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In this paper we demonstrate a simple computational procedure for the simulation of 
transport in a disordered semiconductor in which both multi-trapping and hopping processes 
are occurring simultaneously. We base the simulation on earlier work on hopping transport, 
which used a Monte-Carlo method. We use the same model concepts, but employ a 
stochastic matrix approach to speed computation, and include also multi-trapping transitions 
between localised and extended states. We use the simulation to study the relative 
contributions of extended state conduction (with multi-trapping) and hopping conduction 
(via localised states) to transient photocurrents, for various distributions of localised gap 
states, and as a function of temperature. The implications of our findings for the 
interpretation of transient photocurrents are examined.  
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 1. Introduction 
 

The transient electronic properties of disordered semiconductors, manifested in, for 
example, the photocurrent response (TPC) following excitation by a short laser pulse are determined 
by a combination of carrier transport processes. The non-equilibrium distribution of excess carriers 
created by such a pulse will diffuse and drift while relaxing in energy toward thermal equilibrium. If 
the ‘post-pulse’  excess carriers initially exist in extended states, their relaxation and transport wil l 
involve the participation of localised states either by ‘multi-trapping’  (MT) processes in which 
transitions occur only between localised and extended states, or by direct inter-site tunnelling or 
‘hopping’ . In the former case, any measured current arises from trap-limited band transport, whilst 
in the latter case the current arises from hopping transport.  

Numerous analytical studies have been made of such a transient photoresponse, when one or 
other of these processes is dominant [1,2]. Earlier studies focussed mainly on specific distributions 
of states, such as exponential band-tails, for simplicity. More recently, analysis with the aid of 
computer modelling has allowed the study of more general cases of arbitrary distributions of states. 
In particular, techniques have been developed by the present authors to reveal, in a spectroscopic 
fashion, information on the energy distribution of localised states (DOS) from measurements of the 
transient photocurrent decay [3], assuming that MT processes dominate transport. Marshall [4] has 
studied, by computer modelling applicable to an arbitrary DOS, the case of transient photocurrents 
in the case of hopping transport, employing Monte-Carlo techniques.  
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In this paper we use the approach described by Marshall [4,5], but we now include both MT 
and hopping processes. Additionally, we replace the Monte-Carlo solution of the rate equations 
describing carrier relaxation with a matrix-based Markov chain computation, adapted to deal with 
extremely wide time intervals which can cause difficulties with the ‘stiff’  equation systems often 
encountered in such studies. This paper outlines the development of this solution method, and 
presents results of its application to several illustrative DOS cases, following the simultaneous 
evolution of transient MT and hopping transport. We firstly examine the case of a broad exponential 
tail, and then two cases of localised state distributions which represent a ‘standard’  a-Si:H DOS and 
a high-defect a-Si:H case. Further, we analyse the effect of application of the DOS analysis 
developed for the MT case, in the present case where such ‘ combined’  transport may occur.  
 
 
 2. Modelling of transport 
 

Following Marshall [4], we represent the continuous distribution g(E) of localised states by 
a ‘ ladder’  of states grouped into slices of energy width ∆E. Thus, the level ‘ i’  of this discretised 
distribution has an approximate density g(Ei)∆E cm-3. Marshall pointed out that since the mean inter-

site spacing ir  for any given slice i, is given by ( )( ) 3
1−∆= EEgr ii , the computed nearest – 

neighbour hopping rate can depend on the value of ∆E chosen, and presented procedures which 
address this problem. We will not further explore such procedures here, but will employ one – the 
‘ fractional’  approach, outlined briefly below.  

Firstly, we write the probability of hops to iso-energetic or deeper sites at energy Ej from a 
site at energy Ei as  

 
( )( ) ( )0,,0, 2exp RrNEEgp deepideepijji −∆=υ ,    (1) 

 

where ν0 is an attempt-to-hop frequency, ( ) ( ) ( )ikEEgdEEgN
k

kiEdeepi ≥∆≈=
�� ∞

,  is the total 

number of iso-energetic and deeper sites, with corresponding mean separation ( ) 3
1

,,

−= deepideepi Nr , 

and R0 is a localisation parameter for the sites. In this paper, we restrict R0 to a value of 5×10-8 cm, in 
the middle of the expected range; variations will be examined in later work. The ratio 

( ) deepij NEEg ,∆ represents the fraction of all such sites in slice ‘ j’ , since the probability of hopping 

to a given slice is proportional to the fractional concentration of sites it contains. For hops upward in 
energy, from a site in a deeper slice at energy Ej up to Ei, detailed balance gives the inverse hop 
probability 
 

( ) ( )( ) ( )( )kTEEEgEgpp ijjijiij −−= exp,, ,   (2) 

 
where kT is the thermal energy. 
 Multi-trapping transition probabilities may similarly be written, for trapping of a carrier in 
the conduction band by a trap in slice ‘ i’ ,  
   

( ) ( ) EEgNp iCic ∆= υ, ,     (3) 

 
while for the inverse process, thermal re-emission, the expression is 
 

( )( )kTEEp iCci −−= exp, υ ,    (4) 

 
where ν is an attempt-to escape frequency, NC is the effective density of states in the conduction 
band, and EC is the mobility-edge energy. We assume that the occupancy of states is always low, so 
that the system may be assumed linear. 
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 Rather than use the above probabilities in a Monte-Carlo simulation, as outlined in Marshall 
[4], they may be incorporated into a set of rate equations describing the time dependence of the 
densities of electrons in both localised and extended states. With appropriate initial conditions, such 
as the introduction of excess free or localised carriers, these will describe the progress of carrier 
relaxation in for example, a transient photocurrent experiment. The rate equations are as follows: 
 ��

+−=
i

citi
i

ic pnpn
dt

dn
,,     (5) 

 ��
−+−=

j
jiti

j
ijtjcitiic

ti pnpnpnnp
dt

dn
,,,, ,   (6) 

 
where n is the instantaneous density of free electrons, and nti is the density of electrons on sites in 
slice ‘ i’ . In the following, we will assume that there are ‘M’  levels, including the conduction band.  
 To perform a discrete ‘ time-stepping’  numerical solution, we can use these equations to 
compute updated values of each of the variables n, nti,… as time is incremented by a step ∆t, using 
previous values of the variables. Re-casting the above equations in matrix-vector form, we obtain 
 

( ) ( )ttt nAn .=∆+ ,              (7) 
 
where n(t) is the vector of the instantaneous free and localised carrier densities, and A is an M×M 
‘stochastic’  transition matrix with elements  
 

 �
=

∆−=
M

i
ic tpA

2
,1,1 1 , tpA ici ∆= ,1, ,  tpA cii ∆= ,,1 ,  (8a,b,c) 

 

tpppA ii

M

j
jiciii ∆

������
−+−= 	

=
,

2
,,, 1 ,  ijtpA ijji ≠∆= ,, .    (8d,e) 

  
 It is important to note that the system of equations Eq. 5 and Eq. 6 is ‘stiff’ . In practice this 
means that time step ∆t cannot exceed the shortest time-constant of the system, in this case, the 

overall trapping time of free carriers into the ensemble of traps 
1

,

−
��
��
= �

i
ictrap pτ . It is clear that if           

∆t > τtrap, then more than 100% of free carriers would be trapped in a time-step, a physical 
impossibil ity, and a cause of terminal instability in the solution. This is a standard problem with such 
‘explicit’  time-stepping methods, which extrapolate from present to future values. Since this 
trapping time is of order 1ps, then it is unfeasible to attempt to simulate the system response over 
time scales which, under experimental conditions, can extend up to 100s.  

It is possible to deal with such systems using stable ‘ implicit’  numerical methods, and the 
authors have done so in previous work on MT simulation [6]. However, in the present case, there is 
a simple artifice, which allows the explicit formulation described above, to be used to follow the 
time evolution of the system over very long time-spans. Using a suitably small value for ∆t of  

10-14 s, we can, by continued squaring of the matrix A, generate very long effective time steps, viz-  
 

( ) ( )ttt
mm nAn .2 2=∆+ .        (9) 

 
In this way, we may extend the simulation time-scale from 10-14s to 10+6s, in only 72 steps, although 
extended-precision arithmetic is required to minimise truncation errors. Initial conditions for the 
simulation of TPC, with MT-only transport or MT+hopping, are determined by setting the leading 
element of vector n(0) to a normalised value of e.g., 1.0, and all other elements to zero.  
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 Computation of the transient current is more problematic; for free carriers, we may simply 
compute the instantaneous extended state conductivity extext nqµσ = , where q is the electronic charge 

and µext is the free carrier mobility. For hopping carriers, and for low fields, Marshall has examined a 
number of approximate procedures based on computing the effective diffusivity of carriers in each 
slice, as determined by the hop rate from sites in a given slice, and some ‘average’  hop distance. All 
give similar results, and we use here the simplest – that of taking the hop distance from slice ‘ i’  to 

slice ‘ j’  as the mean separation of sites in slice ‘ j’ , viz., ( )( ) 3
1−∆= EEgr jj . This yields a hop 

distance which is weakly dependent on slice width, and which has a (small) number of long hops to 
very deep states. We refer the reader to Marshall [4] for an examination of several such approximate 
methods.  
 The contribution σi of each level to the hopping conductivity, and the total hopping 
conductivity σhop may then be found, after application of the Einstein relation giving,  
 
 �

=
j

jjitii kTrpqn 62

,
2σ ,     (10) 

 ���
=

i j
jjitihop kTrpqn 62

,
2σ .     (11) 

 
 
 3. Simulation results 
 
 Three model localised state distributions were used in this study. The first was a broad 
exponential tail of characteristic energy 50 meV. The other two represented respectively, low quality 
and a standard quality a-Si:H. In both cases, a band-tail energy parameter of 30 meV was used. Both 
include also a defect ‘bump’ centred at 0.65 eV below the conduction band edge, of half – width           
60 meV, as found in TPC experiments [7]. In the former case, labelled ‘DOS#1’ , the peak density 
was 2 × 1018 cm-3eV-1, while in the latter, ‘DOS#2’ , a value of 2×1017 cm-3eV-1 was used. Common 
values for other parameters used, are ν = ν0 = 1012 Hz, µext = 10 cm2V-1s-1,  
g(EC) = 4 × 1021 cm-3eV-1 and R0 = 5 × 10-8cm. We use a system of 72 levels, extending to 1.0 eV 
below the conduction band edge. 
 Fig. 1 shows the computed i(t) vs t for the case of the broad exponential tail, at 200 K, for 
MT-only transport and for MT+hopping transport. It can be seen that the introduction of hopping 
makes very little difference to the shape or magnitude of the total photocurrent decay, although the 
free carrier component is markedly reduced when hopping occurs. It is also of interest to note that 
the MT decay component, although two orders of magnitude below the hopping current, also follows 
the same overall power-law slope.  
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Fig. 1. Computed photocurrent decay curves for a 50 meV tail at T = 200 K, for the cases of 

MT-only and MT+hopping. 



Computer modelling of multi-trapping and hopping transport in disordered semiconductors  
 

 

111

-0.9

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

10-18 10-15 10-12 10-9 10-6 10-3

transport 
energy

E
0
 50 meV   T 200K

3x106s

10-14s

 

conductivity (relative)

E
ne

rg
y 

E
-E

C
  (

eV
)

 

Fig. 2. Profi le of the hopping current distribution 
at equal logarithmic time intervals, for a 50 meV 

tail at T = 200 K. 
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Fig. 3. Progress of the peak of the charge distribution 
and peak transport energy with time, for a 50 meV  

tail, at T=200 K 
 

 
Fig. 2 shows the evolution of the energy distribution of the hopping current (strictly, the 

low-field conductivity) at equal logarithmic time intervals, from 10-14 to 3 × 106 s. After an initial 
‘hopping-down’ regime, the transport peak settles at a ‘ transport energy’  Et = 0.236 eV below EC, in 
reasonable agreement with the value of 0.244eV predicted by Monroe [1], viz.,  
 

( ) ( )( )0
3
0000 271lnln3 kTNRkTTTkTE Ct −= .   (12) 

 
We note from Fig. 3 that the instantaneous hopping transport energy peak exhibits a short-time ‘dip’  
below its final value of Et. Such a feature is common to most of the simulations in this work. 
Examination of Fig. 2 reveals the reason. The energy distribution of hopping transport contains two 
local features; a fixed maximum at Et, and a descending feature related to the position of the density 
peak in the thermalising charge packet, the so called ‘ thermalisation demarcation energy’ , Ed(t). 
When Ed(t) has descended just below Et, the increased density of charge at this energy results in a 
temporary downward shift of the position of peak hopping transport.   
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Fig. 4.  Model density of states used in the 

simulations. 
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Fig. 5. Transient decay of photocurrent components.  
MT-only and MT+hopping, for DOS #1, at T=200 K. 

 
 Fig. 4 shows the two model densities of states used to represent poor and standard quality            
a-Si:H in this study. Both have a band-tail of 30 meV slope and a defect ‘bump’ at 0.65 eV depth, 
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while there is a factor of 10 difference in the densities of defects. Fig. 5 shows the simulated 
transient photocurrent components - extended state and hopping - for the MT-only and MT+hopping 
cases. In the case of ‘MT-only’  transport, the decay first shows thermalisation down the band tail, 
and then a drop of 4 orders of magnitude starting at 10-7s, corresponding to the capture of electrons 
in the defect states. When hopping is included in the simulation, the density of free carriers falls 
much more drastically, and at a shorter time, as carriers move down by hopping to the defects, but 
the observed current does not fall so markedly. Indeed, the hopping current now exceeds the current 
for the MT-only case. Again, the long time slopes for the two cases are equal.   
 Figs. 6 and 7 show how the positions of the charge and transport peaks move during 
thermalisation. In the MT case, at about 10-7 s, deep trapping shi fts the thermalising peak to  
0.65 eV, where it remains until 104 s. When hopping is included, the shi ft occurs earlier, at around 
10-8s, and hopping then forces the peak to continue downwards soon afterward. The transport energy 
remains in the band-tail for some time after the charge transfers to the defects, but then itsel f makes 
a rapid downward transition. It is of interest to note that a second ‘down-hopping’  region occurs, 
with another ‘dip’ , before a new transport energy is established within the defects.     
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Fig. 6. Position of the thermalising charge for 
DOS#1 at 200K. MT-only case.   
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 Fig. 7. Positions of the thermalising charge and 
transport    energy   for   DOS#1   at   200   K.  

       MT+hopping case. 

 
 
 Fig. 8 shows simulated TPC curves for the a-Si:H ‘DOS#2’  case, for MT-only and 
MT+hopping, at 300 K and 100 K. Intermediate temperature curves have been omitted, for clarity. 
We note that at 300 K, with the realistic parameters used, the computed current when hopping is 
included is very close to the MT-only current, with only a slightly faster deep trapping ‘ turn-down’ . 
MT transport still  dominates, but hopping slightly speeds up the thermalisation in this case. At 
100K, hopping transport dominates at all times greater than 10-12s, though the hopping current falls 
below the MT-only current at long times. At this temperature, there appears no time region where 
the MT and hopping current decays are parallel.    
 Fig. 9 i llustrates the reconstruction of the DOS from the data of Fig. 8, using the Fourier 
transform technique developed by the authors for MT transport [3]. When only MT transport is 
considered, the reconstructed DOS matches the original model DOS reasonably well, at all 
temperatures. However, when the MT+hopping data are analysed in the same way, while the band- 
tail is reproduced reasonably well at all temperatures, the defect peak appears to move to shallower 
energies as the temperature is reduced.    
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Fig. 8 Simulated TPC curves for a-Si:H DOS#2, for 
MT-only, and MT+hopping, at T=300 K and 100 K. 
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Fig. 9 DOS, reconstructed by the MT technique 
from the simulated data of Fig. 7, showing errors 

arising from non-inclusion of hopping. 
 
 
 4. Discussion 
 
 We have noted above that in many cases, the decay of the free electron current component is 
parallel to the decay of the dominant hopping current. However, the reverse has also been observed, 
i.e. parallel decays when the free electron current dominates. This phenomenon only occurs when 
the hopping transport has settled to a fixed transport energy, either near the band edge or within a 
defect level. Under these conditions, the thermalisation demarcation energy has descended below the 
hopping transport energy, and so the free carrier density ‘ tracks’  the density at the hopping transport 
energy, since the occupancy of states above the demarcation energy is Boltzmann-like. Since the 
effective mobilities of the free and hopping carriers are constant under these conditions, the 
respective currents must also track each other, whichever is dominant. Thus, at the lowest 
temperatures, where ‘hopping down’  occurs over the whole simulated time range, the two 
components are never parallel.  
 It is also clear that with the addition of hopping, and under the above conditions, the peak in 
the charge distribution moves downward in energy on a path which parallels the ( )tkT υln−  
progress of the MT-only case (see Fig. 3). However, the effective frequency term describing the peak 
position, at around 2×1015 Hz, is much higher than the value of 1012 Hz used in the simulation. This 
may have implications for any energy scale associated with measured currents.  
    
 
 5. Conclusions 
 
 We have demonstrated a simple simulation technique for both MT-only and MT+hopping 
transport. It can model transient photo-responses for arbitrary distributions of states, over a very 
wide simulation time span, in a relatively short execution time. The simulation allows the 
contributions of extended state and hopping transport to be distinguished and their interaction to be 
studied. The influence of hopping on the MT-based interpretation of TPC to reconstruct the DOS has 
been demonstrated, and shown to have a possible influence at rather higher temperatures than 
hitherto expected. 
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