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Spherical vesicles in aqueous solution, made of bilayer lipid membranes, undergo shape 
transformations to open cup-like vesicles, due to the addition of guest molecules such as the 
protein talin. A semi-quantitative analysis of the opening up of the vesicles is made, based 
on the adsorption isotherm of guest molecules to the rims of the opening vesicles. The 
cuplike vesicles are represented as a partial sphere cut by a plane. The line tension of the 
rims is reduced greatly by adsorbed talin, and is determined from the statistical mechanics of 
the adsorption equilibrium. The total free energy of a cuplike vesicle is lower than that of the 
original spherical one. A more precise numerical evaluation of the shape of the open vesicles 
is also made. In this, we use the line tension and the equivalent spontaneous curvature of the 
membrane as theoretical parameters. The analysis reproduces the observed shapes of the 
cuplike vesicles well.  
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1. Introduction 
  
  Because of its softness, fuzzy nature, flexibility, and lack of a strict theoretical background, 
the physics of soft condensed matter has its own characteristics compared to solid state physics. 
However, the softness, fuzzy nature, and flexibility are required or realized in many fields of science 
and technology, and especially in living materials. With the above features in these fields, soft 
materials physics has been studied extensively. Contemporary topics in soft materials physics are 
polymers, l iquid crystals, amphiphiles, complex fluids, and biomaterials such as proteins, DNA, etc.  

In this paper, we present a theoretical study of the opening up of lipid vesicles. So far, such 
vesicles have been studied as topologically closed items, and their opening up has not been observed 
as a stable form. Thus, closed vesicles made of a l ipid bilayer membrane have been studied 
extensively due to their importance in biology, in industries such as food, paint, cosmetics, 
pharmacology, and so on. Closed lipid vesicles are stable, with rather long lifetimes, and are used for 
practical purposes. Seifert and Lipowsky presented a review of experimental and theoretical works 
on such vesicles [1]. The stability and long lifetime of the closed vesicle is especially important for a 
biological cell, in maintaining the separation between its interior and exterior. In reality, making 
holes in the surface of a l ipid spherical vesicle is rather difficult. In the electroporation method, 
application of a strong electric field can make a temporary hole. However, the pore disappears 
immediately when the electric field is reduced below some threshold value [2]. Osmotic shock [3], 
laser tweezers [4] and adhesion [5] have also been developed to open transient holes in membranes.  

Recent studies have shown, however, that some organic chemical agents such as the 
protein talin [6] or detergents [7] are capable of inducing a stable hole or holes in lipid membranes. 
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The spherical vesicles transform into cuplike ones, as tube-like shapes or bilayer sheets. Although 
the precise mechanism has not yet clari fied, the oligopeptide melittin (a bee toxin) induces 
hemolysis, so that its addition can make a hole in a red shell membrane [8]. The shapes of the 
observed holes have been interpreted on the basis of the mechanical balance between the bending 
rigidity of the membrane and the line tension - the energy cost per unit length of the edges of the 
holes. Assuming a value for the line tension energy on a small circular hole in a spherical vesicle, 
one can show that a quasi-stable hole opens in the membrane under an excess inner pressure [9]. 
However, this model can only explain transient holes, because the leakage of water through the 
holes may reduce the pressure difference across the membranes.  
  In this paper, we will briefly review the experimental results on the opening up of lipid 
vesicles by adsorbed guest molecules. Next, we will present an analysis of the stabil ity of the cuplike 
vesicles, caused by guest molecules adsorbed on the rims of vesicles, based on statistical mechanics. 
In the first part of the theory, for simplicity, a partial sphere cut by a plane will be taken as a model 
for the opened vesicles, to illustrate the adsorption isotherm using the statistical mechanical model. 
The stability of the opened vesicles will be analysed by minimizing the total free energy. The origin 
of the line tension by the adsorption isotherm will be clarified. Next, a more precise numerical 
analysis of the shapes of the open vesicles will be performed, by assuming the line tension and the 
bending rigidity of the membrane. The shape of an open vesicle with a single hole will be calculated, 
using two parameters - the spontaneous curvature and the line tension of the rims of the open 
vesicles. The shapes obtained by numerical calculation will be compared with the observed shapes 
of cuplike vesicles.  
 
 

2. Review of experimental results 
 

                  
Fig. 1.  Observed opening up of vesicles, showing the  shape changes induced by changes in 
concentration.     A   to   H  are  for  increasing  concentrations,  and  H  to  L  for  decreasing  
                                                             concentrations [6]. 

 
 

 As already reported [6], when a small amount of the protein talin was added to a spherical 
lipid vesicle system, opening up of the vesicles was observed above a threshold concentration of 
talin, of the order of micro moles, as shown in Fig. 1. As well  as the vesicles shown in Fig. 1, which 
were taken by dark field microscopy, vesicles with two and three holes were also observed. These 
coexisted with spherical vesicles when the concentration was not high [6]. By switching from a dark 
field microscope to a fluorescence microscope, talin could be shown (due to the fluorescent nature 
active talin) to be adsorbed on the rims of the cuplike or sheet like vesicles,. As shown in Fig. 1, the 
shape of the cuplike vesicles changed reversibly when the concentration of talin was changed. Just 
above a threshold concentration, a small hole opened up. Its size increased progressively from B to 
H. Upon decreasing the concentration from H to L, the hole shrank reversibly, until the original 
spherical vesicle was re-formed. This result shows that the shape of the cuplike vesicles was 
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determined by the concentration of talin. Similar characteristics of the opening up of vesicles have 
also been observed for other lipid and surfactant systems [7].  
 
 

3. The adsorption isotherm of talin to cuplike vesicles 
 

 For cuplike vesicle formation in the lipid and talin system, Suezaki and co-workers have 
clarified the origin of the shape change of the vesicle by the adsorption isotherm of talin between the 
periphery of the cup-like vesicle and the aqueous solvent [10].  Here we will reformulate the theory 
starting from the simplified free energy description, so that it may be comprehensible to readers 
other than physicists. Before going into the total free energy description, we briefly review the 
bending elastic energy of the vesicle membrane. Helfrich first described this as follows [11]:  
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where kc and kg are the cylindrical bending modulus and the Gaussian bending modulus, 
respectively. The factors cx, cy, and c0 are the two principal curvatures and the spontaneous 
curvature, respectively. The integrals are taken on the surface of the vesicle. We will neglect the 
term involving the Gaussian bending modulus in the following calculation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Schematic picture of the adsorption isotherm of talin to the rim of a cuplike vesicle. 
 
 

In this paragraph, we will briefly discuss the reason why we can neglect the Gaussian 
bending energy term. Previously, many workers tried to develop theoretical explanations of the 
complicated phase behaviours of colloidal systems such as microemulsions, lamellar layers etc. The 
factors kc and kg were treated as independent theoretical parameters [12]. It is important to notice, 
however, that the Gaussian bending modulus is the elastic modulus for the shear deformation of the 
membrane surface. The experimental condition for the lipid membrane is that it is in the liquid phase 
[6, 7], and the lipid bilayer membrane is not resistant to shear stress. The theory of elastic 
membranes [13] cannot answer this problem. For a reliable description of l iquid membranes, Petrov 
and co-workers described the membrane in the liquid phase via a surface elasticity model, using 
dumbbell molecules [14]. One of the present authors revisited the model of Petrov et al., and 
examined the physical nature of the Gaussian bending modulus [15]. According to this analysis, the 
value of the Gaussian bending modulus, kg cannot be of the same order of magnitude as that of major 
bending modulus, kc. Instead, the value of kg should be at most two orders smaller than kc. This is 
due to the shear free condition of the lipid membranes. Thus, in the first order approximation of the 
theory, we will neglect the Gaussian bending modulus in further discussions. However, in a more 
detailed investigation of the vesicle topologies, it plays a considerable role in the formation of 
opened vesicles, as will be discussed later.  

Adsorption 
equilibrium 

 Cuplike vesicle 



Y. Suezaki, T. Umeda 
 
 

28

When we analyze the adsorption isotherm of a cuplike vesicle, we will regard it as a partial 
sphere cut by a plane. Fig. 2 shows this schematically, together with the adsorption scheme. The 
bending energies Esphere and Ecup are represented simply as  

 

    ( )2
0022 RckE csphere −= π          (2) 

 

    ( )2
022 RcxkE ccup −= π        (3) 

 
where x=R0/R is the relative curvature of the cuplike vesicle [10]. The factors, R0 and R are the radii 
of curvature of the original sphere and the cuplike vesicle, respectively.  
 Before proceeding further, we evaluate the mechanical condition for creating the open 
vesicle. By postulating the line tension, γ, the line tension energy Erim is written as 
 

  2
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To have a positive solution for the relative curvature x, the following equation should hold: 
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In order to possess a positive solution of x, the condition is stated simply as 
 

   002 Rcx >
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This means that the frustrated bending moment should work so as to expand the original spherical 
vesicle to form the open one.  

Now, we denote X, N, n0 and n as the numbers of total talin, and adsorbed talin, and the 
numbers of original spherical vesicles and cuplike vesicles, respectively. Then, the free energy F of 
the total system can be written as: 
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are the concentrations of talin in the aqueous solution and of talin at the rim of the cuplike vesicle. 
The factors V and vt are the total volume of the system and that of the molecular volume of talin, 
respectively. The factor ε0 in Eq. (7) is the affinity free energy of talin from water to the rim of the 
cuplike vesicle. Here, we neglect the adsorbed number of talin on the surface of the cuplike vesicle. 
It can be shown to be negligible because of the large value of ε0 estimated from the observed 
threshold concentration of talin.  
 The numbers N and n are determined so as to minimize the free energy F. Now, we perform 
the minimization of the free energy. Firstly, we show the minimization procedure by N as follows; 
 



The opening-up of lipid bilayer vesicles by guest molecules… 
 
 

29 

0=−=
∂
∂

bulkadN

F µµ       (10) 

where 
 

    
    
µad = kT log

cr

e

� 

	 

 

� 

� 

 −ε0 + 8πkcn 2x − c0R0( )∂x

∂N
                  (11) 

 
    NXbulk ckT −= logµ          (12) 

 
are the chemical potentials of adsorbed talin and that dissolved in the aqueous solvent, respectively.  
 Next, the number n of cuplike vesicles should also be determined, so as to minimize the free 
energy F. This is written as  
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The above equation can be interpreted in another way: the relative curvature, x, is determined as a 
function of the concentration, CX=X/V. Namely, it describes the mechanical balance of the cuplike 
vesicle.  
 Lastly, we mention the minimized free energy value, Fmin. Using Eqs. (7), (10) and (13), we 
obtain the following result: 
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is the threshold concentration for formation of the cuplike vesicles. From the observed value of the 
threshold concentration, ε0 is estimated to be approximately 20kT. In Eq. (14), the term of the order 
of n has been neglected, because it is small compared to the terms in Eq. (14). Eq. (14) shows that 
the formation of cuplike vesicles lowers the free energy, and the open vesicles are more 
thermodynamically stable than the system of spherical vesicles. The large value of ε0 means that the 
adsorbed number of talin to the bulk membrane surface can be neglected to a first approximation, 
although we have not shown this explicitly here. 
 Before closing this section, we will obtain the line tension as a function of the concentration 
explicitly, as follows. From Eq. (5),  
 

    
γ = 2kc 2x − c0R0( ) 1− x2

R0x
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By defining σ as the number of talin molecules per unit length of the rim, we obtain  N = nlσ , where 

    l = 4πR0 1− x 2  is the length of the rim per open vesicle. From Eqs. (10)-(12), (15) and (16), the line 
tension turns out to be  
 

  


�

�



	

�

−
=

thX

th

cc

c
kT logσγ .          (17) 

 
Therefore, the line tension is a decreasing function of the concentration of talin.  
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4. Numerical analysis of the shapes of the opening up vesicles 
 
In the previous section, we could successfully understand the cuplike vesicle formation 

based on the adsorption isotherm. However, the vesicle shape was assumed qualitatively to be a 
partial sphere. In reality, the shape is non-spherical, as shown in Fig. 1. In this section and the 
following one, we will present a numerical calculation of the shapes of the open vesicles.  

The equilibrium shape of the closed vesicles has been thoroughly studied from the 
theoretical viewpoint, following the pioneering work in this field of Helfrich [11]. A variety of 
vesicle shapes and shape transformation pathways under various conditions have been explained 
using the Helfrich free energy. This is given by Eq. (1), and/or by the more realistic ADE model 
[16]. The standard procedure for calculating the equilibrium shape is the variational method. By 
applying this to the energy functional of the bending elastic energy, one can derive the Euler-
Lagrange equation, from which the equilibrium shape of the vesicle is obtained. Recently, Tu and 
Ou-Yang [17] have applied this method to membranes with free edges. Using the Hel frich free 
energy, they derived the Euler-Lagrange equation and the boundary conditions holding at the 
membrane edges. Umeda et al. [18] modified these equations to include the ADE model, and 
obtained open shapes in good agreement with the observed ones.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Schematic picture of the axisymmetric cuplike vesicle s is the distance from the 
bottom along the meridian line θ  is the tangent angle, as shown in the figure r is the distance  
                                                       from the axis of rotation. 

 
 
Here we use the simpler model, i.e. Helfrich's free energy (with spontaneous curvature, 

(Eq. 1)), and describe the shape equation and the boundary conditions for the open vesicles. The 
analysis is restricted to axisymmetric deformation, to simplify the expressions.  

By assuming the line tension energy γ at the rim of the cup, we may write the energy of a 
cuplike vesicle in the following form: 
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are the mean curvature and the Gaussian curvature of the surface, respectively. The factors r, s, and 
φ are the geometrical parameters shown in Fig. 3. The factor r0 in Eq. (18) is the radius of the hole. 
The equilibrium shape of the vesicle is obtained by minimizing W for a given membrane area 

    A = 4πR0
2. The shape equation and the boundary conditions for open vesicles are derived from the 

expression 
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where λ is the Lagrange multiplier. Equation (20) leads to the following Euler-Lagrange equation in 
the surface: 
  

      2kc∆H + kc(2H − c0)(2H 2 −2K + c0H )−2λH = 0,   (21) 
 
where dsdsdrdr /))/(()/1(=∆  is the Laplace-Beltrami operator on the surface [17]. This 
equation corresponds to the force balance per unit membrane area in the direction normal to the 
surface, and it is the same shape equation as that for closed vesicles [18]. The boundary conditions 
for Eq. (21) on the rim are 
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 Physically, Eqs. (22) and (23) correspond to the moment balance and the balance of the 
shear force per unit length of the boundary, respectively. Equation (24) is associated with the 
membrane tension. For more precise descriptions of these equations, see references [17] and [19]. 
Note that the parameters γ  and     kg are involved only in the boundary conditions. The equilibrium 
shape of the open vesicles is obtained by solving Eq. (21) with the boundary conditions Eqs. (22)-
(24), and the constraint     A = 2π rds� = 4πR0

2.    
 
 

5. Results of numerical calculations 
 
In Fig. 4, we show the result of a numerical calculation using Eq. (21), with the boundary 

conditions (22)-(24). The parameters used in the calculations were     c0R0  = 1 and gk  = 0. Figure 4a 

shows the radius of the hole as a function of the line tension, and Fig. 4b depicts the opening up 
shapes of the representative points A, B, and F in Fig. 4a. Open vesicles are obtained when γ is 

smaller than 0/ Rkc .  

 The total energy W of Eq. (18) is shown in Fig. 5, as a function of the line tension γ. In this 
figure, the solid l ine shows the energy profiles of the open vesicles shown in Fig. 4, and the dotted 
line is for a spherical vesicle. 
 

Fig. 4.  The shapes of open vesicles, as obtained by numerical calculations (a) Normalized 
size  of  the  hole      r0 / R0  versus  normalized  line  tension      γR0 / kc . (b) Vesicle shapes at the  
                                       points indicated by the letters in (a). 
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Fig. 5. Calculated total energy W. Dotted line: the energy of a sphere with the same area (a) 
Normalized energy of the open vesicle  shown in  Fig. 4. (b) Magni fication of (a). Solid line:  
                                               the energy of the open vesicle. 
 

 
From Fig. 4 and the energy profiles shown in Fig. 5, we see that the opened shapes 

bifurcate from a sphere at point F (    γ =γR0 / kc  = 1.0). As γ  decreases, the hole becomes larger and 
the total energy W is reduced from that of a spherical vesicle. This result coincides with that from 
Sec. 3, i.e/ that open vesicles are more thermodynamically stable than spherical ones, when the talin 
concentration is higher than a threshold value. This is because the line tension γ decreases as the 
concentration of talin increases (see Eq. (17)). However, the γ -r0 curve in Fig. 4 folds at D and C, 
and there are three solutions for 0.49 < γ  < 0.69. Fig. 5 indicates that open vesicles with shapes 
between C and D are unstable. Therefore as γ  decreases, a first-order transition occurs and the cup-
like vesicles discontinuously expand their holes to assume the shapes shown in B-C of Fig. 4b. Then 
they assume a dish-like shape as shown in A.  

Similar results were obtained for calculations with     c0R0  � 1. The bifurcation to the open 
shapes occurred at     γ = 2− c0R0 from a sphere with a hole continuously or discontinuously expanded 
as γ  decreased. However, we could not find open shapes for     c0R0  > 2. The inequality     c0R0  < 2 may 
be a necessary condition for the formation of open vesicles. This suggestion is also supported by the 
analysis described in Sec. 3. When the hole is infinitesimal small, i.e. when x � 1, condition (6) 
reduces to     c0R0  < 2. This means that a frustrated bending moment is needed for the opening up of 
vesicles, as stated in Sec. 3. 

The calculated shapes shown in Fig. 4b are very close to those shown in Fig. 1. However, 
vesicles similar to those in C and D were also observed in experiments, and the change of the shape 
seems to be continuous, in contrast to the expected discontinuous change in Fig. 5. Because realistic 
colloidal systems are often realized as metastable states, some of the observed vesicles in Fig. 1 
might correspond to the calculated vesicles. Furthermore, we also calculated the shape of the open 
vesicles using the ADE model [19] instead of employing the spontaneous curvature model of 
bending elastic energy. Although the results showed discontinuous shape changes as well, the 
pattern of shape transformations predicted by the ADE model seemed to be closer to the observed 
pattern than to the results of the spontaneous curvature model. For a more precise stabil ity criterion, 
the study of the open vesicles is just starting, and we need more experimental and theoretical studies 
in future work. 

For larger values of the line tension γ, the hole becomes very small, as shown in E of Fig. 4 
since the line tension tends to minimize the hole perimeter. In Fig. 6, we show the enlarged picture 
of a nearly spherical vesicle with a small opening. The surface around the hole protrudes, where the 
large negative curvature     dθ / ds  at the opening compensates for the positive curvature     sinθ / r  in Eq. 
(17). This shape is very different from the ideal one assumed in Sec. 3, where a sphere is cut by a 
plane. Although very small holes are not detectable, the observed membrane shape seems not to be 
spherical, but to protrude around the hole. Therefore, some of the consequences obtained in Sec. 3 
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may require modification, at least for vesicles having very small holes. A full analysis using non-
spherical shapes will be a topic for future work.  

 

 
 

Fig. 6. The shape of a small opening in a nearly spherical surface. The parameters are  
                                            c0R0 = 1, kg = 0 and     γR0 / kc = 0.9. 

 
 
Because we neglected the effect of kg in the calculation used to obtain Fig. 6, the orifice of 

the opening opens as shown in the figure. The effect of kg is also evaluated in our calculation [18]. 
The orifice is more smoothed out when kg is negative, and more curled up when it is positive. 
Although the resolution of the optical observations made so far is not good enough to distinguish 
these differences, precise observation and comparison with the theoretical calculation will reveal the 
true nature of the Gaussian bending modulus [15].   
 
 

6. Concluding remarks 
 

In the first part of this paper, we reported a physico-chemical mechanism for the opening up of 
lipid vesicles, including a rim adsorption of guest molecules and shape changes, according to 
statistical mechanics. It was shown that the concentration of guest molecules on the rims of the 
opened up vesicles determined their shapes. In other words, the line tension is controlled by the 
adsorption isotherm of the guest molecules. For simplicity in this analysis, the opened vesicles were 
assumed to be partial spheres. By this simplified model, we could clearly understand the interplay 
between the adsorption isotherm and the torque balance of the opened vesicles. 

In the last part of this paper, the precise shapes of the opened vesicles were analyzed by 
numerical calculations based on the spontaneous curvature derived originally by Hel frich [11]. 
Depending on the line tension and the spontaneous curvature of the membrane, cuplike vesicles 
were predicted. These shapes coincided with observed pictures [6], [7]. Theoretical analysis, 
however, showed that the shape changes were expected to be discontinuous, from cuplike vesicles to 
shallow dish-like shaped ones.  

Although the observed pictures [6], [7] seem to show a continuous change, more precise 
observations, and a comparison of the theories of the spontaneous curvature model and the ADE 
model should be made. The bending energy of thin elastic materials can be described well by the 
traditional spontaneous curvature model [13]. Helfrich nicely described the bending energy of lipid 
membranes by extending the elastic energy of a l iquid crystal to the monolayer of surfactant 
membranes, and introduced the concept of spontaneous curvature [11]. Because the elastic energy of 
liquid crystals is that of the elastic materials in origin, Hel frich’s bending energy is based on the 
elastic theory of materials.  

The ADE model of the area difference of monolayers of lipid bilayers describes the 
spontaneous curvature in a different way. This model seems to be more analytically gentle than the 
spontaneous curvature model, as far as we see from the numerical calculations shown in this paper 
and those in another report using the ADE model [18].  

The calculation was made only for axisymmetric shapes. However, non-axisymmetric vesicles 
have also been observed. The analysis of such non-axisymmetric vesicles will be a future problem.   
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