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We present a simple original algorithm for numerical simulation of super-bandgap SPV 
transients in semiconductors. It is applied to a p-Si/SiO2 interface with quasi-continuously 
distributed non-interacting interface states. The simulated SPV time dependence is compared 
with experimental results, and a reasonable agreement is found. 
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 1. Introduction 
 

Time-resolved super-bandgap SPV measurements can be successfully used to study the 
interface electronic properties and important parameters of interface states (IS) [1]. However, few 
detailed analysis of SPV transients have been made, because it is a complicated problem [1,2]. This 
refers even to the c-Si free surface and the c-Si/SiO2 interface, which are examples of the most 
investigated systems. The study of this problem for these two systems is important for the following 
reasons: (i) The system Si-SiO2 is a basic component of many actual device structures of 
microelectronics, nanoelectronics, photovoltaics etc.; (i i) The huge experience with them is used for 
the interpretation of results obtained from investigations of other more complicated systems. 

In this work, we present a simple original algorithm which allows numerical simulations of 
super-bandgap SPV transients in semiconductors. It is applied to a p-Si/SiO2 interface characterized 
by non-interacting IS, quasi-continuously distributed over the Si gap. The SPV time-dependence was 
found by numerically solving the following set of equations: (i) the continuity equations for 
electrons and holes; (ii) the Poisson equation; and (iii) the charge neutrality equation. The solution of 
these equations is carried out under two important approximations [1]: (i) The approximation of flat 
quasi-Fermi levels (FQL) is made; ii) The IS charge is calculated using standard Shockley-Read-
Hall statistics. The simulated SPV time-dependence is compared with some experimental results, 
with a reasonable agreement being found. 

 
 
2. Calculation details 
 
2.1. Description of the system considered 
 
We have considered a gateless p-Si/SiO2 structure based on homogeneously doped and non-

degenerate c-Si, at 300 K. The density of the bulk shal low acceptors is NA = 1.5×1015 cm-3 and that 
of the shallow donors is ND = 0. Usually, at the Si/SiO2 interface, a depletion space charge region 
(SCR) occurs under thermal equil ibrium. This implies that the semiconductor bands are bent 
downward, which corresponds to a positive surface potential, i.e. Vs0 > 0 [1]. The IS reveal a quasi-
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continuous U-shaped distribution over the Si gap, but they do not interact in between [3]. They are 
assumed to be donor-like (acceptor-like) into the lower (upper) half of the Si gap [4,5].  

The sample is illuminated by a short light pulse with energy 1.4 eV, corresponding to super-
bandgap excitation of the Si bulk carriers. In the calculations, the contributions of the minority as 
well as of the majority excess carriers to the SPV formation are taken into account. This implies that 
each IS will interact with both bulk energy bands of Si. 

 
2.2. The algorithm  
 
Following the SPV definition [1], we have � Vs(t)=V*

s(t) - Vs0 , where Vs0 and V*
s(t) are the 

surface potential barrier heights in the dark and under i llumination, respectively. Vs0 and V*
s(t) can be 

found from the charge neutrality equation: 
 

Qsc(V
*

s,,t) + Qit(V
*

s, t) + Qf = 0              (1) 
 

Here: Qsc(V
*

s,t) is the charge density in the SCR, Qit(V
*
s,t) is the IS charge density, and                    

Qf = 1.5 × 1011 cm-2 [3] is the oxide fixed charge density. Thus, for determining V*
s(t), we must 

know how Qsc and Qit depend on V*
s and t. 

 
2.2.1 Calculation of the charge density, Qsc, in the SCR. 
 

Assuming that the lateral dimensions of the sample are much larger than the vertical one, 
Qsc(V

*
s,t) can be found by solving the one-dimensional Poisson equation [1]. We have checked that 

the FQL approximation is valid in our case. Under this approximation, the Boltzmann relations 
which relate the SCR carrier densities to the corresponding densities in the semiconductor quasi-
neutral bulk, also hold for the non-equilibrium case [1]. This makes it possible to separate the 
solutions of the Poisson equation and the continuity equations, thereby considerably simplifying the 
problem [1]. Thus, the Poisson equation for the electric potential V(x) becomes: 
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Here, εs = 11.8ε0 is the dielectric permittivity of Si; *

bn , *
bp  (pb ,nb) are the non-equilibrium 

(equilibrium) free carrier densities in the bulk, i.e. at x �  w (w is the SCR width). 
An explicit expression for Qsc is obtained by integrating Eq. 2 from the bulk toward the 

surface, with boundary conditions V (x=∞) = 0 and dV/dx (x=∞) = 0:  
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where � n = � p are the excess carrier densities in the bulk.  

According to Eqs. 3, and 4, Qsc wil l depend on t via )(),( ** tntp bb , and also on *
sV . 

 
 
2.2.2 Calculation of the interface state charge density Qit 
 
The dependence of the IS charge density Qit on *

sV has been derived by means of the 

Shockley-Read-Hall statistics and the FQL approximation [1], as follows: 
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In Eqs. 5-7: fA(Dit) is the occupancy factor of the IS; Nc, Nv are the effective densities of states in the 
conduction/valence band; and vn, vp are the thermal velocities of electrons/holes. We obtain the 
donor/acceptor densities DitD(Eit) and DitA(Eit) as well as the electron/hole capture cross sections �

sp(Eit) and �
sn(Eit) of the IS by Gaussian fits to the experimental data given in [3] (Figs. 1 and 2). 

According to Eqs 5 and 6, Qit will depend on t via )(),( ** tntp bb and on *
sV . 

 

 
 
 
 
2.2.3. Continuity equations 
 
The time dependences of the non-equilibrium carrier densities )(* tpb

 and )(* tnb
 can be found 

by solving the continuity equations with boundary conditions: 0
* )0( nnb = , 0

* )0( ppb = . For 

simplicity, the drift and diffusion currents are not taken into account and homogeneous absorption in 
the whole sample is supposed. For the free carrier lifetimes, we use the values � p = � n = 20 µs [6]. The 
electron-hole pair generation rate per unit volume, G(t), is a Gaussian with the parameters taken 
from [6] as follows: a total exciting energy density of 1 � J/cm2, a pulse duration of 0.150 µs, a time 
of the pulse maximum of t0 = 0.4 µs, and absorption and reflection coefficients of  
36422 m-1 and 0.3, respectively. 

 
 
2.2.4. Calculation of the SPV time-dependence � VS(t) 
 

The dependencies ],),(),(,[ ***
bbbbssc nptntpVfQ =  and )](),(,[ *** tntpVfQ bbsit =  have 

been inserted in Eq. 1. The function Q(Vs
*,t) = Qsc(Vs

*,t) + Qit(Vs
*,t) + Qf is plotted in Fig. 3. Its 

intersection with the zero plane gives V*
s(t). From V*

s(t) and Vs0 we find the dependence � VS(t). 
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    Fig. 2. IS capture cross sections.  Fig. 1. IS density distribution. 
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3. Results and discussion 
 

The exciting light pulse and the simulated SPV transient δVs(t) are shown in Fig. 4 by 
curves 1 and 2, respectively. After the beginning of the illumination, the absolute value of |δVs(t)| 
increases rapidly and reaches a maximum at the time of the light pulse maximum, t0 = 0.4 µs. After 
that |δVs(t)| decreases slowly up to ~ 50 µs and then drops rapidly to zero at t = 5 ms. We could not 
find SPV transient measurement data for the Si/SiO2 system in the literature. Thus, we compare our 
simulated δVs(t) curve with an experimental SPV transient (Fig. 4, curve 3), measured in [6] on a p-
type c-Si free surface (100), treated in HF acid. In general, curves 2 and 3 show similar behaviour, 
although some discrepancies between them are seen. This result is encouraging for the di fficult 
analysis of the time-resolved SPV, given that the numerical simulation is performed employing a 
simple model and the systems used in the calculations and the measurements are not exactly the 
same. It should be noted, however, that the IS distributions in both systems exhibit similar 
behaviour. Also, the simulation has been performed with parameters appropriate only to these two 
systems [3,5].  
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4. Conclusions 
 

The analysis carried out shows that the proposed algorithm gives a good qualitative 
description of the SPV kinetics in the structure considered. It could also be successfully applied to 
other similar structures. The time-resolved super-bandgap SPV measurements and their analysis 
allow the determination of important parameters of the IS. For example, the IS energy distribution 
could be contactlessly determined for the whole the bandgap without changing the sample from an 
n-type to a p-type semiconductor, or without performing SPV spectral measurements in the sub-
bandgap region. 
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Fig. 4. 1- the exciting light pulse; 2 - the simulated and  
3  - the experimental SPV transient. 

 

Fig. 3. The calculated function Q(Vs
*,t) = 

Qsc(Vs
*,t) + Qit(Vs

*,t) + Qf and the zero plane. 
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