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Semiconductors and insulators in which quantum mechanical tunnelling ("hopping") 
between localised sites is the dominant charge transport process are often characterised by 
appreciable disorder in the spatial positions of the sites, and usually by similar disorder in 
their energies. In this paper, we confine ourselves to the case of iso-energetic sites, and 
employ a Monte Carlo simulation technique to explore various aspects of the hopping 
process. In particular, we examine in detail the consequences of confining allowed 
transitions to a restricted number of nearby sites. It is shown that the assumptions and 
averaging procedures employed in various prior analytical approaches to the problem can 
have a much more profound effect than has been anticipated. The present study thus suggests 
that a re-consideration of such factors would be merited. 
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 1. Introduction 
 

The presence of positional and energetic disorder into semiconductors and insulators causes 
the generation of appreciable numbers of localised defect states in the energy gap of the otherwise 
perfectl y ordered material [1]. Where the concentrations of such states are sufficiently high, carrier 
transport by quantum mechanical tunnelling ("hopping") directly between these sites can replace 
transport in extended states as the dominant mechanism [1].  

Most prior examinations of this situation have utilised analytical techniques, involving 
various significant assumptions. In particular, it has often been assumed that, except for highly 
concentrated conditions (very closely separated sites), transport will be dominated by transitions to 
the 1st-nearest neighbour sites. Moreover, with or without such an assumption, the analytical models 
have proceeded by calculating some form of averaged transition probability, which can then 
legitimately be applied to the ensemble of sites. 

One way of examining the validity and implications of the above approaches is adopt a 
much more fundamental approach, using a sufficiently large computer-generated random array of 
sites, and then to study hopping transport within this array using (e.g.) very simple Monte Carlo 
procedures involving relatively few assumptions or simplifications. The advantage of such an 
approach is that the underlying assumptions of the analytical models can be removed, and/or 
subjected to detailed scrutiny. One disadvantage is that it requires considerable computer storage 
space (for the random array, and then for the recording the locations of, and transition time constants 
to, the specified number of allowed nearest neighbours of each site). A second disadvantage is that 
computation of actual carrier drift and diffusion characteristics is time consuming - data for a large 
number of carriers need to be generated individually, and then combined together to give (e.g.) the 
diffusion or drift characteristics of an overall carrier ensemble.  
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When one of the authors (JMM) first adopted this approach, in the late 1970s and early 
1980s [2-4], these considerations seriously limited the realisable array size and the features which 
could be examined using it. However, significant improvements in storage size and computing speed 
now make it viable to perform much more extensive studies on realistic timescales. We are presentl y 
undertaking such an examination. Below, we present some of the initial insights arising from it, 
related to the importance of the role of various orders (1st nearest, 2nd nearest, etc.) of neighbouring 
sites to which hopping transitions are considered (i.e. permitted). 
 
 
 2. The Monte Carlo simulation procedure 
 

In the general case, the rate of carrier jumps from a site of energy E to another of energy E', 
over a distance r, is normally described in terms of the Miller-Abrahams [5] expression: 
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where ν0 is the "attempt to hop" frequency, r0 is an effective localisation distance for the sites, and T 
the temperature. For iso-energetic sites, as considered here, E-E' will be zero in the absence of an 
applied electric field. At finite fields, it will be determined by the field-induced potential difference 
between the two sites. However, in the present paper, we do not consider the effects of applying 
such a field. Thus, νj(r,E,E') is replaced by νj(r) below. 

The site array generated for these studies comprised 12 slices, each of dimensions x = 8,  
y = z = 100. Within each slice, 80,000 sites were generated, giving an average site density of unity. 
Each such slice was then examined in conjunction with the neighbouring ones (one for the edge 
slices, and two for the bulk ones - except as explained below), to determine the identities of the 8 
nearest neighbours (i.e. those with the 8 highest values of νj(r). The full simulation array thus 
comprised 960,000 sites, randomly distributed in a volume of 96 x 100 x 100 units (total computer 
storage space for the array data = 374 Mb). For (e.g.) studies of diffusion over an extended time 
period, the first and last x-position slices could be looped back together, to produce an apparently 
infinite allowed diffusion distance (subject to the vital requirement that the original array must be 
sufficiently large to fully be representative of the bulk material, in terms of significant local 
variations in environment).  

The Monte Carlo studies of hopping within this array featured the following steps: 
 

• A random number was used to select the initial site upon which a carrier was located. This 
depended upon the situation being examined - e.g. it could be a site close to the left hand side of 
the array for studies of drift under an applied field, etc., or anywhere within the "looped back" 
array for studies of diffusion at zero applied field. 

 
• To simulate a single hopping event, a second random number was used to select between the (up 

to eight, as chosen in the particular case under study) adjacent sites, according to their relative 
values of νj(r).  

 
• A third random number was then used to calculate the individual dwell time of the carrier on the 

initial site before hopping, with such values being properly distributed about the calculated 
overall time constant for hopping to the total collection of allowed nearest neighbours.  

 
• This procedure was repeated for the new site etc., with the change in position and other 

characteristics of the drifting carrier being recorded as functions of elapsed time since initial 
generation.  

 
• Data were combined for a large number of carriers (initially randomly generated on different 

sites, as above), to compile the overall characteristics of a diffusing/drifting charge packet. 
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3.  Carrier diffusion at zero applied field 
 
The above procedure was used, in the study reported here, to examine carrier diffusion at 

zero applied electric field, for the cases of allowed transitions to between n = 1 and n = 8 nearest 
neighbours. Here, ν0 was set at 1012 Hz, and r0 at 0.3 (relative to the mean site density of unity). The 
latter parameter is quite large, giving significant probabilities for hope to neighbours well beyond 
the nearest one. However, using r0 = 0.1 gave similar general conclusions to those presented below. 
Note, in this context, that at zero applied electric field, although the value of r0 determines the 
relative probabilities of transitions to neighbouring sites, it does not change the identities of the sites 
comprising the nearest neighbours of various orders. 

For this element of the study, charge carriers were initially positioned upon sites selected at 
random throughout the (looped back) array. Their initial positions were recorded, so that their 
subsequent diffusive motions (∆x) away from these positions could be combined, to give an overall 
diffusion profile. 

 
 
3.1  Diffusion to 1st-nearest neighbours only 
 

 
Fig. 1.  Diffusive carrier displacement profiles for the case when only hopping to 1st-nearest  
neighbours  is allowed. In the right hand figure, the vertical scale is expanded by a factor            
of ten.  The  curves  span  timescales  from  10-12  to  10-9  s.  At  still  longer  times, there are   
                                    essentially  no further changes in the packet shape. 

 
  

 
Fig. 2. (a): Gaussian fit to the long-time carrier diffusion profile (without the central spike). 

(a): Root mean square displacement of the diffusing carrier packet, as a function of time. 
 
 
Fig. 1 shows how a carrier packet spreads out by diffusion (relative to the original x 

positions of each carrier), for the case in which only transitions to the 1st-nearest neighbours are 
permitted. It can immediately be seen that there is a very sharp spike of carriers which remain either 
at or very close to their initial positions. This comprises about 35% of the total population. The 
remaining carriers diffuse further, giving a profile well described by a Gaussian function  
(Fig. 2a). However, it is also clear that the diffusion process slows down rapidly at about 10-9 s, and 
essentially ceases after about 10-8 s. This is illustrated dramatically by the computed r.m.s. diffusion 
distances, ∆xrms, as displayed in fig. 2b.  
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3.2   Diffusion including higher-order nearest neighbours 
 

Fig. 3.  Calculated differential diffusion coefficient as a function of time, for simulations in 
which transitions to various numbers of nearest neighbours (as indicated) are allowed. The 
horizontal  lines   are  the values  calculated  from   the   analytical   expressions  derived   by  
                                                        Arkhipov et al. [7]. 
 
 
If transitions to both 1st- and 2nd-nearest neighbours are permitted, the situation is 

qualitatively similar to that above. However, there are differences of detail in that the residual central 
spike is smaller, the long-time value of ∆xrms is slightly higher, and the final carrier profile is less 
Gaussian in shape.  

We will demonstrate below that similar situations exist, to a progressively less dramatic 
degree, for higher orders of allowed nearest neighbours. However, before doing so, it is necessary to 
address a more fundamental problem. This is that if the values of ∆xrms, as calculated above, were 
used in the conventional way to compute a diffusion coefficient, D (i.e. from D = ∆xrms

2/6t), then this 
would be a time-dependent quantity. Moreover, it would not be suitable for comparison with the 
time-dependent drift mobility (e.g. as obtained from a transient photoconductivity  
experiment [6]). This is because the mobility, µ(t), calculated from the transient photocurrent,  
I(t) = e.F.µ(t).n, where F is the applied field and n is the number of excess carriers, represents the 
instantaneous mobility, whereas the diffusion coefficient calculated as above reflects the overall net 
diffusion since zero time. 

Fortunately, although we are not aware that this problem has been addressed previously, we 
have found - and have confirmed using various assumed functional forms of I(t) - that it can be 
resolved quite easily and logically. The solution is simply to define and use a differential form of the 
diffusion coefficient, to define its instantaneous time dependent value: 

 

( ) ( ) ( )21/6 /rmsD t d x dt= ∆ .    (2) 

 
The results, for different numbers of nearest neighbours to which transitions are permitted, 

are as shown in fig. 3. The horizontal l ines are the theoretical values of the diffusion coefficient for 
the various cases, i.e.: 
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where the probabilities w(r,n) are as derived by Arkhipov et al. [7] for an arbitraril y large number of 
nearest neighbours to which transitions are included.  

When only 1st-nearest neighbour transitions are permitted, the Monte Carlo simulated 
values of D(t) never reach the expected values. If transitions to higher numbers of nearest 
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neighbours are allowed, the agreement at short times becomes progressively better. However, at 
longer times, D(t) stil l falls away dramatically. When transitions to all eight nearest neighbours are 
included, this effect is not detectable within the time range accessible to the present simulation. 
However, as we shall argue below, we consider that it should stil l take place at longer times.  

One final thing to note is that for the cases of 6 and 8 nearest neighbours, the simulated 
diffusion coefficients actually slightly exceed the predicted values. We tentatively ascribe this to the 
finite lateral dimensions of the simulation array. Even though the array is large, there will still be 
initial sites close to its y and z boundaries. Carriers generated in these will be obliged to jump to 
neighbouring sites which are slightly further away than those in the bulk. 
 
 

4.  Origins of the behaviour observed in the Monte Carlo simulations 
 

It is clear that strictly confining allowed transitions to a specified number of nearest 
neighbours has a much more pronounced effect than might have been anticipated. We will now 
outline two separate factors that contribute to this. We term these "Site Wetting" and "Irreversible 
Capture". Although the two phenomena are related in some respects, there are important differences 
between them, in terms of their effects upon the time dependence of both D(t) and other related 
transport phenomena. 

 
4.1  Site Wetting 
 
Suppose that we: (i) Take a single array slice (of dimensions 8x100x100 units), and “wet”  

(i.e. occupy) all sites in a thin (0 < x < 0.1) region on its left hand side. (ii) Now connect each of 
these to all other sites within the array which are its 1st to nth (as specified) nearest neighbours. These 
sites are then also regarded as having become "wet". (i ii) Repeat this process until no further sites 
become wet on further repetition. In the spirit of percolation theory, it could then be argued that i f 
connected paths are established between the left and right hand sides of a (sufficiently long) site 
array, then these paths will control the d.c. electrical conductivity and other macroscopic transport 
properties.  

 
Fig. 4. "Site wetting", as described in the text, for the cases n = 1 to 3. 

 
Fig. 4 shows the results of such a procedure for the cases n = 1 to 3. Here, for ease of 

display, only those sites with z positions (into the plane of display) between 0 and 5 are shown. It is 
important to note that at first sight, this gives the impression "wetting" misses out significant 
numbers of sites which are closer than those which do actually become "wet". However, this is not 
the case - such sites are further away in the z direction, and so in three dimensional space. 

For the case n = 1, only about 1400 of the 80,000 sites in the slice finally become "wet", in 
addition to those initially specified as being so. For n = 2, ”wetting" progresses further, but still  
ceases after a relatively small penetration distance. For n = 3, ”wetting" continues throughout the 
slice, implying that connected paths have been established and thus permitting (e.g.) d.c. electrical 
conduction. Further increases in n simply reduce the residual number of "dry" sites. 
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It is important, here, to stress again that these conclusions are not dependent upon the 
relative dilution (i.e. the value of r0) of the system - they only consider the specified numbers of 
allowed neighbours, and not the actual transition rates. 

This exercise indicates that the value of n is important (i.e. that confining transitions solely 
to 1st- or 1st plus 2nd-nearest neighbours wil l not yield d.c. conduction). It also appears to indicate 
that including the 3rd and higher-order neighbours removes this restriction. This, in itself, is 
important, given that many analytical treatments have ignored anything other than 1st-nearest 
neighbour transition probabilities. However, as we shall show below, and as indicated in fig. 3, this 
is not the only important consideration. 

 
4.2   Irreversible capture (black holes) 
 
 

 
Fig. 5. Examples of irreversible capture ("black hole") clusters. The numbers adjacent to the 
respective  arrows  represent  the  nearest  neighbour  rank, n, of the site to which a transition  
                                                                   may occur. 

 
 

Consider first the case where only transitions to 1st-nearest neighbours are permitted. Fig. 5a 
il lustrates a situation that can and will then arise. A carrier which enters site A is allowed 
to hop to site B, since this is its 1st-nearest neighbour. From there, it can hop backwards and 
forwards between sites B and C, since these are mutual nearest neighbours. However, it can never 
return to site A or out of the B-C site pair. It is thus permanently trapped in a "black hole". 
Inspection of the simulation array shows that about 34% of all sites exist in such mutual nearest 
neighbour pairs.  

This immediately means that carriers initially generated in such a pair can only hop 
backwards and forwards within it, giving the sharp central spike in fig. 1. It also means that carriers 
which are not initially generated in such a pair wil l fairly rapidly find themselves entering one, and 
then being unable to escape. This, then, explains the subsequent decline to zero of the di ffusion 
coefficient. 

For the case n = 2, it is obviously possible (although statistically less l ikely) that a carrier 
wil l be created in, or wil l subsequently enter, a group of three sites which are all either each other's 
1st- or 2nd-nearest neighbours. However, various more complex "black holes" now also become 
possible, An example (detected by inspection within the present simulation array) is given in  
fig. 5b. Here, a carrier entering through site A is allowed to hop repeatedly within the cluster of sites 
B-H. However, it can never return to site A, since this is the 3rd-nearest neighbour of site B. Thus, it 
is again permanently trapped in a "black hole".  

For higher orders of n, the likelihood of initial generation within a "black hole" wil l 
obviously decrease. However, such ensembles still  have a finite probability of existence. Therefore, 
it can be argued that eventually, a dri fting or diffusing carrier will encounter one, and that 
macroscopic diffusion beyond the ensemble will then cease. The only question would whether this is 
likely to happen to a signi ficant extent before (e.g.) a carrier completed its transit of a specimen of 
realistic finite size. 
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5.  Caveats and further comments 
 
Of course, the above considerations do not bear a one-to-one correspondence to reality. In 

practice, there is no mechanism restricting a carrier to a particular value of n. In a sufficiently dilute 
system, a carrier would tend to diffuse back and forth within such a cluster until i t finally (albeit 
with a very low probability) chanced to make a transi tion beyond it. This low probability of such 
escape transitions would (as in conventional percolation theory) then determine (e.g.) the overall 
time for the carrier to drift across a specimen. 

None the less, since many of the present analytical models of hopping transport totally 
ignore these issues, or lose them within the averaging procedures which they employ, we consider 
that the dangers of doing so have been illustrated dramatically above. In reality, positional 
randomness always creates energetic disorder, which somewhat reduces the relative density of black 
holes but does not fully eliminate them [8]. 

An important prior example of the pitfalls that can occur by use of inappropriate averaging 
procedures is the Scher-Montroll analysis [9] of hopping in an iso-energetic spatially random site 
array. Here, the authors computed an average distribution function for the probability of release from 
a localised state. They then applied this distribution function to hopping within a regular three-
dimensional array of sites. In doing so [10] (see also [2-4]), the relationship between the probabil ity 
of escaping from a relatively isolated site or cluster was not weighted in proportion to the probabil ity 
of entering it in the first place. Thus, the resulting distribution was badly skewed in favour of such 
events. 

We believe that similar considerations may apply in respect of the issues raised in the 
present paper. Thus, they should be taken into account by those formulating analytical models of the 
hopping process. 

In this respect, and others, we believe that despite the demands upon computer storage space 
and computation time, computer simulations such as the present Monte Carlo based study have the 
potential to continue to provide valuable insights into the validity or otherwise of the underl ying 
assumptions upon which simplified analytical models (including our own, some of which are 
contained in this volume) are being, and necessarily wil l continue to be, based. 

 
 

 6.   Conclusions 
 

• The effect of formally restricting the allowed hopping transitions to a specified number of 
nearest neighbour sites has been examined, by means of Monte Carlo and other associated 
techniques. 

 

• It has been demonstrated that the imposition of such limitations, along with their various 
implications, if taken literally, can have unexpected and serious consequences. 

 

• Such assumptions (and others, involving (e.g.) procedures for utilising averaged hopping 
probabilities) are frequently (maybe unavoidably) made in the formulation of analytical and 
more simplified simulation procedures. 

 

• Therefore, although relatively demanding in terms of computer storage space and calculation 
time (and maybe not so elegant in other respects), the use of Monte Carlo type modelling can 
provide valuable insights into the validity, or otherwise, of the approaches being adopted in 
analytical models. 

 

• The data presented here are part of a larger study, which will employ the same formalism to 
study various other aspects of hopping transport in disordered semiconductors (for example, the 
rigidity of the conventionally-assumed relationship between the carrier mobility and diffusion 
coefficient, and the details of low-temperature (variable-range) hopping). The results of these 
studies wil l be published in due course. 

 

• The study will also be extended to examine situations in which localised sites are distributed not 
just randomly in space, but also appropriately in energy. 
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