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 1. Introduction 
 

Neutron scattering spectroscopy is an important tool for the investigation of the molecular 
dynamics in systems with partial rotational and translational order. The quasielastic incoherent 
scattering Sinc(Q, ω) contains rich information about individual motions (both translational and 
rotational) of the molecules, and about the orientational order. However, the separation of the 
translational and rotational contributions to the scattering is a very difficult task. Thus, a very 
important characteristic of the spectra is the elastic incoherent structure factor (EISF), defined as the 
relative intensity of the purely elastic part of the quasielastic scattering [1 - 8]: 

 
)( qeelel IIIEISF +=                                                          (1) 

 
where Iel and Iqe are the integral intensities of the purely elastic and the quasielastic contributions to 
the spectra. The EISF does not depend on the mechanisms of the different molecular motions, but 
only on their geometry and time scale. It provides an easy way for separating the transitional and 
rotational parts of the neutron scattering spectra. In fact, any motion which is not restricted in space 
leads only to a small broadening of both the elastic and the quasielastic parts of the spectra, and thus 
does not change the structure factor. In contrast, in the process of the molecular reorientation, the 
proton never leaves some limited volume around its initial position and the EISF becomes very 
sensitive to the time scale and the geometry of the rotation. 

In this paper, we present new theoretical models and numerical calculations of the rotational 
and transitional contributions to EISF of neutron scattering in anisotropic systems. To ascertain the 
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validity of the proposed models for the influence of molecular dynamics on neutron scattering, we 
selected aligned liquid crystals and, for simplicity, those for which the mesomorphic phase is 
uniaxial (e.g. nematic or smectic A phase). Our approach is easily generalized for any less 
symmetric phase with rotational and transitional degrees of freedom.  

 
 

 2. Theoretical models 
 

Let us consider the rotational contribution of one proton to the scattering law SR
inc (Q, ω). 

The time-dependent intermediate scattering function (i.e. the Fourier transform of SR
inc (Q, ω)) is          

[7-9]: 
 

( ) ( ) ( ) ( )[ ]{ }0exp,, , 00 =−⋅ΩΩΩΩ= �� tRtRQitPddtQI
���

                         (2) 

 

where Q
�

 is the scattering vector, R
�

 the radius-vector of the proton in the center of the mass 

reference frame, Ωo and Ω are the sets of Euler angles defining the molecular orientation in the 
laboratory frame at times t = 0 and t, respectively, and P(Ωo, Ω, t) is the joint probability density for 
molecular orientation at Ωo and Ω. Expanding the exponential in a spherical harmonic series, we 
have: 
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where Q = |Q
�

| ; R = |R
�

|; L
QΩ  and L

RΩ  are the sets of polar angles of Q
�

 and R
�

 in the laboratory 

frame; M
RΩ  are the polar angles of R

�
 in the molecular frame; )(QRjλ  are the Bessel’s spherical 

functions; and )(Ωλ
mnD  are the Wigner’s matrices. 

 At this stage we assume, as usual, that the orientational interaction tensor of the molecule 
has an effective cylindrical symmetry. The equilibrium orientational distribution function is [10]: 
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where 

( ) ( )ΩΩΩ=��=�� � fDdDP ss
s 0000                                                    (5) 

 
are the usual orientational order parameters [10]. 

 The dynamical information is contained in the orientational correlation functions )0(k
mnmnGλ , 

and their values do not depend on the reorientation model [11, 12]. Substituting Eq. (3) into Eq. (2), 
we obtain: 
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with 
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where Qθ is the angle between Q
�

 and the symmetry axis (the director) of the phase, Rθ is the angle 

between R
�

 and the symmetry axis (the long axis) of the molecule, and )(0 θk
nd  are the reduced 

Wigner’s matrices. 
From Eq. (2), for the structure factor we obtain: 
 

     ( )tQIEISF t ,lim
∞→= τ                                                    (8) 

 
where ∞τ  depends on the resolution of the experiment and is the longest time for which the 
quasielastic component can be stil l distinguished from the elastic one. In very high-resolution 
backscattering experiments [13-15] the halfwidth ∆Γ of the resolution function is about 1 µeV and 

∞τ  is of the order of 10-8 s [9]. In these experiments, however, the available Q-range is very small 
and there is no quasielastic contribution to the spectra but only a small broadening of the elastic part 
due to the translational diffusion [7]. In the rest of the existing experiments, ∆Γ ~ 20 - 30 µeV and 

∞τ  ~ 10-9 – 10-10 s. 
The reorientation of the highly anisotropic molecules is a very complicated process. There 

are at least two different rotational motions with different time-scales. In fact, the reorientation 
around the long molecular axis (spinning motion) is fast since both the moment of inertia and steric 
hindrances are small. Several experimental techniques give for spinning correlation time sτ  values 

of the order of 10-11 s [16, 17]. On the other hand, the reorientation of the long axis itself (tumbling 
motion) is much slower, since the moment of inertia and the steric hindrance are about an order of 
magnitude higher. The experimental studies give tumbling correlation time τ t values of the order of 
10-8 – 10-9 s [18 - 20]. The tumbling motion is very sensitive to the molecular orientational order, 
and τ t varies substantially with the order parameters and with the rank (λ, k) of the correlation 
function [11]. 

Assuming that one or more of the possible rotational motions of the molecule relax to 
equil ibrium at t = τ ∞ , we obtain different models for calculation of the EISF. 

Model 1: Let us suppose that τ ∞ >> τ t > τ s, i.e. that all the rotational motions are fast 
compared to the experimental time scale. In this case: 
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This result is not very useful for experimental data treatment since tττ >>∞  is satisfied only for 

very high resolution experiments for which QR<< 1 and the rotational contribution to the spectra is 
negligible. 

Model 2: Let us now suppose st τττ >>>> ∞ , which is more realistic. In this case, at 

st ττ >>→> ∞ all terms in Eq. (6) with n ≠ 0 vanish due to the fast spinning relaxation and: 
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This result corresponds to uniaxial rotation – the spinning motion relaxes but the tumbling is “ frozen 
out” on the experimental time-scale. It is equivalent to the formula derived in [4, 7, 9] but is much 

simpler to deal with and, moreover, it might be simplified further. Let us present R
�

as: R
�

= ||R
�

 

+ ⊥R
�

 where ||R and ⊥R are the components of R
�

parallel and perpendicular to the molecular long 

axis, respectively. For uniaxial rotation, only the component ⊥R changes with time, thus: 
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In Eq. (11), there are no terms with odd λ and/or k. More importantly, R�  (usually 2 �) is smaller 
than R (R can be as high as 10 �) and the series (11) converges much faster than Eq. (10), 
since )( ⊥QRjλ  < )(QRjλ  at high λ. That is why, for computational purposes, Eq. (11) is more 

convenient than Eq. (10). 
Model 3: Till now, we have assumed that the tumbling relaxation is, compared to the 

experimental time-window, either too fast (model 1) or too slow (model 2). Both these assumptions 
are not very realistic. In fact, the reorientation of the long molecular axis in anisotropic systems is a 
very complicated process. The tumbling relaxation times might be quite different for the different 

correlation functions. In particular, it is well known [11] that for odd λ the functions )(tGmnmn
λλ  relax 

much more slowly than for even λ. In order to understand the physical basis of this feature, let us 
suppose that the orientational order is very high (1 - <P2> << 1). Then the distribution function has 
two high (δ - function like) peaks around β = 0 and β = π/2. For even λ the correlation function 

)(tGmnmn
λλ  relaxes to its equilibrium value <P1>2 after time 1tτ  , characterizing the small-angle 

orientations inside the peak. For odd λ, however, the equilibrium value is 0)( =∞λλ
mnmnG  and the 

relaxation takes place after time 2tτ , characterizing the reorientations of the long molecular axis at 

an angle β - βo ~ π (from one peak to the other). The π–jumps are strongly hindered by the mean 
field potential and by steric factors – usually 12 tt ττ >> .  

Let us now suppose that the spinning motion and the tumbling at small angles (inside the 
peak) relax fast on the time-scale of experiment, but that π–jumps are negligibly rare. From Eqs. (6) 
and (8) we have: 
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This equation differs from Eq. (11) by the assumption that the odd order parameters are non-

vanishing. Physically, λP  in Eq. (12) are not the usual equil ibrium order parameters given by Eq. 

(5) but the quasi-equil ibrium values at 12 tt t ττ >> . They can be calculated using the single-peaked 

quasi-equilibrium distribution function [6]: 
 

( ) ( )βδ
δ

δβ cosexp
sinh2

=f                                                (13) 

Model 4: The π–jumps of the long molecular axis are hindered by both the mean field 
potential and steric factors. In model 3, however, the steric hindrance is not taken into account. In 
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fact, for an orientational order parameter 02 →P  (e.g. the isotropic l iquid phase) the peaks of the 

distribution function f(β) (one or two) become flat and there is no di fference between the 
reorientation inside the peaks or between them, i.e. the prohibition for π–jumps disappears! In 
reality, however, even in the isotropic phase the long mesomorphic molecule can hardly reorient 
through a π–jump due to the high steric hindrance. 

On the other hand, at moderate 2P  values ( 2P  ~ 0.5) (typical for the nematic phase), the 

peaks of f(β) are wide and the probability of finding the molecule with β ~π/2 is not negligible. In 
the spirit of model 3, if the molecule has βo = 0.49 π, the probability to find it after moderately long 
times )( 12 tt t ττ >>>>  in the peak around β = 0 is much higher than to find it around β ~ π. This 

feature of model 3 is obviously quite unrealistic – it might be expected that P(0.49π, 0, t) ≅ P(0.49π, 
π, t) at 12 tt t ττ >>>> . That is why model 3 is physically acceptable only for high <P2> values (but 

in that l imit it is very close to model 2). 
In order to take into account the steric hindrance for the large angle tumbling, we will use 

the two-stage reorientational relaxation model [21]. For the usual order parameters  
 

����=�� sss ppP ~                                                            (14) 

 
�� sp~  can be non-zero for an odd s-a � -jump of the molecule strongly hindered by the static 

environment. 
For 12 tt t ττ >>>>  
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where )(00 tg k
mm

λ
 are the reorientational correlation functions for the slow Σ - relaxation. 

Model 5: Up to now we have assumed that the mesogen molecule has hD∞  (cylindrical) 

symmetry. This is a useful first approximation which is widely employed in studies of the 
reorientational dynamics in anisotropic systems. In reality, however, the symmetry of the mesogen 
molecule is never so high, and this can seriously influence the static and dynamic properties of the 
phase [22]. Let us now assume that the molecule is biaxial and its orientational interaction tensor 
has hD2  symmetry. The rotational correlation functions are given in [12]. If both tumbling and 

spinning relaxations are fast on the experimental time-scale, we obtain )( st τττ >>>>∞ : 
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where the azimuth is chosen in such a way that φR = 0 corresponds to a proton lying in the plane 
containing the two major components of the molecular orientational interaction tensor (e.g. if the 
benzene rings of the mesogen are coplanar, φR = 0 corresponds to a proton lying in the same plane). 

Model 6: Let us now assume that the molecule is biaxial but the tumbling motion is slow on 
the experimental time-scale, i.e. st τττ >>>> ∞ . Then, as in model 2, only the ⊥R  component 

relaxes. Taking into account that 2
2
02 PD <<  [22], neglecting all quadratic or higher order terms 
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in 2
02D , and assuming that tumbling and spinning relaxations are fast on the experimental time-

scale )( st τττ >>>>∞ , we have 
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The translational motion is considered as a two-stage-process: fast bound translation of the 

molecule in the stochastic “cage”, superposed on slow free diffusion of the cage itself. The “cage”  
has an average symmetry of an ell ipsoid of rotation, with the main axis parallel to the molecular long 

axis I
�

. The halfwidths ||a  and ⊥a are parallel and perpendicular to I
�

, respectively. 

Considering the cylindrical symmetry of the molecule, we obtain the structure factor [23]: 
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where j i are the Bessel’ s spherical functions, and )(Ω′′′
λ

λλD  and )(00 θλ
λ′d are respectively the usual 

and reduced Wigner’s matrices. 
 

 
 3. Results and discussion 

 
The computed simulations based on the models given above are presented in Fig. 1. The 

numbers on the curves correspond to the rotational theoretical model used in their calculation. In 

most cases, the predictions of models 1 and 5 ( tττ >>∞ , cylindrical or biaxial molecule 

respectively) differ substantially from those of the other models. The disagreement of these 
predictions with the experimental data reported in the literature [3, 5, 6, 9] confirms the conclusion 
[3,9] that on the time-scale of neutron scattering experiments the relaxation of the tumbling motion 
is not complete (if any). The consideration of the molecular biaxiality (model 5) does not change this 
conclusion. For model 4, 8.0~

2 =�� p  (4a) or 45.0~
2 =�� p  (4b). 

The choice between the rest of the models is much more di fficult. The experimental data for 
the isotropic phase [2,4] disagree with model  3, but are qualitatively (and semi-quantitatively) 

compatible with models 2, 4 and 6. In fact, at 2P  = 0, the predictions of model 3 coincide with 

those of model 1 and EISF(3) for our “average" proton is much smaller than the experimental one [4]. 
On the other hand, the experimental data for powder samples [5, 6] are in better agreement with 
model 3 (or 4) than with model 2 (or 6) (pure uniaxial rotation). The most stringent test of the 
theoretical models is obviously their comparison with the experimental data obtained in aligned 
samples [4, 9]. In such studies, a striking result has been obtained – the structure factors measured 
with ||Q and ⊥Q are very close to one another, in disagreement with models 2 or 3. A possible 

explanation of this feature is the translational contribution to the EISF due to the restricted motion 
normal to the layers in the smectic phases [9,13,14] or to a possible rotational-translational 
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correlation in the nematic state [1]. Models 4 and 6 are in better agreement with the experimental 
EISF in the nematic phase than models 2 and 3. We see from Fig. 1 (b, c) that the angular 
dependence of curves 4 and 6 is less strong than for curves 2 and 3. A model, taking into account 
both the steric hindrance and the molecular biaxiality, might be expected to give a quantitative 
agreement with the experimental data in aligned samples. Unfortunately, such a model wil l be too 
complicated and will have too many phenomenological parameters. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. EISF calculated by di fferent theoretical models in an anisotropic system. 

 
 

 Rotational dynamics contributions for: (a) a non-aligned sample for θQ = 0; (b) an aligned 
sample for θQ = 0;(c) an aligned sample for θQ = 90°. In all cases, <P2> = 0.45. (d) - EISF for 
translational diffusion: <P2> = 0.55, θQ = 0 (solid line) and θQ = 90° (experimental points from [3]) 
for ||a = 1.6 �. 

Fig. 1(d) presents numerical results for the translational contribution to EISF, calculated 
from Eq. (18). For this value of ||a , the curves for both geometries are almost identical, in good 

agreement with the experimental data from [3]. 
In our opinion, the physical basis of our approach for the translational contribution to EISF 

is more convincing than that of the “inclined rotation”  models [2 - 7]. However, for the time being, 
the experimental data are too scarce and not precise enough to prove or reject unambiguously which 
one of the models (if any) corresponds to the real mechanism of the bound translational motions in 
anisotropic systems. 

An unequivocal choice between the theoretical  models for the rotational and translational 
contributions to EISF presented in this paper is di fficult on the basis of the experimental data 
reported in the literature. However, we can propose some experiments, which have not been 
exploited so far and which can clarify the mechanism of reorientation. For example, a good test for 
our model 4 will be the measurement of the EISF for the isotropic liquid phase of long, hard and 
symmetric molecules, similar to the hard-core of the mesomorphic compounds. A good candidate 
for such a study is the tolane molecule. For this, most of the difficulties discussed at the beginning of 
this section are absent, but the steric hindrance for the tumbling motion is qualitatively the same as 
for the mesogens. The same experiment can also test model 2 versus models 1 or 3. Partial 
deuteration of the molecule can give very valuable proton-by-proton information about the 
reorientation. Moreover, a comparison between the structure factors of di fferent protons will 
contribute to the study of the translational motion if the steric hindrance or other factors restrict it in 
the space. 
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 4. Conclusions 
 

Many new materials are being explored as possible candidates for incorporation in 
molecular electronic systems. Their electronic parameters (carrier mobility, li fetime, conductivity, 
etc.) and their stability/reproducibility at an operational level are very dependent on molecular 
orientation and molecular diffusion in the system. The rotational and translational dynamics is an 
important and complicated problem, and a lot of techniques should be used for complete elucidation 
of relaxation processes in anisotropic systems. Depending on the frequency ‘windows’  of the 
respective spectroscopic techniques, two types of reorientational process can be studied. Vibrational 
spectroscopy and neutron scattering give information on the reorientation of the molecules in the 
time domain 1-100 ps. The fluorescence experiment and electron paramagnetic resonance (EPR) in 
the frequency range 1 to 100 ns deal with the influence of the local structure on the preorientation of 
the individual molecule, i.e. these two spectral techniques reveal the collective nature of the 
reorientational processes. Relaxation of the individual molecule and of local molecular clusters 
depend differently on temperature. Obviously, more studies are needed for complete clarification of 
the dynamic picture in anisotropic systems. 
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