this complex behaviour of the interactions. Using a Preisach-Néel model proposed by Roshko et al. 
[9,10], we consider this two-peaks interaction field distribution [11]. The new model is tested on 
ZFC processes in particulate ferromagnetic systems with different packing ratio. 
 
 

2. Preisach-Néel type model 
 

 The scalar Preisach model [12] decomposes all magnetic systems into a collection of 
bistable subsystems. Each subsystem is characterized by a rectangular response function like that 
shown in Fig. 1(a), with two states 1±±±±====Φ , corresponding to the two discrete orientation of the 
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subsystem moment, and two critical instability fields ),( βα HH . The coercive field is: 
2/)( βα HHhc −−−−====  and the characteristic interaction field: 2/)( βα HHhi ++++−−−−==== . The shi ft field 

sh  measures the asymmetry caused by the interaction fields: si hh −−−−==== . The equivalent zero field 
energy level diagram shown in Fig.1(b) is an asymmetric double well, with two energy barriers 

ic hhHW ++++====−−−−====++++ β  and ic hhHW −−−−========−−−− α , which inhibit transitions between the two local minima 
and block moment reorientation. The magnetic moment was normalized at the saturation magnetic 
moment of the sample. 
 In order to excite transitions between the two configurations, one must supply energy to the 
subsystem. In particular, the application of a positive external field ha will modi fy the energy 
barriers and will stabilize the 1++++====Φ  state and destabilize the 1−−−−====Φ  state, as shown in Fig.1(c). 
Therefore, all the subsystems for which 0 < ic hh −−−−  < ah ( ahH ≤≤≤≤≤≤≤≤ α0 ), wil l jump discontinuously 
from the state 1−−−−====Φ  to the state 1++++====Φ . Transitions may also be induced thermally i f the 
subsystem is in contact with a heat bath at temperature T. For an experiment with a characteristic 
time constant texp, all energy barriers )/(ln 0exp τtTkWW B====≤≤≤≤ ∗∗∗∗  will be thermally activated [13]. 

 

 
 

   Fig. 1. (a) An elementary Preisach hysteresis loop. (b) The energy level diagram in zero   
             applied field. (c) The energy level diagram in a positive applied field ha>0. 

 
 

 Thermal transitions can be described by an equivalent thermal field ∗∗∗∗∗∗∗∗ ==== WhT . The presence 
of thermal fluctuations means that transitions can occur in subsystems for which ah  is subcritical, so 

that all subsystems with ah < αH  < ∗∗∗∗++++ Ta hh  wil l be thermally activated into the state 1++++====Φ  and all 

those with ∗∗∗∗−−−− Ta hh < βH  < ah will be thermally activated into the state 1−−−−====Φ . In this context, it is 

important to underline that only those subsystems for which both criteria are satisfied 
simultaneously will actually reach thermal equilibrium. Outside this region, thermal transitions are 
unidirectional and always drive the subsystem into the lowest energy state. 
 The subsystems are graphically represented in the Preisach plane, which uses the 
characteristic fields ),( βα HH and ),( ic hh  to define rectangular coordinate axes. Each subsystem 

represents a point in this plane, and the distribution of subsystems is described by Preisach 
distribution ),( ic hhp . The instability conditions for the subsystems are lines in the Preisach plane, 
which separate the plane into thermally blocked (in 1++++====Φ or 1−−−−====Φ  states) and thermally activated 
regions (Fig. 2). 

 
Fig. 2. The ZFC process in the Preisach plane. (a) The plus and minus signs indicate the 
blocked  subsystems  into  one  of  the  states  1±±±±====Φ .  The  shading  region indicates the SP  
                                     subsystems. (b) Warming in a positive field. 
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 We have simulated with this model the ZFC process for a system of interacting 
ferromagnetic particles. The system is first heated in zero applied field to a temperature, which is 
high enough to ensure that all particles are in thermal equilibrium (superparamagnetic state, denoted 
SP). In terms of the model, this requires a thermal field ∗∗∗∗

Th , which exceeds all the subsystem energy 
barriers. The system is then cooled in zero applied field and each subsystem will pass through a 
characteristic temperature BT  at which ∗∗∗∗

Th  is equal to the larger of its energy barriers. At this 
temperature, the larger energy barrier wil l become thermally inactive. However, the smaller barrier 
will continue to be thermally active and thermal fluctuations will empty the higher, metastabile 
energy level. For subsystems with ih < 0 , the blocking condition is ∗∗∗∗==== ThHα . Fig. 2(a) shows a 
graphical representation of the ZFC process in the Preisach plane and Fig. 2(b) the warming in a 
positive field. The blocking boundaries are straight lines which separate those subsystems which are 
frozen into the 1++++====Φ  or 1−−−−====Φ  states, from those in the shaded region which are in thermal 
equil ibrium and continue to exhibit the SP response )/tanh()/tanh( ∗∗∗∗======== TiBiequ hhTkh αΦ , where 

)/(ln 0exp τα t====  is the time dependent factor of the thermal field ∗∗∗∗
Th .  

 If the system is cooled in zero field to 0====T , where a positive field ah > 0  is applied, and 
then warmed to a temperature T, all subsystems with 0 < αH < ∗∗∗∗++++ Ta hh  will be activated to 1++++====Φ  
and those with ∗∗∗∗−−−− Ta hh < βH  < ah  will be activated to 1−−−−====Φ  state. 
 The Preisach distribution is described by the product of two statistically independent 
distributions: 
 

),(),(),( 00 iiicccic hhphhphhp ⋅⋅⋅⋅====      (1) 
 

where ),( 0ccc hhp is the distribution of coercive fields and ),( 0iii hhp  is the distribution of 
interaction fields. The distributions are normalized at the saturation magnetic moment of the sample. 
 The coercive field distribution is given by: 
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and the double Gaussian interaction field distribution is given by [10]: 
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where m is the normalized magnetic moment and σch , σih  are the distributions dispersions. 
 The magnetic moment was calculated by superposing the responses ),( ic hhΦ  of all 
subsystems, using the Preisach diagram from Fig.2: 
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 3. Numerical simulations 
 

Fig. 3(a and b) shows the temperature dependence of ZFC moment in an applied field 
02.0====ah . The experimental time parameter 25)/(ln 0exp ======== τα t  was chosen to correspond to 

typical dc measuring times st 32
exp 1010 −−−−≈≈≈≈ , supposing s9

0 10−−−−====τ . First, Fig.3(a), was studied the 
influence of statistical interactions ( .0 consthi ==== ) and then, Fig.3(b), the influence of mean interaction 
field ( .consthi ====σ ) on ZFC curves. All field parameters were normalized to the mean coercive field 

0ch . 
 The principal structural features of these curves are essentially identical to those observed 
experimentally [14]. In each case, )(TmZFC , exhibits a peak at a temperature maxT . This peak is the 
result of competition between two opposing tendencies: as the temperature increases the thermal 
instability boundary ∗∗∗∗++++==== Ta hhHα  moves and favours thermal transitions from 1−−−−====Φ  to 1++++====Φ  
state and the moment will increase, but in the same time the SP response will increase and will 
induce a decrease of the moment. The first mechanism dominates at low temperatures but it is 
exceeded at high temperatures by the increase of SP region and a peak ( maxmax ,mT ) is obtained. 
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Fig. 3. The temperature dependence of ZFC moment in an applied field 02.0====ah .                  

(a) different  dispersions  of   interaction  fields:  04.0,02.0,01.0,004.0====σih ,  (b)  different  

                            mean interaction fields: 02.0,01.0,008.0,004.00 ====ih . 
 
 

 The increase of maxT is caused by the increase of energetic barriers with temperature. The 
behaviour of maxm : decreases with σih  and increases with 0ih , is the consequence of the sweeping 
through the Preisach distribution of the thermal instability boundary: high values of 0ih  and small 
values of σih  will favour 1++++====Φ  state and will increase the magnetic moment. 
 
 
 4. Conclusions 
 
 In this paper we have developed a temperature dependent Preisach-Néel type model for 
nanostructured magnetic materials, using a double Gaussian interaction field distribution. The results 
show a strong dependence on the interaction intensity. It is important to observe that the position of the 
ZFC maximum, Tmax, depends not only on the interaction dispersion but also on the mean field 
interactions if we take into account the correlation between the increase of the magnetic moment of the 
sample when the average value of the interaction field distribution is increasing and the standard 
deviation is decreasing. This effect has not been observed when the variation of the standard deviation 
was neglected. In a further paper we shall include in the model the nonlinear character of the energy 
barrier and the effect of the reversible magnetisation processes. 
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