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In this work we propose an improved experimental set-up for the measurement of the 
bending elastic modulus by the analysis of thermally induced shape fluctuations of quasi 
spherical GUVs using stroboscopic il lumination. The stroboscopic video microscopy has 
better time resolution than the continuous illumination video microscopy. Consequently, i t is 
no more necessary to use a "correction factor" to account for the artifact due to the finite 
video camera integration time. The experimental data, acquired under the stroboscopic 
il lumination can be completely interpreted using only two model parameters, the bending 
elastic modulus and the dimensionless membrane tension.  
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1. Introduction 

 
Lipid bilayers are important constituents of living cells. Knowing the mechanical properties 

of membranes is important for understanding cell resistance to external influences. The first 
theoretical models of membrane mechanical properties were proposed by Hel frich [1] and Evans [2]. 
According to these, the elastic energy per unit area of lipid membrane, Fc, is   
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where c1 and c2 are the membrane principal curvatures, c0 is the spontaneous curvature, and kc and 

ck  are the bending and saddle bending elastic modules of the lipid bilayer, respectively. The 
spontaneous curvature of a symmetric membrane vanishes, i.e. co = 0. 

Following the first detailed theoretical model of thermally induced shape fluctuations [3], 
researchers had the theoretical background to develop experimental procedures leading to precise 
measurements of the bending elastic modulus [4, 5]. The fundamental expression is 
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 is the mean squared amplitude of the spherical harmonic Yn
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Boltzmann's constant, T is the absolute temperature, n is the mode number and ckR /2σσ =  
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2 RcRckR c ++= σσ , if c0  � 0) is the dimensionless membrane tension. In the Milner 

and Safran model [3], the fluctuation autocorrelation function is monoexponential: 
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with a correlation time, m
nτ , for the amplitude, Un

m(t), of the spherical harmonic ),( ϕθm
nY : 
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where �  is the viscosity of the surrounding medium and R is the vesicle radius. The correlation time 
decreases as n-3 with the mode number n. For a tension free vesicle, σ  = 0, of radius R = 10 �m with 
bending modulus of kc = 10-19 J, suspended in pure water, the second harmonic correlation time is, 

m
2τ  = 3.8 s, and the 20th harmonic correlation time is as low as m

20τ  = 5 ms. 

In fact what is believed to be measured in an experiment on a fluctuating quasi-spherical 
giant vesicle is the equatorial cross section radius. Its angular autocorrelation function is a sum of 
Legendre polynomials with amplitudes Bn, related to the mean squared amplitudes of spherical 
harmonics [4]: 

 
2

)(
4

12
tU

n
B m

nn π
+=       (5) 

 
where the factor 2n+1 reflects the 2n+1 di fferent m-modes for a given n , and 4� comes from the 
different normalizations of the Legendre polynomials and spherical harmonics. 

In most experiments, observation of the giant vesicle is made by video microscopy. 
Unfortunately, the cameras used (CCDs or vacuum tubes) possess an intrinsic “defect” - the image 
presented to the observer (on the video monitor or in numerical form after digitalization by a frame 
grabber) reflects the integral energy accumulated on a given point (pixel) during the exposure time. 
For a vacuum tube, the exposure time is that between two successive frame scans, which for the 
European TV standard is ts = 40 ms (25 frames per second). For a CCD, the exposure time could be 
between 2 and 20 ms, depending on the electronics controlling the CCD chip. Thus, fast movements 

are smeared out and instead of the theoretical model amplitudes, Bn, one obtains n
corr

nn BfB =' , 

where the correction factor, corr
nf  is calculated in [4] to be: 

 

�
�

	


�

�
��
�

�
��
�

�
−−��

�

�
��
�

�
−��

�

�
��
�

�
=

m
n

s
m
n

s

s

m
ncorr

n

tt

t
f

ττ
τ

1exp2
2

     (6) 

 
For the same vesicle of radius R = 10 �m used as a reference above, the correction factor for 

the slow second mode is corrf 2 = 0.99 and therefore can be neglected. But the 20th mode correlation 
time, m

20τ = 5 ms, is small compared to the video camera integration time, ts = 40 ms, and the 
correction factor drops to corrf 20 = 0.22. That is an almost five-fold decrease of the experimentally 
measured mean squared amplitudes, '

nB , compared to the theoretically anticipated ones, nB . Clearly, 
such a difference cannot be neglected. Since the correlation time increases as R3 with increasing 
vesicle radius, the correction factor for the 20th mode of a R = 20 �m vesicle has a better value, 

corrf 20 = 0.74, but stil l cannot be neglected in a precision experiment. 
Two factors turn out to be of crucial importance for the precise determination of the bending 

modulus by the method of shape analysis of fluctuating quasi spherical giant vesicles. One is the 
dimensionless membrane tension σ . This should be taken into account while fitting the measured 
mean squared amplitudes of spherical harmonics to the theoretical expressions (4). The second is the 
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effect of the video camera integration time. This results in a dramatic reduction of the measured 
mean squared amplitudes of higher spherical harmonics, and can lead to a severe overestimation of 
the bending modulus if not properly accounted for [4]. 

While the first factor has its strongest influence on the low order modes, the second one has 
its biggest influence on the fastest - the higher order ones. It is worth mentioning that the correction 
factors can be calculated by an iterative procedure using the measured mean squared amplitudes, 

'
nB , (see equation (5) and reference [4] for details). The procedure can be applied only when '

nB  are 
available from an experiment in which the bending elastic modulus, kc, is measured. If one is 
interested in the dynamics of vesicle fluctuations and measures the time correlation function, the 
correction factor is no longer usable, and one must stick with values highly deformed by the 
integration time. One way to overcome this apparatus artifact is to apply stroboscopic illumination, 
as done by Méléard et al. [6]. These authors used laser light and had to overcome different problems 
inherently due to the light coherency. In the present work, we propose stroboscopic il lumination 
using a xenon flash lamp. This removes all problems encountered with laser light, and yields an 
instant picture of the system. It can be used equally well for static measurements of bending 
modulus, kc, as for dynamic measurements of the correlation times, m

nτ . 
 
 
2. Experimental equipment 
 
Samples of the fluctuating giant vesicles were observed with a phase contrast microscope 

(Axiovert 100 or Axiovert 135, Zeiss, Germany) using either a 63× (NA 0.9) water immersion 
objective or a 63 × (NA 0.7) long working distance one. Stroboscopic illumination, was supplied by 
a 60W xenon flash lamp (L6604 or L7684) in a E6611 cooling jacket, powered by a C6096 supply. 
To get the full power from the flash lamp, an E7289-01 external main discharge capacitor was used 
(all items from Hamamatsu, Japan). The L7684 lamp had a built-in mirror that made it 1.5 times 
brighter than the L6604, otherwise they were identical. The power supply worked in externall y 
triggered mode, synchronized with the vertical sync pulses from the CCD video camera controller 
(Hamamatsu C2400-60). Synchronization could be made to either the odd or even fields of the 
camera frame. The light pulses were less than 3 �s long (fwhm) at 1 J input energy. This was more 
than sufficient for our experiments because the illumination time was almost 3 orders of magnitude 
less than the fastest correlation time used, m

20τ  � 5 ms. The corresponding correction factors for the 
fastest modes were thus close to unity, corrf20

 � 0.999, and could be neglected because the 
statistically achieved precision in the experiment was not better than 1-5%. 

The disadvantage of the stroboscopic il lumination was that the pulsed light irritates the eyes, 
so the samples should be observed on a TV monitor. Due to the “sample and hold”  effect of the 
CCD matrix, the picture on the monitor was not flickering exactly as in the case of continuous 
illumination. The video signal from the camera was also fed to a frame grabber board (DT3155, 
Datatranslation, USA) mounted in a computer for a proper digitization (768×576 8-bit pixels). Once 
per second, an image was acquired and recorded on the PC, until the total number of images reached 
a specified value ( ~ 400). The resulting images were corrected for the difference of the scale factors 
in x and y directions coming from the mismatch of the CCD's pixel shift clock (in the camera) and 
the pixel acquisition clock (in the frame grabber) by digital interpolation and resampling. The value 
of the scale factor was determined by x and y calibration using a micrometer rule. Further details on 
the contour determination, mean squared amplitudes calculation and fitting procedure to determine 
the bending elastic modulus, kc, and the dimensionless membrane tension, σ , can be found in the 
article of Faucon et al. [4].  

 
 
3. Materials and methods 
 
1,2-diphytanoyl-sn-glycero-3-phosphatidylcholine (DPhPC) (Avanti Polar Lipids, USA), 

was used without further purification. Giant vesicles were prepared by the spontaneous swelling 
(gentle hydration) method [7] (see [8] for more details). To obtain giant lipid vesicles, 2 mg of the 
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lipid were dissolved in 3 ml of a 2:1 (v:v) chloroform:methanol mixture. A lipid film was formed on 
the bottom of a glass flask by the evaporation of the organic solvent under vacuum for about 5 
hours. After the complete evaporation of the organic solvent, the fi lm was fully hydrated by the 
addition of 25 ml of deionized water and holding at room temperature for at least 60 hours. The 
experimental cell used was sealed, to minimize water evaporation and to avoid convective flows 
which would have led to difficult follow-up and recording of the observed vesicles.  
 

 

4. Results and conclusions 
 

We tested the stroboscopic il lumination on a batch of 10 different vesicles, selected on the 
criteria to be fluctuating, to have no visible defects, and to be far from visible defects due to dust 
particles on the cover slip. The continuous line in Fig. 1 shows a sum of normal distributions, each 
having the mean value and standard deviation of a respective vesicle, as determined by the fitting 
procedure.  

 
 

Fig. 1. Sum of normal (Gaussian) distributions, each with a mean and standard deviation of 
the corresponding vesicle: Continuous line - means as given by the fitting procedure. Dashed  
                            line – means divided by the hypothetical number of bilayers. 
 
 

One clearly sees three groups of peaks, which can be attributed to vesicles with different 
numbers of bilayers. We found five vesicles with kc of 1-1.6 × 10-19 J, three with kc of  
2-2.5 × 10-19 J (supposed to be two-lamellar) and two vwith kc of 3-3.6 × 10-19 J (supposed to be 
three-lamellar). The dashed line presents the sum of the normal distributions with means divided by 
the hypothetical number of bilayers. We see that the agreement is good. The weighted value of kc 
over the 10 vesicles (accounting for the number of membranes as above) is (1.23 ± 0.06) × 10-19 J. If 
only the five hypothetically single layered vesicles are taken into account, the weighted value of the 
bending modulus is (1.30±0.08) × 10-19 J. Both values are in very good agreement with a previously 
measured value[9] of (1.17±0.10) × 10-19 J for the bending elastic modulus of a DPhPC bilayer, 
obtained using continuous illumination and applying the correction factor. 
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