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Recently, a percolation analysis has been applied to describe potential decays on surfaces of 
corona-charged electrets [Yovcheva et al., J. Phys.: Condens. Matter 16, 455 (2004)]. In this 
analysis, a numerical method based on a “black-box” software was used, and this does not 
allow a transparent treatment of parameters responsible for the decays. We suggest an exact 
analytical solution of this theoretical problem, within the very same model as the one used 
by Yovcheva et al. The analytical solution provides a much better understanding of the 
potential decay phenomenon than a “black-box” numerical calculation. 
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 1. Introduction 
 

Recentl y, a comprehensive experimental study of the time decays of surface potentials after 
corona-charging were carried out on polypropylene electrets [1]. In this study, the surfaces of the 
electrets were charged to potentials of several hundreds of Volts, and the discharging was followed 
for 250 days under various conditions of the surrounding atmosphere. In particular, the humidity of 
the atmosphere was found to be important for the potential transients [1].  

It has been well established that discharging via the surface rather than the bulk can be 
responsible for potential decays [2]. A theory for such surface discharging has been suggested by 
Kuzmin and Tairov [3-5]. According to this, water absorption gives rise to the conducting channels 
on the charged surface, that modify significantly the surface electric properties. As soon as the 
amount of adsorbed water is sufficient to create a connected path through the surface (a percolation 
cluster) discharging begins, with the time-dependent surface potential V(t) being proportional to the 
fraction of the surface area that does not belong to the percolation cluster: V(t) ∝ [1- P(t)], where 
P(t) is the surface density of the percolation cluster at time t. The percolation cluster density is a 
function of the surface fraction )(tθ  covered by the adsorbate. This quantity has been calculated by 
Kuzmin and Tairov, using the Kolmogorov theory for the adsorption kinetics [6].  

This percolation approach has been recently applied by Yovcheva et al. [1], in order to 
interpret their experimental data on the surface potential decays in various polypropylene electrets. 
The authors devised a computer program with a non-linear algorithm, based on the Flexyplex 
software package [1]. Although this package allows one to fit experimental data, it does not provide 
any transparent insight into the physics of the phenomenon.  

In this paper we show that the theoretical model used by Yovcheva et al. [1] can be solved 
purely analytically. Below we present the solution and compare the results with experimental data. 
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 2. Percolation model for the surface potential 
 

In the percolation model suggested by Kuzmin and Tairov [3-5], the time-dependent surface 
potential is determined by the equation 

 
( )])(1[)( 0 tPVtV θ−= ,       (1) 

 
where 0V  denotes the initial value of the surface potential. The density of the percolation cluster has 

the form [1,5]  
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where 428.0=cθ , 533.0' =cθ  and, a0 = -1.042 10-2, a1 = 21.26, a2 = -3.959 102, a3 = 3.549 103, and 

a4 = -1.178 104 are the parameters of the fourth order polynomial regression [5]. The function )(tθ  
is determined by the fraction of the dry surface at the beginning of the discharge, the rate of 
formation of nuclei, )(tβ , and the time-dependent radius of a nucleus, R. The latter is determined as 
in [3-5] by the equation  
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where )(ξν is the growth speed of the nucleus size. The speed is assumed to have a constant 

component 2ν and an additional component 1ν , which relaxes with some time constant τ  [3-5]. The 

surface fraction )(tθ covered by the adsorbate that determines the discharge kinetics is given by the 
equation [1,3-5]. 
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where q is the surface fraction that remained free from the adsorbate at the end of the charging 
process. Equations (1-4) were solved by Yovcheva et al. [1] using a numerical software package. 
This solution cannot be considered as transparent. Moreover, it does not provide the values for such 
an important parameter as the relaxation time τ  for the radius growth rate. Below, we present an 
analytical solution of these equations for the very same model as that used in [1]. 
 
 
 3. Analytical solution and comparison with experiment 
 

It was assumed in [1] for simplicity that the nuclei creation rate is constant: β(t) ≡ β0 and the 
samples are charged at a moment t0 = 0. In such a case one can rewrite Eq. (4) in the form  

 
)(1)( tIeqt ⋅−=θ          (5) 

with  
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After a straightforward integration one obtains 
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 Equations (1), (2), (5), and (7) provide an analytical description for the time-dependent 
surface potential. 

Two sets of samples were studied experimentally in [1]. In Fig. 1, a comparison of the above 
analytical result and the experimental data are shown, for one sample taken for each set. The values 
of the material parameters used in the calculations are given in the inserts on the figure.  

 

     
                                  (a) Sample #11                                                                    (b) Sample #51 
 

 
Fig. 1. Comparison of analytical results and experiment (from [1]). Broken l ine with points:  
     Experimental data. Solid l ine: Analytical results described in Eqs. (1), (2), (5), and (7). 

 
 
 4. Summary 
 

The really good agreement between the theoretical results and the experimental data shows 
that it is indeed possible to describe the surface discharge kinetics in the electrets using percolation 
theory, as suggested in [3-5]. Moreover, one can solve the problem analytically without non-
transparent software packages.  
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