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 1. Introduction 
 

 The Group formalism is a wonderful instrument in dealing with the optical spectra of 
different atomic combinations, l ike molecules and complexes, in all kind of materials. It tells us how 
a degenerate spectral term (energy level) splits itself, in a lower symmetry, it chooses elemental 
wave functions suitable to be combined for subsequent hybridization, establishes selection rules for 
spectro-optical transitions, etc., all in an elegant and efficient manner [1-5]. 

This nice construction is very well built and from the viewpoint of the operating rules it is 
homogeneous, except for the C∞v and D∞h groups, concerning the unsymmetrical and symmetrical 
linear molecules, respectively. The character tables of these two infinite groups are listed together 
with those of the finite ones in spite of the fact that they are, in some aspects, different. The reason 
for this association may be the fact that several rules are acting in these two cases the same way as in 
the first category and that one never uses an infinite number of  representations any way. Just a few 
of the infinite number of representations of the C∞v and  D∞h groups are of a real practical interest. 
 Probably the most important deviation of the infinite group’s rules, from those of the finite 
ones, is the way the reduction operation is performed: by integration, instead of summation, leading 
to complications, among others, when looking for spectral terms splitting or selection rules for the 
overtones of the degenerate molecular vibrations [6]. 

We have recently proposed rather simple ways to avoid these difficulties, for different 
specific tasks, in two separate papers [7, 8]. 

In this paper two new sets of  pseudo-finite (sub)groups called )(∞
nvC and )(∞

nhD  (n=9 and 17) 

derived directly from the original (infinite) point groups are proposed, instead of the C∞v and  D∞h 
respectively, that work like finite groups for a limited number of lower representations (covering 
most practical cases) ignoring the higher ones. If higher order representations are, nevertheless, 
necessary, over the chosen ones, the proposed groups can easily be extended, by increasing n, to 
meet any user’s needs. (By increasing n, the number of classes, i.e., representations is increased, see 
below). We start our construction of the pseudo-finite (sub)groups from the well known  infinite 
groups, C∞v, Table 1 and D∞h, Table 2. The key element we act upon in this enterprise is the 

rotational operation, ϕ
∞C , by  giving  ϕ

�
, i.e. n, just a few finite values, resulting in a limited (finite) 

number of rotational classes, 2 m
nC  (m=1, 2, 3, … , n-1), and representations. 

                                            
* Corresponding author: Trutia@infim.ro 



Ath. Trutia 
 
 

1332 

Table 1. The “classic” Character table for unsymmetrical linear molecules. 
 

vC∞  E 2 ϕ
∞C  2 ϕ2

∞C  2 ϕ3
∞C  … ���

v linear bases bilinear bases 

A1 ≡Σ+ 1 1 1 1 … 1 z x2+y2, z2 
A2 ≡Σ- 1 1 1 1 … -1 Rz  
E1 ≡Π 2 2cosϕ 2cos2ϕ 2cos3ϕ … 0 (x, y); (Rx ,Ry) (xz, yz) 
E2 ≡∆ 2 2cos2ϕ 2cos4ϕ 2cos6ϕ … 0  (x2-y2, xy) 
E3 ≡Φ 2 2cos3ϕ 2cos6ϕ 2cos9ϕ … 0   

… … … … … … … … … 
 
 

Table 2. The “clasic” Character table for symmetrical linear molecules. 
 

D∞h E 2 ϕ
∞C  2 ϕ2

∞C  ... ∞ � v i 2 ϕ
∞S  2 ϕ2

∞S  ... ∞C2 l in.bases bilin.bases 

A1g≡Σg
+ 1 1 1 ... 1 1 1 1 ... 1  x2+y2, z2 

A2g≡Σg
- 1 1 1 ... 1 1 1 1 ... -1 Rz  

E1g≡Πg 2 2cosϕ 2cos2ϕ ... 0 2 -2cosϕ -2cos2ϕ ... 0 (Rx , Ry) (xz, yz) 
E2g≡∆g 2 2cos2ϕ 2cos4ϕ ... 0 2 2cos2ϕ 2cos4ϕ ... 0  (x2-y2, xy) 

... ... ... ... ... ... ... ... ... ... ... ... ... 
A2u≡Σu

+ 1 1 1 ... 1 -1 -1 -1 ... -1 z  
A1u≡Σu

- 1 1 1 ... -1 -1 -1 -1 ... 1   
E1u≡Πu 2 2cosϕ 2cos2ϕ ... 0 -2 2cosϕ 2cos2ϕ ... 0 (x, y)  
E2u≡∆u 2 2cos2ϕ 2cos4ϕ ... 0 2 -2cos2ϕ -2cos4ϕ ... 0   

... ... ... ... ... ... ... ... ... ... ... ... ... 

 

 In other words we make a choice for a finite group order h. By doing this we selectively 
subtract finite subgroups (acting as groups) from the infinite groups, containing only the strictl y 
needed information concerning the real linear molecules. There are an unlimited number of such 
possibil ities corresponding to the chosen ϕ -values, i.e., to the integer n-values. A few, most 

important, of these possibilities are represented in Table 3, for odd-n )(∞
nvC , where the characters of 

the nontrivial E1 (Π) representation for each �  are given only (the other bi-dimensional 
representations, in each (sub)group, have the same characters (except for the 1200 which is a trivial 
integer), but in different orders (see Tables 5 and 6). 

 
 

Table 3. Significant rotational E1 characters for a few fixed � -values. 
 

100 steps�   :      .      .      :      .      .      :      .      .      :      .      .      :      .      .      :      .      .      :       
n ϕ(0) 0                         40                        80                       120                       160        180 
3 120                                                                                    -1 
5 72                                                0.618                                          -1.618                                     
7 51.43                                1.247                            -0.445                          -1.802 
9 40                         1.532                     0.347                    -1                       -1.879 
11 32.73                    1.683               0.831             -0.285              -1.310              -1.919 
13 27.69                1.771           1.136           0.241          -0.709           -1.497           -1.942 
15 24             1.827        1.338         0.618        -0.209         -1             -1.618        -1.956 
17 21.18           1.865     1.478       0.891       0.185      -0.547      -1.205     -1.700       -1.966 
… …             …          …            …            …            …            …            …             … 

 

The reason for choosing odd-n only, reside in the fact that the new pseudo-finite (sub)groups 
are, in some important aspects, odd-n Cnv  and ndD , containing the same representations, while the 

even-n Cnv and ndD contain also B representations that do not exist with the original C∞v or D∞h 

groups. All (sub)groups mentioned in Table 3 obey the four defining phrases for finite point groups, 
whose limits of applications are gradually moved to higher representations with growing n. This can 
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be seen by using the multiplication table, Table 4, for one of the two chosen and proposed 

(sub)groups, )(
9

∞
vC and )(

17
∞
vC   (see Table 5 and 6) considered the most convenient by the 

dimension/utility relationship, for dealing with the symmetry aspects of the linear unsymmetrical 
molecules. 
 

Table 4. Multiplication table for the )(
17

∞
vC -group. 

 

 A1 A2 E1 E2 E3 E4 E5 E6 E7 E8 
 A1 A1 A2 E1 E2 E3 E4 E5 E6 E7 E8 
 A2  A1 E1 E2     E3 E4 E5 E6 E7 E8 
 E1   A1 A2 E2 E1  E3 E2  E4  E3  E5   E4  E6   E5  E7   E6  E8 E7     E8 
 E2    A1A2 E4 E1  E5  E2  E6   E3  E7   E4  E8 E5     E8 E6     E7 
 E3     A1A2E6  E1  E7   E2  E8 E3     E8 E4     E7 E5     E6 
 E4      A1A2E8  E1    E8 E2     E7 E3     E6 E4      E5 
 E5       A1A2 E7 E1     E6 E2     E5 E3     E4 
 E6        A1A2 E5 E1     E4 E2     E3 
 E7         A1A2 E3 E1     E2 
 E8          A1A2 E1 

 

 For the linear symmetrical molecules another two (sub)groups, )(
hD ∞

9  and )(
17

∞
hD  (see Tables 

7 and 8), are considered. Working with subgroups does not contradict any of the point group’s rules. 
Many problems of the optical spectroscopy are solved with less than a full group of symmetry 
operations, i.e., in a subgroup's frame. 

We will call )(∞
nvC  and )(∞

nhD , simply groups from now on. 
 
 
 2. Unsymmetrical molecules 
 

 In practice, a group with six representations seems, at first, to be (and is, for some simple 
problems implying lower, practical, spectral terms) enough for a linear molecule: terms higher than 

E4 (Γ) are very rarely met. All we have to do, to reach the proposed goal, is give ϕ , in the )(∞
nvC -

group, the proper value. For a six representations character table ϕ=400 is needed (meaning n=9) by 

transforming the ϕ
∞C  operation into mC9 , (m=1 to 8) the )(

9
∞
vC  group, Table 5, where it is more 

convenient to use digital characters, instead of the usual cos�  functions in order to have a better 
visual relationship between the groups of the unsymmetrical and symmetrical molecules (see 
relations (3) and (3’ ) and Tables 5 and 7 or Tables 6 and 8, respectively). 
 
 

Table 5. Character table for the proposed low-order groups for unsym. l inear molecules. 
 

)(
9

∞
vC  E  2 9C  2 2

9C  2 3
9C  2 4

9C  9� v linear bases bil inear bases 

A1 ≡Σ+ 1 1 1 1 1 1 z x2+y2, z2 
A2 ≡Σ- 1 1 1 1 1 -1 Rz  
E1 ≡Π 2 1.532 0.347 -1 -1.879 0 (x, y); (Rx , Ry) (xz, yz) 
E2 ≡∆  2 0.347 -1.879 -1 1.532 0  (x2-y2, xy) 
E3 ≡Φ 2 -1 -1 2 -1 0   
E4 ≡Γ  2 -1.879 1.532 -1 0.347 0   

 
 

The only problem with the new group is that it is not finite in all aspects. Fortunately this 
inconvenience affects, as mentioned before, only the mostly unnecessary, higher order, 
representations. The lower ones (to E2 (

�
), the first 4 representations out of 6) are behaving, in all 
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aspects, l ike in a finite frame, as shown below. (It must be emphasized that different n does not 
mean different groups really, but rather different approximation orders of the same case, in spite of 
the fact that the characters are different: on common area they give the same results). 
 Reduction of any binary combination (product) that implies an A (Σ) representation, as one 

of the factors, for example, is completely valid up to E4 (Γ) and the new, )(
9

∞
vC  group works entirely 

like the classic, finite, C9v group.  
A problem appears with reduction of some combinations (products) like Eh and Ek, (with h, 

k>2) representations, however. This behaviour should be expected though, since the rules, 
 

             Ek×Eh = Ek-h + Ek+h  for k>h                 (1) 
 

and             Ek×Ek = A1 + A2 + E2k                  (2) 

 
established with the original, infinite, groups must be obeyed [6], but as can be seen from eq. (2), 
E4×E4 gives E8, which does not exist in the proposed table because we decided, for practical reasons, 
not to use representations over E4 (Γ). If we want to solve all the problems, to E4 (in this case), 
however, then we should construct a table extended to E8 (ϕ=2π/17), behaving entirely “ finite”  to E4, 

the )(
17

∞
vC  group, Table 6. Results, to be used in spectroscopy, obtained with Table 6 (n=17) will 

correspondingly be the same, for lover order representations, with those of the Table 5 (n=9), except 
that now the table is extended to E8. Generally speaking, once we have decided the highest k (Ek), 
obeying “ finite”  rules, needed in our problem, then we should use n = 4k + 1 to construct the 
necessary group (extended to E2k) that is working as a finite group, all operations giving entirely 
correct answers, up to Ek and in some specific cases it gives correct answers to as high as E2k (see 
Table 4). 

 Excepting the fact that the )(∞
nvC  groups are not closed (some products jump out of the 

table), these groups, limited to Ek, are simply the finite Cnv groups, with all the consequences. So, the 
)(

17
∞
vC  group correctly covers all practical cases to E4 ( � ) and we will stick to it, as a convenient 

compromise between the order of the group and the number and variety of the experimentall y 

encountered operations and representations. Of course, )(
9

∞
vC  group can successfully be employed in 

some simpler, practical cases, as mentioned already. 

Table 4 shows the products and the limits of the )(
17

∞
vC  case. “Boxed” figures are not correct 

in the new frame: they violate eqs. (1) and (2), and should be discarded. A similar table can easily be 

derived for the )(
17

∞
hD  group, showing the same limitations, to E4( � ), see below. 

The wrong (boxed) results in Table 4 could easily be corrected, however, by observing that 
any Ek×Ej product should obey the rule k + j = 2k in each k column. Consequently, E8 in column E5 
should be E9; E7 is E10 and similarly in columns E6, E7 and E8. These are correct values in spite of 
the fact that they are out of the new group. These artificial corrections should be taken only as a 
formal aspect since there is no need of them in practice. The first approximation is quite enough. 
 
 
 3. Symmetrical molecules 
 
 Let us start with the )(

9
∞
hD  group, Table 7, derived directly from D∞h with ϕ=400, or 

from )(
9

∞
vC , Table 5, by using eq. (3’ ). The )(

9
∞
hD group (which is not closed, either) is entirely valid, 

like before, to E2. Of course, the above are also valid for the n=17, Table 8,  to E4 this time, which 

can be derived, as for the )(
9

∞
hD  group, directly from D � h,  or from )(

17
∞
vC , Table 6,  by using eq. (3’ ). 
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Table 6. Character table for the proposed high-order group for unsymmetrical linear molecules. 
 

)(
17

∞
vC  E  2 17C  2 2

17C  2 3
17C  2 4

17C  2 5
17C  2 6

17C  2 7
17C  2 8

17C  17 �

v linear bases bilin. bases 

A1≡Σ+ 1 1 1 1 1 1 1 1 1 1 z x2+y2, z2 
A2≡Σ- 1 1 1 1 1 1 1 1 1 -1 Rz  
E1 ≡Π 2 1.865 1.478 0.891 0.185 -0.547 -1.205 -1.700 -1.966 0 (x, y); (Rx ,Ry) (xz, yz) 
E2 ≡∆ 2 1.478 0.185 -1.205 -1.966 -1.700 -0.547 0.891 1.865 0  (x2-y2, xy) 
E3 ≡Φ 2 0.891 -1.205 -1.966 -0.547 1.478 1.865 0.185 -1.700 0   
E4  ≡Γ 2 0.185 -1.966 -0.547 1.865 0.891 -1.700 -1.205 1.478 0   
E5 ≡X 2 -0.547 -1.700 1.478 0.891 -1.966 0.185 1.865 -1.205 0   
E6 ≡Ι 2 -1.205 -0.547 1.865 -1.700 0.185 1.478 -1.966 0.891 0   
E7 ≡Κ 2 -1.700 0.891 0.185 -1.205 1.865 -1.966 1.478 -0.547 0   
E8 ≡Λ 2 -1.966 1.865 -1.700 1.478 -1.205 0.891 -0.547 0.185 0   

 
 
 

Table 7. Character table for the proposed low-order group for symmetrical linear molecules. 
 

)(
9

∞
hD  E  2 9C  2 2

9C  2 3
9C  2 4

9C  9 �

v i 2 7
18S  2 5

18S  2 3
18S  2 18S  9C2 lin. bases bilin. bases 

A1g ≡Σg
+ 1 1 1 1 1 1 1 1 1 1 1 1  x2+y2, x2 

A2g ≡Σg
- 1 1 1 1 1 -1 1 1 1 1 1 -1 Rz  

E1g ≡Πg 2 1.532 0.347 -1 -1.879 0 2 1.532 0.347 -1 -1.879 0 (Rx , Rz) (xz, yz) 
E2g ≡∆g 2 0.347 -1.879 -1 1.532 0 2 0.347 -1.879 -1 1.532 0  (x2-y2, xy) 
E3g ≡ Φg 2 -1 -1 2 -1 0 2 -1 -1 2 -1 0   
E4g ≡Γg 2 -1.879 1.532 -1 0.347 0 2 -1.879 1.532 -1 0.347 0   
A2u≡Σu

+ 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 z  
A1u≡Σu

- 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1   
E1u ≡Πu 2 1.532 0.347 -1 -1.879 0 -2 -1.532 -0.347 1 1.879 0 (x, y)  
E2u ≡∆u 2 0.347 -1.879 -1 1.532 0 -2 -0.347 1.879 1 -1.532 0   
E3u ≡Φu 2 -1 -1 2 -1 0 -2 1 1 -2 1 0   
E4u ≡Γu 2 -1.879 1.532 -1 0.347 0 -2 1.879 -1.532 1 -0.347 0   
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Table 8. Character table for the proposed high-order group for symmetrical l inear molecules. 
 

  )(
hD ∞

17  E 2 17C  2 2
17C  2 3

17C  2 4
17C  2 5

17C  2 6
17C  2 7

17C  2 8
17C  17 �

v i  2 15
34S  2 13

34S  2 11
34S  2 9

34S  2 7
34S  2 5

34S  2 3
34S  2 34S  17C2 l in.bases bilin.bases 

A1g≡Σg
+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  x2+y2, z2 

A2g≡Σg
- 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 -1 Ry  

E1g≡Πg 2 1.865 1.478 0.891 0.185 -0.547 -1.205 -1.700 -1.966 0 2 1.865 1.478 0.891 0.185 -0.547 -1.205 -1.700 -1.966 0 (Rx , Rz) (xz, yz) 
E2g≡∆g 2 1.478 0.185 -1.205 -1.966 -1.700 -0.547 0.891 1.865 0 2 1.478 0.185 -1.205 -1.966 -1.700 -0.547 0.891 1.865 0  (x2-y2, xy) 
E3g≡Φg 2 0.891 -1.205 -1.966 -0.547 1.478 1.865 0.185 -1.700 0 2 0.891 -1.205 -1.966 -0.547 1.478 1.865 0.185 -1.700 0   
E4g≡Γg 2 0.185 -1.966 -0.547 1.865 0.891 -1.700 -1.205 1.478 0 2 0.185 -1.966 -0.547 1.865 0.891 -1.700 -1.205 1.478 0   
E5g≡Χg 2 -0.547 -1.700 1.478 0.891 -1.966 0.185 1.865 -1.205 0 2 -0.547 -1.700 1.478 0.891 -1.966 0.185 1.865 -1.205 0   
E6g≡Ig 2 -1.205 -0.547 1.865 -1.700 0.185 1.478 -1.966 0.891 0 2 -1.205 -0.547 1.865 -1.700 0.185 1.478 -1.966 0.891 0   
E7g≡Kg 2 -1.700 0.891 0.185 -1.205 1.865 -1.966 1.478 -0.547 0 2 -1.700 0.891 0.185 -1.205 1.865 -1.966 1.478 -0.547 0   
E8g≡Λg 2 -1.966 1.865 -1.700 1.478 -1.205 0.891 -0.547 0.185 0 2 -1.966 1.865 -1.700 1.478 -1.205 0.891 -0.547 0.185 0   
A2u≡Σu

+ 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 z  
A1u≡Σu

- 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1   
E1u≡Πu 2 1.865 1.478 0.891 0.185 -0.547 -1.205 -1.700 -1.966 0 -2 -1.865 -1.478 -0.891 -0.185 0.547 1.205 1.700 1.966 0 (x, y)  
E2u≡∆u 2 1.478 0.185 -1.205 -1.966 -1.700 -0.547 0.891 1.865 0 -2 -1.478 -0.185 1.205 1.966 1.700 0.547 -0.891 -1.865 0   
E3u≡Φu 2 0.891 -1.205 -1.966 -0.547 1.478 1.865 0.185 -1.700 0 -2 -0.891 1.205 1.966 0.547 -1.478 -1.865 -0.185 1.700 0   
E4u≡Γu 2 0.185 -1.966 -0.547 1.865 0.891 -1.700 -1.205 1.478 0 -2 -0.185 1.966 0.547 -1.865 -0.891 1.700 1.205 -1.478 0   
E5u≡Χu 2 -0.547 -1.700 1.478 0.891 -1.966 0.185 1.865 -1.205 0 -2 0.547 1.700 -1.478 -0.891 1.966 -0.185 -1.865 1.205 0   
E6u≡Ιu 2 -1.205 -0.547 1.865 -1.700 0.185 1.478 -1.966 0.891 0 -2 1.205 0.547 -1.865 1.700 -0.185 -1.478 1.966 -0.891 0   
E7u≡Κu 2 -1.700 0.891 0.185 -1.205 1.865 -1.966 1.478 -0.547 0 -2 1.700 -0.891 -0.185 1.205 -1.865 1.966 -1.478 0.547 0   
E8u≡Λu 2 -1.966 1.865 -1.700 1.478 -1.205 0.891 -0.547 0.185 0 -2 1.966 -1.865 1.700 -1.478 1.205 -0.891 0.547 -0.185 0   
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The new groups follow the finite and infinite groups well known rule: 
 

                C∞v × Ci = D∞h                           (3) 
 

that can be written now as  )(∞
nvC × Ci =

)(∞
nhD                                (3’ ) 

 
The digital (instead of cos� ) characters in the new tables are favouring, as mentioned before,  

an easier test of eq. (3’ ), and are better complying with the other finite groups (see Tables 7 and 8).  
  
  
 4. Discussion 

 

The new pseudo-finite, )(∞
nvC and )(∞

nhD  groups are, to a point, odd-n members of the nvC and  

Dnd families, with some minor amendments in the last case: � d operation is renamed � v (the 
corresponding bases and characters are the same in the two groups for these operations) and changes 

position with the C2 operation in the character table, both for a clear connection with )(∞
nvC . In 

addition, for the same reason, the A1u and A2u representations are interchanging their positions, while 
the � u

+ and  � u
- are preserving their “gerade” order. This way the eq. (3’ ) is clearly i llustrated, like 

with the other finite groups. 
There is an apparent supplementary, but harmless, difficulty that is met with the proposed 

groups for the symmetrical linear molecules: the model (a virtual one) has no horizontal symmetry 
plane, contrary to reality. This has no damaging effect, however, on the final results in all its 

applications. In spite of the fact that there is no � h, h is preserved in the )(∞
nhD  group’s denomination 

to account for the real origin of the new group. The same explanation is given for introducing the 
“ ( � )”  right superscript. 

In both cases, )(∞
nvC  and )(∞

nhD , the reduction formula, 

                                                       
�

=
R

ii RgRR
h

a )]()()([
1 χχ                            (4) 

is reasonably valid. Here ai is the number of times the i-th irreducible representation, � i  (Bethe’s 
symbol) occurs in � , χ and iχ  are their characters,  g(R) is the number of operations in the class R, 

and h is the order of the group.  So, the reduction formula operating by integration (needed with the 
infinite groups), 

                                                       � �=
π π

χχ
2

0

2

0

/)()( dRdRRRa ii                            (5) 

is no longer necessary, thus unifying all point groups as much as the operating rules are concerned, 
for spectral terms not higher than E4 (Γ) (in the n=17 case). 

A point is to be stressed here: using eq. (4), rounding the ai  value is necessary, but this 
operation is easily done by a PC, eliminating all ambiguity. In fact, this is working well enough even 
if we use characters with two decimals only, which simplifies the appearance of the newly proposed 
tables. 

The new groups are showing both, the finite and infinite representation symbols. 
Following eq. (2), n should preferably grow (for practical reasons) in steps of at least 4, from 

one approximation to another:  n=5, 9, 13, 17, … , out of which we have chosen  9 and 17, as 
suitable for practical cases. The other possibilities, 3, 7, 11, 15, … , are inconvenient. They are 
connected with an odd-number of Ek representations which always leaves one of them unused. 

The infinite origin of these groups must be kept in mind, by not taking “ad litteram” all 
results obtained with these newly proposed pseudo-finite groups for the combinations of higher 
representations, which could be, sometimes, out of the just proposed character table. These groups 
should be used in accordance with their clearly mentioned limitations (see Table 4), or, in extremis, 
pass to a higher group. 
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All properties of the representations and of their characters of the proposed groups are, with 
the mentioned restriction (limit to Ek for an E2k table), those met with the classic, finite, groups and 
they are a consequence of the Orthogonality Theorem: 
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])R(] [)R([ δδδΓΓ                          (6) 

 
which can be splitted into three parts in order to be applied to specific conditions [3]. 
 
 
 5. Conclusions 
 
 We can conclude this paper by saying that the proposed pseudo-finite groups, )(∞

nvC   

and )(∞
nhD , for linear molecules, are good finite-like, adaptable, groups that can be used in relation 

with our specific needs. In some simple cases, )(
9

∞
vC and )(

9
∞
hD , are all we need [9]. For energy levels 

described by wave functions which are bases for Ek with k>2 (Φ, Γ, etc.), l ike hybrid orbitals, or 
when dealing with higher order products (describing transitions, for example), however, one has to 

go to n-values over 9 (in practice, n=17 seems to be satisfactory), i.e., to  higher order groups : )(
17

∞
vC  

and )(
17

∞
hD . If still higher order representations are to be considered, the corresponding pseudo-finite 

groups can be deduced, very easily, in the same manner, from the original, C� v and D � h  infinite 
ones. 
 The characters of the new pseudo-finite groups are simple numbers, and the operational 
problems, l ike reduction of a reducible representation to its irreducible components, are solved much 
easier in the new frame, like with the real finite groups. 
 The fact that the new groups are not completely closed is a minor inconsistency with no 
practical negative effect on their applications. 

All point groups used in the optical spectroscopy are thus, operationally, a homogeneous set.  
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