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NUMERICAL SIMULATION OF THE TIME-RESOLVED SURFACE
PHOTOVOLTAGE AT Si-SIO, INTERFACES

K. Kirilov', K. Germanova, V. Donchev, Tzv. Ivanov
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We present a simple original agorithm for numerical simulation of super-bandgap SPV
transients in semiconductors. It is applied to a p-Si/SIO, interface with quasi-continuously
distributed non-interacting interface states. The simulated SPV time dependence is compared
with experimental results, and areasonabl e agreement is found.
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1. Introduction

Time-resolved super-bandgap SPV measurements can be successfully used to study the
interface dectronic properties and important parameters of interface states (1S) [1]. However, few
detaled analysis of SPV transients have been made, because it is a complicated problem [1,2]. This
refers even to the ¢c-Si free surface and the ¢-Si/SiO, interface, which are examples of the most
investigated systems. The study of this problem for these two systems is important for the foll owing
reasons. (i) The system S-SiO, is a basc component of many actual device structures of
mi crod ectronics, nanod ectronics, photovoltaics etc.; (ii) The huge experience with themis used for
the interpretation of results obtained from investigations of other more complicated systems.

In this work, we present a simple original agorithm which all ows numerical simulations of
super-bandgap SPV transients in semiconductors. It is applied to a p-Si/SiO, interface characterized
by non-interacting 1S, quasi-continuoudy distributed over the Si gap. The SPV time-dependence was
found by numericaly solving the following set of equations: (i) the continuity eguations for
dectrons and holes; (ii) the Poisson equation; and (iii) the charge neutrality equation. The sol ution of
these equations is carried out under two important approximations [1]: (i) The approximation of flat
quasi-Fermi levels (FQL) is made ii) The IS charge is calculated using standard Shockley-Read-
Hall statistics. The simulated SPV time-dependence is compared with some experimentd results,
with a reasonabl e agreement being found.

2. Calculation details
2.1. Description of the system considered

We have cons dered a gatd ess p-Si/SiO, structure based on homogeneously doped and non-
degenerate c-Si, at 300 K. The density of the bulk shallow acceptors is Na = 1.5x10" cm™® and that
of the shallow donors is Np = 0. Usually, at the Si/SIO, interface, a depletion space charge region
(SCR) occurs under thermal equilibrium. This implies that the semiconductor bands are bent
downward, which corresponds to a positive surface potentid, i.e. Vg > 0 [1]. The IS reveal a quasi-
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continuous U-shaped distribution over the Si gap, but they do not interact in between [3]. They are
assumed to be donor-like (acceptor-like) into the lower (upper) half of the Si gap [4,5].

The sampleisilluminated by a short light pulse with energy 1.4 €V, corresponding to super-
bandgap excitation of the Si bulk carriers. In the cd culations, the contributions of the minority as
wdl as of the mgjority excess carriers to the SPV formation are taken into account. Thisimplies that
each IS will interact with both bulk energy bands of Si.

2.2. Thealgorithm

Following the SPV definition [1], we have dV(t)=V (t) - Vs, where Vi and V' ((t) are the
surface potential barrier heights in the dark and under illumination, respectively. Vg and V' (t) can be
found from the charge neutrality equation:

Qu(Vs ) + QuVs ) + Q=0 )

Here Qu(V'st) is the charge density in the SCR, Qu(V'st) is the IS charge density, and
Qr = 1.5 x 10" cm? [3] is the oxide fixed charge density. Thus, for determining V' (t), we must
know how Qg and Q;; depend on V' sand t.

2.2.1 Calculation of the charge density, Qg, in the SCR.

Assuming that the latera dimensions of the sample are much larger than the vertical one,
Qx(V s 1) can be found by solving the one-dimens onal Poisson equation [1]. We have checked that
the FQL approximation is vaid in our case. Under this approximation, the Boltzmann relations
which reate the SCR carrier densities to the corresponding densities in the semiconductor quasi-
neutral bulk, aso hold for the non-equilibrium case [1]. This makes it possible to separate the
solutions of the Poisson equation and the continuity equations, thereby considerably simplifying the
problem[1]. Thus, the Poisson egquation for the e ectric potential V(X) becomes:

R exp| —&Y el S
dxgx) _ _ge|: B, + exp( ekT(X)j— n, exp[ek_i_x) j:| 2

S

Here, & = 11.8g is the didectric permittivity of Si; n,,p, (p» ,) are the non-equilibrium

(equilibrium) free carrier densitiesinthe bulk, i.e. at x> w (w is the SCR width).
An explicit expression for Qs is obtained by integrating Eq. 2 from the bulk toward the
surface, with boundary conditions V (x=c0) = 0 and dV/dx (x=c0) = O:
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where dn = dp arethe excess carrier densities in the bulk.
According to Egs. 3, and 4, Qs will depend on't via p, (t),n, (t) , adasoon V, .
2.2.2 Calculation of theinterface state charge density Qi

The dependence of the IS charge density Qi; on VS* has been derived by means of the
Shockley-Read-Hall statistics and the FQL approximation [1], as follows:
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In Egs. 5-7: fa(Dy) isthe occupancy factor of theIS; N, N, are the effective densities of statesin the
conduction/va ence band; and v,, v, are the thermal velocities of dectrons/holes. We obtain the
donor/acceptor densities Dip(E;) and Dia(Ex) as well as the dectron/hole capture cross sections
op(Eir) and ox(Eir) of the IS by Gaussian fits to the experimental datagivenin[3] (Figs. 1 and 2).

According to Eqs 5 and 6, Q will depend on t via p, (t), n, (t) and onV .
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Fig. 1. IS density distribution. Fig. 2. IS capture cross sections.

2.2.3. Continuity equations

The time dependences of the non-equilibrium carrier densities p; (t) and n, (t) can be found
by solving the continuity equations with boundary conditions: n,(0)=n,, p,(0)=p,. For
simplicity, the drift and diffusion currents are not taken into account and homogeneous absorption in
the whole sampleis supposed. For the free carrier lifetimes, we use the values 7, = 7,= 20 pus[6]. The
dectron-hole pair generation rate per unit volume, G(t), is a Gaussian with the parameters taken
from [6] as follows: atotal exciting energy density of 1 pJ/cm?, a pulse duration of 0.150 ps, atime

of the pulse maximum of to = 0.4 ps, and absorption and reflection coefficients of
36422 mi*and 0.3, respectively.

2.2.4. Calculation of the SPV time-dependence dVs(t)

The dependencies Q, = f[V,, (), my(®), py1,] and Q, = FIV,, Bi(,m(1)] have
been inserted in Eq. 1. The function Q(Vs ,t) = Qu(Vs ) + Qu(Vs,t) + Q is plotted in Fig. 3. Its
intersection with the zero plane gives V' (t). From V' (t) and Vg we find the dependence dV(t).
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3. Results and discussion

The exciting light pulse and the simulated SPV transient 8V (t) are shown in Fig. 4 by
curves 1 and 2, respectively. After the beginning of the illumination, the absolute value of |V «(t)]
increases rapidly and reaches a maximum at the time of the light pulse maximum, t, = 0.4 us. After
that |0V «(t)| decreases slowly up to ~ 50 us and then drops rapidly to zero at t = 5 ms. We could not
find SPV transient measurement data for the Si/SiO, system in the literature. Thus, we compare our
simulated 3V ((t) curve with an experimental SPV transient (Fig. 4, curve 3), measured in [6] on a p-
type c-Si free surface (100), treated in HF acid. In generd, curves 2 and 3 show similar behaviour,
although some discrepancies between them are seen. This result is encouraging for the difficult
analysis of the time-resolved SPV, given that the numerical simulation is performed employing a
simple model and the systems used in the cdculations and the measurements are not exactly the
same. It should be noted, however, that the IS distributions in both systems exhibit similar
behaviour. Also, the simulation has been performed with parameters appropriate only to these two
systems[3,5].
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Fig. 3. The calculated function Q(Vs ,t) = Fig. 4. 1- theexciting I_i ght pulse; 2 - the _si mulated and
Qu(Vs ) + Qi(Vs ,t) + Q; and the zero plane. 3 - the experimenta SPV transient.

4. Conclusions

The andysis carried out shows that the proposed agorithm gives a good quditative
description of the SPV kinetics in the structure considered. It could aso be successfully applied to
other similar structures. The timeresolved super-bandgap SPV measurements and their analysis
alow the determination of important parameters of the IS. For example, the IS energy distribution
could be contactlessly determined for the whol e the bandgap without changing the sample from an
n-type to a p-type semiconductor, or without performing SPV spectral measurements in the sub-
bandgap region.
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