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The present paper deals with the classification of high-temperature superconducting thin 
films (HTS) by the use of fuzzy clustering. A dataset from 84 YBCO thin films obtained by 
chemical vapour deposition technology was treated by the fuzzy approach. The films 
described were summarized by their input (oxygen pressure, chemical precursors, substrate 
parameters) and output (critical temperature, critical current) physical characteristics. The 
aim of the study was to confirm a previous classification of the films by crisp cluster 
analysis, and to improve the film separation into similar clusters by the more advanced and 
reliable fuzzy clustering method. It has been shown that fuzzy clustering allows a better 
classification, ascribing a membership function to each HTS thin film. 
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1. Introduction 
 
 The fabrication of high-temperature superconducting (HTS) materials stil l presents a serious 
challenge to many research laboratories. It is well known, however, that the approaches to the 
fabrication procedures are, more or less, trial-and-error methods. The reason for this is the 
multivariate nature of the process of fabrication, for which many factors which are quite different in 
nature should be taken into account. Thus, the substrate properties, precursor chemistry, chemical 
vapour deposition parameters etc. have to be carefully selected in order to achieve reasonable critical 
temperature values. In a previous paper [1] an attempt was made to classify data available from the 
experience of many international laboratories, concerning the input factors of HTS thin films and the 
respective outputs (critical temperature Tc or critical current Jc). It has been shown by the use of 
cluster analysis (CA), principal components analysis (PCA) and multiple linear regression analysis 
(MLRA) that a kind of pattern recognition among the various thin films could be constructed and 
interpreted [1]. 
 It is the aim of the present communication to offer another point of view in the classification 
already carried out, by applying a new and promising chemometric approach called fuzzy cluster 
analysis (FCA). The paper indicates the advantages of the new method and compares the 
classification obtained with the previous cluster analysis procedure for the HTS thin films. 
 
 

2. Experimental details 
 
 Data for the classification procedure were taken from the review paper of Leskela et al. [2]. 
The authors’  attention was concentrated mainly on Y-Ba-Cu-O thin fi lms obtained by chemical 
vapour deposition. Altogether, 84 cases were presented in the review, comprising experimental 
evidence about the physical input variables (substrate lattice parameter LP, substrate thermal 
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expansion coefficient TE, substrate temperature Ts, oxidizer partial pressure P, precursor chemical 
nature Y, Ba, Cu,) and physical output parameters (critical temperature Tc for all cases and critical 
current Jc for some of them).  
 In essence, fuzzy theory is an exact mathematical theory which has matured into a wide-
ranging collection of concepts and techniques, as well as applications in almost all branches of 
science [3]. Its substantial concept is a membership of a set (the concept of fuzzy sets) but not in the 
sense of probability. For instance, a spectroscopic line has to be identified in order to speci fy a 
functional group in IR spectroscopy, or to decide on the presence of an element in atomic 
spectroscopy. This is done by comparing the line position with those appearing in a library of 
reference lines. Since the experimentally-obtained line will surely not exactly match the library line, 
an interval around the reference (l ibrary) l ine is usually defined in order to decide whether or not the 
library line coincides with the experiment one. A value of 1 is assigned to a l ine that matches the 
interval and the value 0 is assigned to lines outside this interval. So only a yes/no answer is possible 
in the traditional way of grouping experimental results. With fuzzy theory, this situation could be 
described in much more detail. For a l ine that come closest to the library line, a value near to 1 is 
assigned, whereas the more the line position deviates from the exact match the lower the value 
assigned. The outcome of the comparison does not only reveal information on whether or not the 
match has been successful (a 1/0 answer), but it also gives a rating of the quality of the match, 
graduated between 0-1. 

The main idea of founding fuzzy set theory was the generalization of the common set 
notion. When defining a common set, say Mc, we are given a collection of elements, the universe X, 
being of interest in our context. Then, Mc is defined by speci fying, for each element of the universe, 
whether it belongs to Mc or not. This can be expressed mathematically by a characteristic function, 
say mc , that assigns an element x of the universe X a value of 1 if it belongs to Mc and of 0 
otherwise: 

     mc (x) = 1 if x �  Mc 
�

 X             (1) 
 

     mc (x) = 0 if x / �  Mc 
�

 X             (2) 
 

 If we also allow values between 0 and 1 to be grades of membership with respect to X, we 
obtain a fuzzy set M. Thus, the transition between membership and non-membership may be 
described gradually, rather than abruptly. The function m valuing the elements x �  X with numbers in 
the closed interval [0, 1]. and thus defining the fuzzy set M, is called the membership function of M. 
A common set, for which the membership function yields only two values, 0 and 1, is called crisp in 
this context. 
 For interpretation, there can be elements x �  X for which we do not state whether they belong 
to M or not. The value m(x) can be explained as to which grade or degree the element x belongs to 
M. 
 When we consider more than one fuzzy set, say M and N simultaneously, we shall add the 
name of the set as an index to the corresponding membership function, e.g. mM, mN. 
 In all cases of application, we have to start by specifying universes and fuzzy sets in them. 
Remembering the example mentioned above – comparison of a crisp spectroscopic line x to a fuzzy 
candidate reference line. The universe X which is to be specified would be the energy or wavelength 
axis, and the uncertainty of the appearance of the line could be modeled by a fuzzy set M having the 
shape of a bell or of a triangle. Thus, the membership value m (x) = 1 would be assigned only to that 
element x of the universe that meets the maximum of the membership function, i.e. the experimental 
line taken as being crisp matches the reference line. Elements around the reference line are 
characterized by the degree to which the experimental line is comparable with the reference one. 
 A special case of a fuzzy set is a fuzzy measurement or fuzzy observation. Here, m(x) 
indicates the degree to which x is to be considered as a result of our measurements at hand. 
 It makes sense to explain the values of m as shades on a scale [0, 1], where 0 means white 
and 1 black. In this scheme, fuzzy sets correspond to gray – tone pictures and could be manipulated 
by image processing equipment. 
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 For specifying the membership function, one must exploit the special knowledge of the 
expert, together with the preliminary information on the problem at hand. Frequently, the 
specification of a membership function can in the broadest sense be inspired by statistical material. 
Fortunately, the choice of the specific mathematical form of the membership function has, as a rule, 
only a small influence on the conclusions to be drawn. In general, the guideline is dictated by 
mathematical convenience. We mention here the following types for the one-dimensional case: 
(1 + c

�
x-a

�
p)-1 or exp (-c

�
x-a

�
p) or 1 –exp (-c

�
x-a

�
p) for x �  a with suitably chosen constants a, 

c, p, where c and p have to be positive numbers. A simple generalization of the multidimensional 
case is given by replacing the difference 

�
x-a

�
 between the numbers x and a by a distance between 

the points x and a. 
 If we have to take into account asymmetry in specifying m we can, at a, connect branches of 
the chosen type with different parameters, and even branches of different types. 
 When using image processing equipment, the choice of a suitable type becomes less 
essential; the membership function may be constructed locally, e.g. by splines. 
 In order to handle fuzzy sets efficiently, notions known from common set theory have to be 
applied. Besides these, however, other notions will occur. They include the support of a fuzzy set 
with a positive grade of membership; the cardinality of a fuzzy set (the number of its elements for a 
finite set or its suitably defined contents for an infinite set); the grade of containment etc. 
Furthermore, fuzzy numbers have to be determined when some conditions are satisfied (convex 
membership function, only one mean value); fuzzy points, fuzzy observations represented by fuzzy 
points, a fuzzified function, which is a family of fuzzy numbers, fuzzy relations, etc. 
 The notions introduced form the basis for more complicated problems and their solution. For 
example, we may consider the problem: to which grade is “near to 20”  “essentially larger”  than 
“near to 10”? Although this could be treated with conventional mathematical tools, the best solution 
is given by the fuzzy approach as described in [4, 5]. 
 It is interesting to mention that the notion “linguistic variable”  is also important for fuzzy 
operations. This variable can assume several variables, which are verbal units, words, or sentences, 
in a natural or artificial language. A simple example is given by the variable “stature” as used in 
warrant of apprehension. The values are certain labels, e.g. very tall, tall, medium, short, very short. 
Each of these variables corresponds to a fuzzy set on the universe “height” : (0, 3) when measured in 
meters. 
 Fuzzy data sets are observed and described by the specific membership function (MF). In 
the case of fuzzy cluster analysis, an iterative procedure called generalized fuzzy n – means (GFNM) 
is used for detecting clusters within a collection of objects (universe) by MF. The iterative process 
starts with an arbitrary initialization of the partition, and ends when two successive partitions are 
close enough. It is then possible to have the distance between two partitions. In such a way, step by 
step, the membership of each object to the separate classes (clusters) is found [6]. 
 
 

3. Results and discussion 
 
 In the previous study, hierarchical crisp clustering of Y-based HTS thin fi lms indicated that 
the universe of objects (84 altogether) can be separated into 5 clusters. A more careful consideration 
of the clustering shows that, in principle, the majority of the objects (thin films) are quite similar: at 
the first level of significance (33.3 % of Dmax). Only 4 objects are linked above this level. Some 
subclusters were found and discussed. Within them, the linkage between the objects was due mainly 
to a “national” indicator – similar scienti fic schools, similar technological procedures, similar 
instrumentation. The outliers were attributed to some specific technological reasons, or to the more 
different physicochemical and morphological properties assuring better output. In Table 1, results 
from the fuzzy clustering of HTS thin films (YBCO) are summarized. 
 In this clustering procedure, one obtains three well-defined classes or clusters. The first two 
of them indicate a typical fuzzy structure, since the objects included in them could be ascribed to a 
certain extent to the next group. Indeed, the membership percentage is quite high, this being a sign 
for a stable structure of the classes. However, on the other hand, it might be assumed that class 1 and 
class 2 are quite similar to each other. In this aspect, classes 1 and 2 resemble the subclusters 1, 2 
and 3 in the hierarchical dendrogram in [1]. However, the possibility of merging classes 1 and 2 into 
one bigger class is not acceptable, since the objects classified within each of them possesses high 
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values of the membership function. Therefore, one could accept that classes 1 and 2 are divided for 
some reason. 
 

Table 1. Final clustering of 84 objects with fuzzy algorithm 
 

Class Objects and membership to class (%) 
1 2(89), 5(81), 8(94), 11(87), 15(86), 21(85), 22(89), 23(90), 24(89), 29(87), 

34(79), 36(89), 37(92), 42(88), 47(84), 55(85), 56(88), 59(90), 62(90), 
63(87), 65(89), 67(83), 68(87), 74(90), 77(91), 78(89), 79(90), 83 (90) 

2 4(88), 6(89), 9(90), 10(86), 12(84), 13(83), 14(79), 16(87), 18(86), 19(90), 
20(79), 25(88), 28(80), 30(85), 31(90), 32(91), 33(87), 35(82), 38(89), 39 
(89), 40(88), 45(86), 46(85), 53(86), 54(83), 57(88), 58(89), 60(88), 
61(87), 64(86), 69(86), 70(84), 71(89), 72(88), 75(85), 76(88), 80(90), 
81(89), 82(88) 

3 1, 3, 7, 17, 26, 27, 41, 43, 44, 48, 49, 50, 51, 52, 66, 73, 84 
(For all objects the membership percentage is 100). 

 
 The third cluster in the fuzzy procedure is well defined and separated from the other two 
(none of the objects indicate membership of the other classes). This means that the third group of 
objects differs from the other two in the most significant way. 
 
 

4. Conclusions 
 
 A very important conclusion from this study is that by the use of fuzzy clustering, one could 
get a better separation of groups of similarity and even explain the reason for fuzzy behaviour. In 
this particular case, the separation of the 84 YBCO thin films into three main classes could occur for 
the following reasons: 

• Class 1 – dependence on the lattice parameter and the thermal expansion coefficient 
(both parameters possess the lowest possible values); relatively high critical temperature 
values are reached (above 85o K); 

• Class 2 – this is the cluster of similar objects realized by the use of higher values of the 
substrate parameters. These, however, do not lead to a significant increase in the critical 
temperature values. On the contrary, in many cases a decrease of the critical temperature 
is observed. 

• Class 3 – in this cluster of objects, one could find some with the behaviour of outliers 
(e.g. a very low critical temperature or very low oxidizer partial pressure etc.). It might 
be stated that this is the group of objects which are difficult to classify with the 
traditional agglomerative clustering procedures. 

 As a final conclusion, it may be suggested that the class 1 objects should be considered as 
the optimal “pattern”  for YBCO HTS thin films. 
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