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1. Introduction

Neutron scattering spectroscopy is an important tool for the investigation of the molecular
dynamics in systems with partial rotational and transational order. The quasidastic incoherent
scattering Sin(Q, w) contains rich information about individual motions (both trandational and
rotational) of the molecules, and about the orientational order. However, the separation of the
translational and rotational contributions to the scattering is a very difficult task. Thus, a very
important characteristic of the spectraisthe dastic incoherent structure factor (EISF), defined as the
relative intensity of the purdy dastic part of the quasid astic scattering [1 - 8]:

EISF:Id/(Id+Iqe) 1)

where Iy and | are the integral intensities of the purely eastic and the quasielastic contributions to
the spectra. The EISF does not depend on the mechanisms of the different molecular mations, but
only on their geometry and time scale. It provides an easy way for separating the transitiona and
rotational parts of the neutron scattering spectra. In fact, any motion which is not restricted in space
leads only to a small broadening of both the d astic and the quasidastic parts of the spectra, and thus
does not change the structure factor. In contrast, in the process of the molecular reorientation, the
proton never leaves some limited volume around its initia position and the EISF becomes very
sensitive to the time scal e and the geometry of the rotation.

In this paper, we present new theoretical modd s and numerical cal culations of the rotationa
and transitional contributions to EISF of neutron scattering in anisotropic systems. To ascertain the
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validity of the proposed models for the influence of molecular dynamics on neutron scattering, we
sdected digned liquid crystals and, for simplicity, those for which the mesomorphic phase is
uniaxial (eg. nematic or smectic A phase). Our approach is easily generalized for any less
symmetric phase with rotational and transitional degrees of freedom.

2. Theoretical models

Let us consider the rotational contribution of one proton to the scattering law S¥c (Q, w).
The time-dependent intermediate scattering function (i.e. the Fourier transform of S¥. (Q, w)) is
[7-9]:

1(Q.t)=[ d2, [ da P(Q,..t) expliQR(t) - R(t = 0)} @

where Q is the scattering vector, R the radius-vector of the proton in the center of the mass

reference frame Q, and Q are the sets of Euler angles defining the molecular orientation in the
laboratory frame at timest = 0 and t, respectivdy, and P(Q,, Q, t) isthejoint probability density for
molecular orientation at Q, and Q. Expanding the exponentia in a spherica harmonic series, we
have:

exp(iQR) = 47'[/‘Zm(i)/‘ i, @R @5V, (08 )=
= > (24+1) (i)', ([QR) DA, (@5 ) D2, (¥ ) D)

A,mn

®)

whereQ =|Q[; R=|R|; Q5 and Q arethe sets of polar angles of Q and R in the laboratory
frame; QY are the polar angles of R in the molecular frame; j,(QR) are the Bessdl’s spherical

functions; and D/} (Q) arethe Wigner's matrices.

At this stage we assume, as usual, that the orientationa interaction tensor of the molecule
has an effective cylindrical symmetry. The equilibrium orientati onal distribution function is[10]:

f(Q)= 2(25+1)< ) Dy (Q) @

where
(P) =(Dg) = [dQ D5, (Q) (@) (5)

arethe usua orientationa order parameters [10].
The dynamical information is contained in the orientational correlation functions G¥_(0) ,

and their values do not depend on the reorientation model [11, 12]. Substituting Eq. (3) into Eq. (2),
we obtain:

A

@Y= 3 533 Fx(6,0.08) Gl ®

n=0 m=0

—_

/lk even

with
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Fox (61 60, QR)= (2=, )(2-8,0) (28, ) (-2)'"**/% (22 +1)
()
x (2k+1) J/I(QR) Jk(QR) d:O(HR) drlw(o(gR) dr/:mo(go) drI;O(HQ)

where HQ is the angle between Q and the symmetry axis (the director) of the phase, &istheangle

between R and the symmetry axis (the long axis) of the molecule, and d¥,(8) are the reduced

Wigner’s matrices.
From Eg. (2), for the structure factor we obtain:

EISF =lim,_, 1(Q,t) ®)

where 7, depends on the resolution of the experiment and is the longest time for which the
quasidlastic component can be still distinguished from the dastic one. In very high-resolution
backscattering experiments [13-15] the halfwidth Al of the resolution function is about 1 peV and
T, is of the order of 10® s[9]. In these experiments, however, the available Q-range is very small
and there is no quasidastic contribution to the spectra but only a small broadening of the dastic part
due to the trandational diffusion [7]. In the rest of the existing experiments, AI' ~ 20 - 30 peV and
r,~10°-10"s.

The reorientation of the highly anisotropic molecules is a very complicated process. There
are at least two different rotational motions with different time-scales. In fact, the reorientation
around the long molecular axis (spinning motion) is fast since both the moment of inertia and steric
hindrances are small. Several experimental techniques give for spinning correlation time 7, values
of the order of 10™ s[16, 17]. On the other hand, the reorientation of the long axis itsalf (tumbling
motion) is much slower, since the moment of inertia and the steric hindrance are about an order of
magnitude higher. The experimental studies give tumbling corrdation time 1 values of the order of
10° — 10° s [18 - 20]. The tumbling motion is very sensitive to the molecular orientationa order,
and T varies substantially with the order parameters and with the rank (A, k) of the corrdation
function [11].

Assuming that one or more of the possible rotational motions of the molecule reax to
equilibrium at t = 1., , we obtain different models for calculation of the EISF.

Model 1: Let us suppose that T >> T> T, i.e that al the rotational motions are fast
compared to the experimental timescde. In this case:

EISFy =lim _, 1(Qt)= F (64,6, QR)(R,) (P,) =

$106

2 9)

©

= Z(—l))‘ (2x +1)j, (QR)dgo(eQ)dgo(eR)<PA>

A=0
even

This result is not very useful for experimental data trestment since 7, >> 7, is satisfied only for

very high resolution experiments for which QR<< 1 and the rotational contribution to the spectrais
negligible.
Modd 2: Let us now suppose?, >> T, >> T, which is more redlistic. In this case, &t

t ->r1, >>r.dl teemsin Eq. (6) with n # O vanish due to the fast spinning relaxation and:
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:0 m=0
(A+k)—

0 0 A
By = Y Y FX(6,,6..QR) G, (0) (10)
k=A

This result corresponds to uniaxial rotation — the spinning motion relaxes but the tumbling is “frozen
out” on the experimental time-scale. It is equivaent to the formula derived in [4, 7, 9] but is much

simpler to deal with and, moreover, it might be simplified further. Let us present Ras: R=R,

+ Isz whereR| and R, are the components of R parald and perpendicular to the molecular long
axis, respectively. For uniaxia rotation, only the component R, changes with time, thus:

©

B> 3 3 F(6,5.0R.) 62,4(0) (11)

A=0 k=4 m=0
even even

In EQ. (11), there are no terms with odd A and/or k. More importantly, Re (usualy 2 .3\) is smaller
than R (R can be as high as 10 .3\) and the series (11) converges much faster than Eg. (10),
since ,(QR,) <j,(QR) at high A. That is why, for computationa purposes, Eq. (11) is more
convenient than Eqg. (10).

Modd 3: Till now, we have assumed that the tumbling rdaxation is, compared to the
experimental time-window, either too fast (model 1) or too slow (modd 2). Both these assumptions
are not very redlistic. In fact, the reorientation of the long molecular axis in anisotropic systemsis a
very complicated process. The tumbling relaxation times might be quite different for the different

correlation functions. In particular, it is well known [11] that for odd A the functions G _ (t) relax
much more dowly than for even A. In order to understand the physical basis of this feature, let us

suppose that the orientational order is very high (1 - <P»> << 1). Then the distribution function has
two high (o - function like) peaks around 3 = 0 and 3 = 72. For even A the corrdation function

G (t) relaxes to its equilibrium value <P;>? &fter time T, , characterizing the smal-angle
orientations inside the peak. For odd A, however, the equilibrium vaue is Grﬂfm () =0 and the
relaxation takes place after time 7,,, characterizing the reorientations of the long molecular axis at

an angle B - B, ~ 1t(from one peak to the other). The Tumps are strongly hindered by the mean
field potential and by steric factors—usualy 7,, >>1,,.
Let us now suppose that the spinning motion and the tumbling a small angles (inside the

peak) relax fast on the time-scd e of experiment, but that Teumps are negligibly rare. From Egs. (6)
and (8) we have:

8

EISF= Y > Forl6. 6.QR) (R (R) 1)
(:+k)— Igét

This equation differs from Eq. (11) by the assumption that the odd order parameters are non-

vanishing. Physicaly, (P,) in Eq. (12) are not the usual equilibrium order parameters given by Eq.

(5) but the quasi-equilibrium values & 7,, >t > 1,,. They can be caculated using the single-peaked

quasi-equilibrium distribution function [6]:

f(B)= exp(o cos 13
(8)= 55 &P(d cosh) (13)

Modd 4: The Tjumps of the long molecular axis are hindered by both the mean fied
potential and steric factors. In modd 3, however, the steric hindrance is not taken into account. In
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fact, for an orientational order parameter (P,) — O (eg. theisotropic liquid phase) the pesks of the

distribution function f(B) (one or two) become flat and there is no difference between the
reorientation inside the peaks or between them, i.e the prohibition for Tumps disappears! In
reality, however, even in the isotropic phase the long mesomorphic molecule can hardly reorient
through a T ump due to the high steric hindrance.

On the other hand, a moderate (P,) values ((P,) ~0.5) (typical for the nematic phase), the
peaks of f() are wide and the probability of finding the molecule with 3 ~172 is not negligible. In
the spirit of mode 3, if the molecule has 3, = 0.49 11, the probability to find it after moderately long
times (7,, >>t >>1,,) in the peak around 3 = 0 is much higher than to find it around 3 ~ 1t This
feature of model 3 is obviously quite unredistic — it might be expected that P(0.491 0, t) [0 P(0.491,
mt)a 1, >>t>>71,. That is why mode 3 is physicaly acceptable only for high <P,> values (but

inthat limit it is very close to modd 2).
In order to take into account the steric hindrance for the large angle tumbling, we will use
the two-stage reorientational relaxation modd [21]. For the usual order parameters

(R)=(Ps) (ps) (14)

(ps) can be non-zero for an odd s-a w-jump of the molecule strongly hindered by the static
environment.
For 7., >>t>>71,

0 0 A
EISFy= Y Y Y Fobsllo 6 QR) 9o 0) (B) (B0 (15)
A=0_ k=4 m=0
(#+k)- even

where & o(t) arethe reorientational correlation functions for the slow X - relaxation.
Mode 5: Up to now we have assumed that the mesogen molecule has D_,, (cylindrica)

symmetry. This is a useful first approximation which is widey employed in studies of the
reorientational dynamics in anisotropic systems. In reality, however, the symmetry of the mesogen
molecule is never so high, and this can serioudly influence the static and dynamic properties of the
phase [22]. Let us now assume that the molecule is biaxid and its orientational interaction tensor

has D,,, symmetry. The rotational corrdation functions are given in [12]. If both tumbling and
spinning rel axati ons are fast on the experimenta time-scale, weobtain (7, >> 7, >> 1) :

2

S (24+1) (-1 ,(QR) i 8,) (2- 5.) %

El S:(5) =| 4=0 n=0 (16)
x dg,(6:) coslng,) (D3,

where the azimuth is chosen in such a way that gr = 0 corresponds to a proton lying in the plane
containing the two mgor components of the molecular orientational interaction tensor (e.g. if the

benzene rings of the mesogen are coplanar, ¢r = 0 corresponds to a proton lying in the same plane).
Model 6: Let us now assume that the moleculeisbiaxia but the tumbling motionis slow on

the experimental time-scale, i.e. 7, >>71, >>T1_. Then, as in modd 2, only the R, component

relaxes. Taking into account that <D§2> <<(P,) [22], neglecting all quadratic or higher order terms
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in <D022>, and assuming that tumbling and spinning relaxations are fast on the experimentd time-

scae (7, >> 1, >> 1), we have

ISy = > X () @) ()2 g) dn(8) dile) (@R ) 1 (QR) +

=0 k= m

do(77'2) dey (77/2) G0 (0) + 20150(7712) 0, G (0) cos(26a:) +
+ 203,(7112) dgy G0 (0) cos(26z.)

The trandational motion is considered as a two-stage-process: fast bound translation of the
molecule in the stochastic “cage’, superposed on slow free diffusion of the cage itsef. The “cage”
has an average symmetry of an dlipsoid of rotation, with the main axis paralld to the molecul ar long
axis | . The halfwidths 4 and a; areparallel and perpendicular to T, respectivey.

Considering the cylindrical symmetry of the mol ecule, we obtain the structure factor [23]:

EISFe = Z Z ( )m 02 (2/1 +1)(2m+1) J/](QrD) .m(QrD)

even even

XZd”( L) dno(8,) di(772) dga(/2) (18)
XJde(DJVE(Z))D (2) expl-a%Q* - (6 - 2) Q2(2)

where j; are the Bessel’ s spherical functions, and D7 . (Q) and 07, (6) are respectively the usual
and reduced Wigner's matrices.

3. Results and discussion

The computed simulations based on the modes given above are presented in Fig. 1. The
numbers on the curves correspond to the rotational theoretical modd used in their calculation. In

most cases, the predictions of models 1 and 5 (7, >> I, cylindricad or biaxiad molecule

respectively) differ substantially from those of the other models. The disagreement of these
predictions with the experimental data reported in the literature [3, 5, 6, 9] confirms the conclusion
[3,9] that on the time-scal e of neutron scattering experiments the rdaxation of the tumbling motion
is not complete (if any). The consideration of the molecular biaxiality (model 5) does not change this
conclusion. For modedl 4, (p,) =0.8 (4a) or {p,) =0.45 (4b).

The choice between the rest of the modd s is much more difficult. The experimental data for
the isotropic phase [2,4] disagree with modd 3, but are quditatively (and semi-quantitativey)
compatible with models 2, 4 and 6. In fact, at (P,) = 0, the predictions of model 3 coincide with

those of model 1 and EISF for our “average” proton is much smaller than the experimental one [4].
On the other hand, the experimental data for powder samples [5, 6] are in better agreement with
model 3 (or 4) than with modd 2 (or 6) (pure uniaxia rotation). The most stringent test of the
theoretical models is obvioudy their comparison with the experimental data obtained in aligned
samples [4, 9]. In such studies, a striking result has been obta ned — the structure factors measured
with Q and Qare very close to one another, in disagreement with models 2 or 3. A possible

explanation of this feature is the trandational contribution to the EISF due to the restricted mation
normal to the layers in the smectic phases [9,13,14] or to a possible rotational-translati onal
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corrdation in the nematic state [1]. Modds 4 and 6 are in better agreement with the experimental
EISF in the nematic phase than modds 2 and 3. We see from Fig. 1 (b, ¢) that the angular
dependence of curves 4 and 6 is less strong than for curves 2 and 3. A model, taking into account
both the steric hindrance and the molecular biaxidity, might be expected to give a quartitative
agreement with the experimental data in aigned samples. Unfortunately, such a model will be too
complicated and will have too many phenomenological parameters.

1 : ; 1 . ‘
(a) (b)
4h;6
4a
& 4a| & 2
w ) w 3
1/
1;5
3;4b
(©) (d)
4b
& el
w 2| W
6
P
1,35
0 . . 0 : :
0 0.4 0.8 12 0 0.4 0.8 1.2
QA

Fig. 1. EISF caculated by different theoretica modelsin an anisotropic system.

Rotationa dynamics contributions for: (a) a non-aligned sample for 8 = 0; (b) an aligned
sample for 8 = 0;(c) an aligned sample for 8o = 90°. In al cases, <P,> = 0.45. (d) - EISF for
trandational diffusion: <P,> = 0.55, 8, = 0 (solid line) and 8o = 90° (experimental points from [3])
fora,= 1.6 A.

I

Fig. 1(d) presents numerica results for the trandlationad contribution to EISF, calculated
from Eq. (18). For this value of a,, the curves for both geometries are almost identical, in good

agreement with the experimental data from [3].

In our opinion, the physical basis of our approach for the trandational contribution to EISF
is more convincing than that of the “indined rotation” modds [2 - 7]. However, for the time being,
the experimental data are too scarce and not precise enough to prove or reject unambiguously which
one of the models (if any) corresponds to the real mechanism of the bound translational motionsin
ani sotropic systems.

An unequivocal choice between the theoreticd models for the rotational and trandational
contributions to EISF presented in this paper is difficult on the basis of the experimental data
reported in the literature. However, we can propose some experiments, which have not been
exploited so far and which can darify the mechanism of reorientation. For example, a good test for
our model 4 will be the measurement of the EISF for the isotropic liquid phase of long, hard and
symmetric molecules, similar to the hard-core of the mesomorphic compounds. A good candidate
for such a study is the tolane molecule. For this, most of the diffi culti es discussed at the beginning of
this section are absent, but the steric hindrance for the tumbling motion is qualitatively the same as
for the mesogens. The same experiment can aso test mode 2 versus modds 1 or 3. Partid
deuteration of the molecule can give very vauable proton-by-proton information about the
reorientation. Moreover, a comparison between the structure factors of different protons will
contribute to the study of the translationa motion if the steric hindrance or other factors restrict it in

the space.
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4. Conclusions

Many new materids are being explored as possible candidates for incorporation in
molecular dectronic systems. Their eectronic parameters (carrier mobility, lifetime, conductivity,
etc.) and thar stability/reproducibility at an operational level are very dependent on molecular
orientation and molecular diffusion in the system. The rotationa and transdlational dynamics is an
important and complicated problem, and a lot of techniques should be used for compl ete e ucidation
of relaxation processes in anisotropic systems. Depending on the frequency ‘windows of the
respective spectroscopic techniques, two types of reorientationd process can be studied. Vibrational
spectroscopy and neutron scattering give information on the reorientation of the molecules in the
time domain 1-100 ps. The fluorescence experiment and dectron paramagnetic resonance (EPR) in
the frequency range 1 to 100 ns deal with the influence of the local structure on the preorientation of
the individual molecule, i.e. these two spectral techniques revea the collective nature of the
reorientational processes. Relaxation of the individua molecule and of local molecular clusters
depend differently on temperature. Obviously, more studies are needed for compl ete clarification of
the dynamic picture in anisotropic systems.
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