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The purpose of this paper is to present an improved theoretical and numerical model for the 
calculation of the temperature distribution in the amorphous magnetic materials such as: 
ribbons, conventional wires and glass-covered microwires, passed by an electrical direct 
current (d.c.) taking into account the d.c. Joule heating effects (conduction, convection and 
radiative heat losses and the structural changes appeared during the crystallization process of 
the conventional amorphous wires). The process of sample heating is accurately described 
by this improved theoretical model. The calculated temperature values are experimentally 
verified through magnetic measurements using a fluxmeter method performed on amorphous 
ribbons, conventional wires and respectively, glass-covered microwires with known Curie 
temperature. The theoretical results are in very good agreement with the experimental ones. 
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 1. Introduction 

 
 Joule heating has proven to be a rather powerful tool to achieve fast structural and/or 
compositional changes in magnetic materials such as amorphous ribbons, conventional amorphous 
wires and respectively, amorphous glass-covered microwires (AGCM). Many comprehensive works 
have been published in the early ‘90 (e.g. [1, 2, 3, 4]), indicating advantages and disadvantages of 
this method. Anyway, the search for improved physical properties in metastable systems (such as the 
ones examined in this paper) is still going on, so that any real improvement or new approach is still 
useful and of great interest. 

Magnetic materials prepared by rapid quenching from the melt as wires or ribbons present a 
special interest for basic research and for technological applications [5]. It is well known [6] that 
thermal treatments can improve and stabilize the physical properties of amorphous materials 
produced by rapid solidi fication techniques. Theoretical and experimental results suggest that some 
other properties related to the structure of the material may be controlled and favorably modi fied by 
application of a suitable thermal treatment [7]. 
 Direct current (d.c.) Joule heating techniques have always been of great help in the 
researches on thermal annealing of the magnetic amorphous materials. These techniques allow us to 
observe the structural transformations that occur in the material by effect of the treatment itself. This 
annealing method is based on the thermal effect of the electrical d.c. which passes through an 
amorphous sample [8]. One of the difficult problems concerning these treatments is to know the 
value of temperature corresponding to a given annealing electrical d.c., that passes through the 
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sample. The use of d. c. Joule heating, in order to change the sample’s properties, implies the 
knowledge of the sample’s temperature as a function of the applied d.c. ( )I A . 
 The aim of this paper is to present an improved theoretical model for the calculation of the 
temperature distribution in an amorphous sample passed by an electrical d.c. and to compare our 
theoretical results with the experimental data. We will determine the temperature in both steady and 
transient states, considering that the energy developed by Joule effect is consumed for the increase 
of the internal energy of the sample (in the transient state) and for the compensation of the radiation 
and convection heat losses (in the steady state). We have explicitly taken into account the presence 
of convective dissipation. This is an improvement with respect to older models because the 
convection cannot be completely ruled out by vacuum techniques.  

As it is very well known, an electrical resistivity variation leads to a variation of the 
developed Joule power, and, subsequently, to a corresponding variation in the temperature 
distribution. For this reason, we must consider at least a linear dependence of the resistivity on 
temperature. In the amorphous materials, electrical resistivity always exhibits reversible and 
irreversible changes on heating; even low-temperature annealing may lead to some change upon 
coming back to room temperature. Moreover, Joule heating is specifically exploited to induce 
structural changes (including relaxation of the amorphous phase or nanocrystall ization, when 
applicable). These changes may give rise to resistivity changes much higher than the simple linear 
temperature dependence. Nevertheless, we emphasize that in the present theoretical model, for 
ribbons and glass-covered microwires we have not considered the changes which can appear in the 
electrical resistivity as a result of the sample’s crystall ization. The effect of these changes becomes 
significant only for those values of the direct current that lead to temperatures over the 
crystallization ones, namely to temperatures higher than those used for heat treatments in order to 
improve the magnetic properties of the amorphous materials. However, for Joule-heated amorphous 

77.5 15 7.5Fe B Si  wires we have also analyzed the crystall ization mechanism in the non-isothermal 
process in terms of the kinetics transformations for the solid-state phase transformations. More 
precisely, in this case we have developed a numerical model within the context of the classical 
theory of phase evolution applied to conventional amorphous wires to simulate the kinetics of 
nucleation during the non-isothermal crystall ization process.  
 
 
 2. Steady state and transient temperature distribution in 
      d. c. Joule-heated amorphous materials  
 

In this section we calculate the temporal and radial distribution of the temperature, in the 
transient and steady states for the amorphous stages of the samples (that means, for those values of 
the electrical d.c. that lead to the temperatures situated below the one corresponding to the onset of 
the crystall ization process). The linear dependence of the electrical resistivity on the temperature 
was also taken into account. 

 To determine the temperature distribution in the amorphous samples annealed by Joule 
effect, we will use the Fourier heat conduction equation [9] with the corresponding boundary 
conditions. 
 Let’ s consider an amorphous sample (a ribbon, a conventional wire or an AGCM), placed 
in ” vacuum” at a pressure less than 1 Pa , passed by an electrical d.c.. We associate a Cartesian 
system of coordinates ( ,  ,  )x y z  to the ribbon, having the Oz  – axis along the ribbon’s length, Ox  – 
axis along the ribbon’s width and Oy  – axis along the ribbon’s thickness. For wires (with- and 
without glass insulation) we associate a cylindrical system of coordinates ( ,  ,  )r zθ  to the sample 
having the Oz  – axis along the wire’s axis and we assume that the heat loss by Thomson effect is 
negligible (the ends of the samples are thermally isolated). The cylindrical metallic core of the 
amorphous glass-covered microwire has the radius 1R , and the glass insulation has the thickness 

2 1R R− , where 2R  is the total microwire’s radius (metal + glass). 
 The heat developed in the unit volume by Joule effect has the form 
 

[ ]{ }2 2
0 0( ) 1 ( ,  )  ( )iW j sc T sc t T j scρ ρ α= = + − ,                                           (1) 

 
where ( ,  )sc tρ ρ=  is the resistivity at the temperature ( ,  )T sc t , being given by the well known 
relation, 
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[ ]{ }0 0( ,  ) 1 ( , )sc t T sc t Tρ ρ α= + − .                                                      (2) 

 
Here α  is the thermal coefficient of the resistivity, t  is the time during which the electrical dc 
passes through the sample, 0ρ  is the resistivity at the room temperature 0T , and ( )j sc  is the current 
density distribution in the sample. The “sc”  variable in the above functions means “spatial 
coordinates” : for the ribbon the “sc”  variable shall be replaced by the both spatial coordinates x  and 
y , while for the wires (with- and without glass insulation) by the radial coordinate r . Also, in the 
case of the amorphous glass-covered microwire, the considerations that we develop in this section 
are valid only for the metallic core of the microwire. 
 Concerning the variation of the current density j  as a function of “sc” , we must point out 
that, because of the small dimensions of the sample (the experimental samples have a cross-section 
of ( )12 8 210 10 m− −÷ ), the spatial variations of the electrical field in the samples can be neglected. 
Because of that, if we take a constant value for the current density, then, we will introduce a 
maximum relative error on j , given by 
 

( )1* 11 ( ) 1j T Tδ β α δ β δα
−−� � � �= − + + −� �� � ,                                             (3) 

 
which, for the ribbon has the numerical value 0.012, whereas for the wires this numerical value is 
0.0052. In the above equation *

0 /T Tβ = , with * (0)T T≡ . The significance of ( )T sc  is given as 
follows, while Tδ  and δα  are, respectively, the relative errors on temperature and thermal 
coefficient of the resistivity. Thus, taking into account (3), we may consider with a corresponding 
level of confidence that ( ) / .j sc j I S const≡ = =  
 The heat generated in the sample is a function of “sc”  and the time t , for each value of the 
electrical d.c. ( )I A . In the transient state the conservation law of energy for the sample becomes 
 

( ) ( ) 2 2 /M c dT dt I Sρ ρ ρ −
∞= − ,                                                         (4) 

 
where Mρ  is the mass density, c  is the specific heat and ( )scρ ρ∞ ∞=  is the electrical resistivity in 
steady state. The temperature field ( , )T sc t  can be obtained by integrating (4) and taking into 
account (2). The result is 
 

[ ] ( )2 1 1 2
0 0 0 1( ,  ) ( ) 1 exp  MT sc t T T sc T I c S t− − −

∞
� �= + − − −
� �

αρ ρ .                                    (5) 

 
Here ( )T sc∞  is the temperature of the sample2 in steady state (at the thermal equilibrium) and 1S  is 
the cross-section of the sample (for the ribbon 1S gl= , g  being the thickness of the ribbon and l  – 
its width; for the conventional wire 2

1 0S Rπ= , 0R  being the radius of the wire, while for the 
amorphous glass-covered microwire 2

1 1S Rπ=  is the cross-section of the microwire’s metallic core). 
 Using the Fourier heat conduction equation [9] and the expressions corresponding to the 
boundary conditions, let’s calculate the equilibrium temperature, ( )T sc∞ . In steady state ( t → ∞ ), 
the thermal equilibrium between the sample and the environmental medium is achieved. In this case, 
the heat generated by Joule effect is lost by convection and radiation processes. 
 
 

2.1 The Temperature Distr ibution in d. c. Joule-heated amorphous ribbons 
 

 The Fourier heat conduction equation, 
 

2 2

2 2

( ,  ) ( ,  )
0iWT x y T x y

x y k
∞ ∞∂ ∂+ + =
∂ ∂

,                                                       (6) 

with the initial conditions, 

                                                
2 In the case of the glass-covered microwire this is the metallic core’ s temperature. 
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( )0 0( , ,  0) ,    ,  ,  0T x y I T x y Iρ ρ∞ = = = =                                                   (7) 

 
has the general solution 
 

( )1 2 2 1 2
0 0( ,  ) ( )cosh( )cos  T x y T C I my x m I k Sα αρ− − −

∞ = − + + .                                (8) 

 
 In the equation (8), k  is the thermal conductivity and ( )m m I=  is a function of the 
parameter ( )I A  (the intensity of the electrical dc). For 0I = , from (7) and (8) it follows that 

(0) 0m = . Now, using the relation (2) and the general solution (8) we are able to find the electrical 

resistivity in the steady state, ( ,  )x yρ∞ : 
 

( )2 2 1 2
0 0( ,  ) ( ) cosh( )cos  x y C I my x m I k Sρ ρ α αρ − −

∞ = + .                                    (9) 

 
For 0I = , from the initial conditions (7) and (9) it results that  
 

(0) 1/C α= .                                                                       (10) 
 

 In order to determine the temperature distribution in the ribbon, we must consider the 
corresponding boundary conditions. Thus, on the ribbon’s surface, the energy conservation law can 
be written as follows 
 

i conv radWV Q Q= + ,                                                                 (11) 
 

where V  is the volume of the ribbon, convQ  is the convective heat loss [9], 
 

[ ] ( ) 1

0  1( ,  ) 2 ( ,  )convQ p T x y T A R MT x yπ −
∞ ∞= − , for 2 2,  glx y= ± = ± ,                        (12) 

 
and radQ  is the radiative heat loss [9], 
 

4 4
1 0( ,  )radQ A T x y Tσε ∞� �= −� �, for 2 2,  glx y= ± = ± .                                      (13) 

 
 In the above two relations  1 2 ( )A L l g= +  is the area of the surface through which the 

radiative and convective heat exchange takes place, L  is the length of ribbon, σ  is the Stefan-
Boltzmann constant, R  is the universal gas constant 8.31 /R J mol K= ⋅ , p  is the pressure 

)/(10)760/101325( 22 mNp −×= and 29M =  is the air molecular weight. We consider that the 
ribbon is subjected to an electrical d.c. Joule-heating treatment in vacuum at the pressure less than 
1 Pa . As we already have stated, the thermal losses are attributable to both radiative and convective 
contributions. The second one can not be neglected because the vacuum state, technologically 
speaking, is not a perfect one. Thus, we will consider that on the surface of the ribbon 

( )2 2,  glx y= ± = ± , a fraction  (0 1)s s< <  from the radiative heat loss radQ  represents the convective 

heat loss, convQ , 

conv radQ sQ= .                                                                      (14) 
 

 In the most general case, the s  ratio depends on the annealing electrical d.c., i.e. ( )s s I= . 
It is very difficult to find out the ratio ( )s I  either experimentally or explicitly (analytically). For this 
reason, the only way to determine this ratio is the numerical approach; in fact, as it will be shown we 
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don’t need to know ( )s I  explicitly, if we choose a proper handle of the boundary conditions. At the 
thermal equilibrium (in the steady state), the thermal energy developed in the unit volume by Joule 
effect is consumed in order to compensate the radiative and convective heat losses. Using the 

relations (11) and (14), for 2 2,  glx y= ± = ±  we obtained the following conditions: 

 

( )1( 1)  ,    1rad convW V s Q W V s Q−
∞ ∞= + = + ,                                               (15) 

 
where, in agreement with (1), W∞  is given by 2 2/W I Sρ∞ ∞= . For the characteristics of the 
amorphous ribbon given in Table 1 we have found the numerical values of ( )C I  for eight given 

values of electrical d.c., [ ]0.1 0.8I A∈ ÷ . Using these values we have calculated the numerical 

values of ( )m m I=  and ( )s s I=  (Table 2). As one can observe, the higher the value of the electrical 
d. c., the faster the equilibrium value of the temperature is reached. Besides, the higher the value of 
the electrical d.c., ( )I A , the smaller the convective heat loss becomes because, according to (14), for 

increasing values of the electrical d.c. ( )I A there is a decreasing of the ( )s s I=  coefficient. 
 

Table 1. The characteristics of the amorphous sample. 
 

Characteristic 
quantity 

Significance Value and 
measurement units 

c  the specific heat 530 /  J kg K  
ε  the coefficient of the thermal emittance 0.43  
k  the thermal conductibility 30 /W mK  

1k  the thermal conductibility of the metallic core 30 /W mK  

2k  the thermal conductibility of the glass insulation 1.177 /W mK  

Mρ  the mass density 7.2×103 kg/m3 

0ρ  the resistivity at the room temperature 1.24×10-6 Ω⋅m 

0T  the room temperature 293 K  

L  the length of the sample 250 mm 
l  the width of the ribbon 1 mm 
g  the thickness of the ribbon 30 mµ  

0R  the radius of the conventional wire 60 mµ  

1R  the radius of the metallic core 9 mµ  

2R  the radius of the amorphous glass-covered 
microwire 

18 mµ  

 
Table 2. The numerical calculated values of ( )m I , and ( )s I  for different values of electrical d.c. ( )I A . 

 
No. ( )I I A=  ( )m m I=  ( )s s I=  
1 0.1 127.281 0.309 
2 0.2 140.720 0.176 
3 0.3 127.755 0.108 
4 0.4 112.309 0.072 
5 0.5 97.253 0.052 
6 0.6 82.121 0.040 
7 0.7 65.592 0.031 
8 0.8 44.810 0.025 
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 The spatio-temporal distribution of the temperature ( ,  ,  )T x y t  in the Joule-heated ribbons is 
 

( ) ( ) ( )2 2 1 2 1 2 1 1 2
0 0 0( ,  ,  ) ( )cosh( )cos  1 exp  ,    1,  8i i MT x y t T C I my x m I k S I c S t iαρ α αρ ρ− − − − − −� � � �= + + − − − =

� �� �� �
.(20) 

 

while the spatial distribution of the temperature ( ,  )T x y∞  in the steady state ( t → ∞ ) is 
 

[ ] ( ) ( )2 2 2
0 0( ,  ) 1/ ( )cosh( )cos  / ,    1, 8ii

T x y T C I my x m I kS iα αρ∞ = − + + = .                   (21) 

 

 As one observes from relation (20), the higher the value of the direct current, the faster the 
equilibrium value of the temperature is reached. We have also obtained the electrical resistivity of 
the ribbon in the transient state by taking into account the relations (2) and (20), 
 

( ) ( ) ( )2 2 1 2 2 1 1 2
0 0 0 0,  ,  ( ) cosh( )cos 1 1 exp  Mx y t C I my x m I k S I c S tρ ρ ρ α αρ αρ ρ− − − − −� � � �= + + − − −� �� �� �

. 

 
 

2.2 The temperature distr ibution in d. c. Joule-heated amorphous conventional wires 
 
 In the steady state, the thermal equil ibrium of a conventional wire is described by general 
solution of the Fourier heat conduction equation [9], 
 

( )1
0iWdT rd

r
r dr dr k

∞� � + =	 

� �

,                                                           (22) 

 
and the initial conditions, 
 

( )0 0( , 0) ,    ,  0T r I T r Iρ ρ= = = =    .                                                 (23) 

 
The general solution of the equation (22) is 
 

( )1 2 1 2
0 0 0( ) ( )T r T C I J r I k Sα αρ− − −

∞ = − +                                              (24) 

 
where the integration “constant”  ( )C C I= , is a function of the same parameter ( )I A  (the intensity 
of the electrical d.c.) while k  is the thermal conductivity. For 0I = , from (23) and (24) we get 

(0) 1/C α= . 
 After a straightforward calculation, from (2) and (24) we find the electrical resistivity in the 
steady state, ( )r∞ρ :  
 

( )2 1 2
0 0 0( ) ( )r C I J r I k Sρ ρ α αρ − −

∞ = .                                                (25) 

 
 In the following, we consider the corresponding boundary conditions to determine the 
temperature distribution in the conventional wire. Thus, the energy conservation law on the 
microwire’s surface can be written as 
 

i conv radWV Q Q= + ,                                                                  (26) 
 

where V  is the volume of the sample, convQ  is the convection heat loss [9]: 
 

[ ] ( ) 1

0  1( ) 2 ( )convQ p T r T A R MT rπ −
∞ ∞= − , for 0r R= ,                                    (27) 
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and radQ  is the radiative heat loss [9] 
 

4 4
1 0( )radQ A T r Tσε ∞� �= −� �, for 0r R= .                                                  (28) 

 In the above two relations  1 02A R Lπ=  is the area of the surface through which the radiative 
and convective heat exchange takes place. As in the ribbon’s case, on the surface of the microwire, 

0r R= , besides the radiative thermal loss, radQ , a fraction  (0 1)s s< <  from this radiative heat loss 

represents the convective heat loss, convQ , 
 

conv radQ sQ= .                                                                      (29) 
 

where s  ratio can depend on the annealing d.c., i.e. ( )s s I= . Using relations (26) and (29) for 

0r R= , we obtained the following conditions: 
 

( )( 1)  ,    1/ 1rad convW V s Q W V s Q∞ ∞= + = + ,                                               (30) 

 
where, in agreement with (1), W∞  is given by 2 2/W I Sρ∞ ∞= . The relations (30) lead us to 
 

( ) ( )1/ 412 2 1 2 2 3 4 1 2 1 2
0 0 0 0 0 0 0 0 0 0( ) 2 ( 1) ( )C I I J R I k S R s T T C I J R I k Sρ α αρ σεπ α αρ

−− − − − −� �� �+ + = − +� �� �� �
(31) 

 
and 

( ) ( ) ( )
( ) ( ){ }

12 2 3 2 1 2 2 1 2 1
0 0 0 0 0 0 0 0

1/ 2
1 1 2 1 2

0 0 0 0

( ) 2 ( )

                           1 2 ( ) .

C I I R J R I k S C I J R I k S

s p R M T C I J R I k S

ρ α π αρ αρ α

π α αρ

− − − − − −

−
− − − −

� �= − ×
� �� �

� �× + − +
� �� �

                  (32) 

 
 For the characteristics of the amorphous conventional wire given by the Table 1 we find the 
numerical values for ( )C I  and ( )s I  as numerical solutions of transcendent equations (31) and (32), 

for ten given values of electrical d.c., [ ]0.001 0.5I A∈ ÷  ( Table 3). 

 
Table 3. The numerical values of the ( )C I , and ( )s I  for different values of electrical d.c. ( )I A . 

 
No. ( )I I A=  ( )C C I=  ( )s s I=  
1 0.0010 5714.39 0.6230 
2 0.0015 5714.52 0.6336 
3 0.0020 5714.70 0.6491 
4 0.0025 5714.92 0.6699 
5 0.0030 5715.18 0.6968 
6 0.0035 5715.48 0.7309 
7 0.0040 5715.81 0.7737 
8 0.0045 5716.15 0.8273 
9 0.0050 5716.50 0.8949 
10 0.0055 5716.85 0.9807 

 
 
 The radial and temporal distribution of the temperature ( ,  )T r t  in the Joule-heated 
conventional wires results by replacing the numerical values given in Table 3 in the general 
expression (5). The result is: 
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( ) ( ){ } ( )12 1 2 1 2 2
0 0 0 0( ,  ) ( )  1 exp ,   1,  10i i MT r t T C I J r I k S I cS t iαρ α αρ ρ

−− − −� � � �= + − − − =
� �� � � �� �

,      (33) 

 

while the radial distribution of the temperature ( )T r∞  at the thermal equilibrium (the steady state, 
t → ∞ ) is 

[ ] ( ) ( )2 1 2
0 0 0( ) 1/ ( ) ,    1,  10ii

T r T C I J r I k S iα αρ − −
∞ = − + = .                                 (34) 

 

 From (2) and (5) we obtain the electrical resistivity of the conventional wire in the transient 
state, 

( ) ( ) ( )2 1 2 2 1 1 2
0 0 0 0 0,  ( ) 1 1 exp  Mr t C I J r I k S I c S tρ ρ ρ α αρ αρ ρ− − − − −� � � �= + − − −� �� �� �

. 

 
 

 2.3 The temperature distr ibution in d. c. Joule-heated amorphous glass-covered    
         microwires 
 
  Using the Fourier heat conduction equation, 
 

1

( )1
0m idT r Wd

r
r dr dr k

� � + =	 

� �

,                                                            (35) 

 
and the expressions corresponding to the initial conditions, 
 

( )0 0( , 0) , ,  0mT r I T r I= = = =ρ ρ ,                                                                  (36) 

 
we obtain the radial temperature distribution ( )mT r  in the metallic core  of the amorphous glass-
covered microwire, at the thermal equilibrium (steady state, t → ∞  ):    
 

( )1 2 1 2
0 0 0 1 1( ) ( )mT r T C I J r I k Sα αρ− − −= − + ,                                              (37) 

 
where: 0J  are the  zero-order Bessel functions, 1k  is the thermal conductivity of the metall ic core 
and ( )C C I=  is the integration constant that is a function of electrical d.c. ( )I A . For 0I = , from (36) 

and (37) follows that 1(0)C α −= . The electrical resistivity in the steady state, ( )rρ∞  is given by the 
relation, 

( )2 1 2
0 0 0( ) ( )r C I J r I k Sρ ρ α αρ − −

∞ = .                                                 (38) 

 
 In order to determine the temperature distribution in the metall ic core, the corresponding 
boundary conditions must be considered. 
 
 
 2.3.1. The temperature distr ibution in the glass insulation 

 
 In the steady state (t→∞), the thermal equilibrium between the sample and the 
environmental medium is achieved. In this case, the heat flux from the metall ic core – generated by 
Joule effect – is received by the glass insulation. Using the Fourier heat conduction equation [9] for 

1 2R r R< < , 

0
)(1 =


�

�
		
�

�

dr

rdT
r

dr

d

r
g

,                                                              (39) 
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we shall calculate the equilibrium temperature of the glass insulation, ( )gT r . The general solution of 

equation (39) reads 
 

1 2( ) lngT r A r A= + ,                                                                (40) 

 
where the integration “constants”  1 1( )A A I=  and 2 2( )A A I=  are functions of the same parameter 

( )I A , their physical signi ficance being given in the following subsection. 
 
 
 2.3.2 Boundary conditions for  the metal-glass inter face  

 
 In order to determine the final expressions of the temperature ( )mT r  in the metallic core (37) 
and in the glass insulation (40), we must use the following boundary conditions: 
 i) In the thermal steady state, the heat flux from the metallic core is received by the glass 
insulation. This heat flux (from the metal-glass interface) must be continuous. So, for 1r R=  we 
must have 
 

( ) ( )1 2/ /m gk dT dr k dT dr= ,                                                           (41) 

 
where 1k  and 2k  are the coefficients of thermal conductivity of the amorphous metall ic core and 
glass insulation, respectively; 
 ii) On the metal-glass interface ( 1r R= ), the temperatures from the adjacent regions must be 
equal, 
 

1 1( ) ( )m gT R T R= .                                                                  (42) 

 
 iii) In the steady state ( t → ∞ ), on the outer surface of the microwire, the thermal 
equil ibrium between the sample and the environmental medium is achieved by the radiative heat loss: 
 

( )
2

1 4 4
2 2 0/ ( )g

r R
dT dr Pk T R T−

=
� �− = −� �,                                                 (43) 

 
where 22 /P L Rσε=  is the so-called microwire’s loss parameter, L is the length of the sample. 
Using the boundary conditions given by (41), (42) and (43) we get the following expressions: 
 

( ) ( )1 11 2 2 4 2 2 4
1 2 1 1 1 0 1 1 0 1 1 1( )k k RC I J R I k R I k R Aαρ π αρ π

− −− � �− =	 

� �

,                            (44) 

 

( ) 11 2 2 4
1 1 2 0 0 1 0 1 1ln ( )A R A T C I J R I k Rα αρ π

−− � �+ = − + 	 

� �

                                   (45) 

 
and 

( )
1/ 414

1 2 2 0 1 1 2lnA R A T Ak R P
−� �+ = −

� �
,                                                (46) 

 
where 1J  are the first-order Bessel functions. From (44), (45) and (46) we obtain the ( )C I , 

1 1( )A A I=  and 2 2( )A A I=  as follows: 

 The constant 1 1( )A A I=  results as numerical solution of the following transcendent equation 
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( )
( )

2 1 2 4 1/ 4
0 1 0 1 1

41 2 1 1
1 0 0

2 1 2 4
2 21 1 0 1 1 0 1 1

1
ln

J R I k RR k S A
A T T

R PRR I k J R I k R

αρ π

ααρ αρ π

− − −

− − −

� �
� � � �� �+ = − − −	 
 	 
� �
� � � �� �� �

.                 (47) 

 
 For each given value of the annealing current I (A), one obtains a corresponding numerical 
value of the “constant”  1 1( )A A I= . Then, the numerical values of ( )C I  simply results from 
 

( ) ( ) 11
2 1 2 4

2 1 1 1 0 1 1 1 0 1 1( )C I k S R I k A J R I k Rαρ αρ π
−− − − −� �= −

� �� �
,                                (48) 

where 1A  (already known) must be introduced. At the same time, the constant 2A  results 
immediately from (46). We observe that the parameter ( )C I  depends on electrical d.c. ( )I I A= , the 

material constants: 0 1 2,   ,   ,   k kα ρ  and the sample’s dimensions, 1 2,   R R  and L . For different values 
of the electrical d.c ( )I A , the structural changes (metastable phase relaxations) take place in the 
metallic region of the microwire. Due to this fact, the parameter ( )C I  is called the coefficient of 
metastable phase relaxations and it explicitly contains the influences of the structural 
transformations that occur in the material by effect of the heat treatment itsel f. 
 For the amorphous glass-covered microwire’s characteristics given by the Table 1 we have 
found the numerical values for ( )C I , 1( )A I  and 2( )A I  as numerical solutions of nonlinear 
equations (46), (47) and (48), for eleven given values of electrical d.c. in the interval 

[ ]1  28  I mA∈ ÷  (Table 4). The higher the value of the direct current ( )I A , the higher ( )C I , 1( )A I  

and 2( )A I  are. 
 

Table 4. The numerical values of the ( )C C I= , 1 1( )A A I=  and 2 2( )A A I=  for different values  

                                                              of electrical dc ( )I A . 
 

No. ( )I mA
 

( )C I  
1 1( )A A I=  2 2( )A A I=  

1 1 5772.63 - 0.001 58.3385 
2 5 5845.17 - 0.018 130.681 
3 7 5869.32 - 0.035 154.632 
4 9 5890.25 - 0.058 175.293 
5 14 5934.20 - 0.140 218.287 
6 17.8 5962.61 - 0.229 245.668 
7 21 5984.30 - 0.320 266.308 
8 23 5997.06 - 0.383 278.309 
9 25 6009.28 - 0.454 289.715 
10 27 6021.05 - 0.530 300.588 
11 28 6026.78 - 0.571 305.841 

  
 Introducing the numerical values of ( )C I , 1( )A I  and 2( )A I  in the general relations (37), (5) 
and (40) we have obtained: 
 i) The spatial temperature distribution ( )mT r  in the steady state ( )t → ∞ , at the thermal 
equil ibrium in the microwire’s metallic core, 
 

( )1 2 1 2
0 0 0 1 1( ) ( )mT r T C I J r I k Sα αρ− − −= − + ;                                           (49) 

 
 ii) The spatio-temporal distribution of the temperature, ( ,  )mT r t , in the Joule-heated 
amorphous glass-covered microwires, in the temperature region situated below the one 
corresponding to the onset of the crystallization process: 
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( ) ( )1 1 1 2 1 1 2
0 0 1 0 1 0 1( ,  ) ( )  1 exp  m MT r t T C I J rIS k I c S tαρ α αρ ρ− − − − − −� � � �= + − − −� �� �� �

;                 (50) 

 
 iii) The temperature distribution ( )gT r  in the steady state ( t → ∞ ) at the thermal 

equil ibrium in the microwire’s glass insulation, 
 

1 2( ) ( ) ln ( )gT r A I r A I= + ,                                                            (51) 

 
the transient temperature in the microwire’s glass insulation being not relevant. 
 On the basis of the established relations (49), (50) and (51) with the numerical values of 

1( ),  ( )C I A I  and 2( )A I  we have calculated the temporal evolution and radial distribution of the 
temperature at different values of the direct current that passes through an amorphous glass-covered 
microwire which has the composition 77.5 7.5 15Fe Si B  and the above mentioned characteristics. Taking 
into account the relations (2) and (5), we have obtained the electrical resistivity of the amorphous 
glass-covered microwire’s metallic core in the transient state, 
 

( ) ( )2 1 2 2 1 1 2
0 0 0 0 1 0 1( ,  ) ( )  1 1 exp  m Mr t C I J r I k S I c S tρ ρ ρ α αρ αρ ρ− − − − −� � � �= + − − −� �� �� �

. 

 
 
 3. Thermal behavior and crystallization kinetics analysis of the  
     amorphous conventional wires 
 
 In this section, our purpose is to analyze the crystallization mechanism in the non-isothermal 
process in terms of the kinetics transformations for the solid-state phase transformations in Joule-
heated amorphous 77.5 15 7.5Fe B Si  wires. We present a numerical model which is able to describe the 
kinetics of non-isothermal crystallization process. In general, the transition from the amorphous 
phase to the crystalline phase is a complicated process. The crystallization process of the amorphous 
wires consists of two steps: nucleation and crystal growth. The nucleation can be described as a 
process in which molecules come into contact, orient and interact to form highly ordered structures, 
called nuclei. According to their environment, the crystals grow more or less regularly and exhibit 
different growth morphologies. Nucleation and crystal growth are not mutually exclusive: nucleation 
may take place while crystals grow on existing nuclei [10]. The most common approach used to 
describe the crystallization kinetics is the Johnson-Mehl-Avrami (JMA) model, in which the relative 
crystallinity varies as a function of time, ( )x x t= . A very useful tool to understand and predict these 
phenomena is the numerical analysis method. In the following, we develop a numerical model 
within the context of the classical theory of phase evolution applied to amorphous conventional 
wires to simulate the kinetics of nucleation during the non-isothermal crystallization process. The 
aim of this study is to analyze the thermal behavior of the Joule-heated amorphous wires in such 
conditions. More precisely, we present a numerical model for the temporal evolution of the sample’s 
temperature and for volume fraction crystallized with time, ( )x t , assuming that the crystal growth 
and Avrami crystallization rate constant have an Arrhenius type temperature dependence [ ]K K T= . 

We also consider that the nucleation frequency 0K  is constant. The Avrami model [10] can be also 
used to analyze the non-isothermal crystallization process. In our model, the energy released during 
the crystallization process appears to be a function of temperature, rather than time, as in the case of 
isothermal crystallization, because the non-isothermal crystall ization process may be considered to 
be composed of a great number of infinitesimally small isothermal crystall ization steps. The 
crystallization rate parameter can be described by the exponential relation (Arrhenius 
form) ( )0[ ] exp /K T K nQ kT= − , where Q  is the growth or diffusion activation energy, T  is the 

absolute temperature and k  is the Boltzmann constant. The activation energy Q  is strongly 
dependent on the type of nucleation in the crystallization process.  
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From the direct experimental observations, it is known that the crystallization process in the 
Joule -heated amorphous wires is an exothermal one. In this case, the energy developed by the Joule 
effect is consumed in the crystallization process to increase the internal energy of the sample and to 
compensate the radiative heat losses. The increase of the applied d.c. ( )I A  gives rise to an increase 
in the electrical resistivity and subsequently leads to the increase of internal energy. The final 
temperature of the sample results from the balance between the applied electrical power and 
dissipation effects in the fully crystallized sample. For a more accurate picture of the process, in our 
model, we consider the following working hypotheses:  
- the structure dependent parameters l ike Mρ  and c  are constant; 
- the coefficient of the thermal emittance, ε , is constant during the heating treatment; 
- the results obtained in the subsection 2.2, show that for different values of the applied d.c., the 
temperature of the sample is approximately constant in the whole cross-section of the conventional 
wire. For this reason in the following, we will neglect the conduction heat loss and we assume that 
the temperature in the sample’s cross-section is constant. 

In order to analyze the thermal behavior and crystallization process of the amorphous wires, 
we introduce a new time scale, whose zero is coincident with the onset of the crystallization process, 
at the steady-state temperature value of the heated amorphous sample, ( , ) ( )M MT r I T I T≡ = . The 
crystallization process of the sample starts from 0t = , when an additional amount of energy per unit 
time is homogeneously released to the sample. The crystall ization power density, efW  (expressed in 

W/m3) is given by the expression 
 

[ ]( ) ( ) /ef effW t H dx t dt∆= ,                                                            (52) 

 
where effH∆  is the amount of the total density of crystallization heat effectively contributing to the 

extra heating of the amorphous wire and relative crystallinity ( )x t  represents the solution of the 
JMA’s equation [11]. At the initial moment, 0t = , the transformed volume fraction is (0) 0x = , 
while at the equilibrium of the crystall inity phase, ,  ( ) 1t x t→ ∞ → ∞ = . The rate of transformation 

( ) /dx t dt   will be obtained in the following.  
During the crystallization process of the sample, the energetic balance between the 

crystallization power density (52), the heat developed in the unit volume of the wire by Joule effect, 
2 2( ) /iW t I Sρ= , and the radiative heat loss can be represented by the expression  

[ ] 2 2 4 4( ) / ( ) ( ) / ( )M ef Mc dT t dt W t t I S P T t T� �= + − −� �ρ ρ , where 

 

[ ]( ) ( ) ( ) ( ) 1 ( )amorph cryst t x t t x tρ ρ ρ= + −                                                   (53) 

 
is the electrical resistivity of the amorphous wire during the crystallization process. In this relation,  
 

[ ]{ }0( ) 1 ( )amorph m amorph Mt T t Tρ ρ α= + −                                                  (54) 

 
represents the electrical resistivity of the amorphous phase, amorphα  is the corresponding thermal 

coefficient of this resistivity while 
 

[ ]{ }0( ) 1 ( )crys m crys Mt T t Tρ ρ α= + −                                                      (55) 

 
represents the electrical resistivity of the crystalline phase, where crysα  is the corresponding thermal 

coefficient.  
Thus, at the initial moment, 0t = , the electrical resistivity is  0( 0) ( 0)amorph mt tρ ρ ρ= = = = , 

i.e., the sample as a whole is in the amorphous state, while at the equilibrium of the crystalline phase, 
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t → ∞ , the electrical resistivity is given by ( ) ( )cryst tρ ρ→ ∞ =  (the sample is completely 

crystallized). Introducing the relations (54) and (55) in (53), we obtain the electrical resistivity ( )tρ  
of the amorphous wire during the crystallization process 

 

[ ]{ } [ ]0 0( ) 1 ( ) ( ) ( ) ( )m crys M m amorph crys Mt T t T T t T x tρ ρ α ρ α α= + − + − − .                           (56) 

 
In the case of Joule heating, an increase of electrical resistivity implies a corresponding 

increase of the Joule power and subsequently a rapid increase of the wire’s temperature. The kinetics 
of this process may be studied in order to precisely control the structural transformations of the 
amorphous wire during the crystallization process. The rate of transformation in the non-isothermal 
crystallization process [10], is given by the relation 

 

[ ][ ] ( )1/( 1) /

0( ) / 1 ( ) ln[1 ( )] exp /
nn n

dx t dt n x t x t K Q kT
−= − − − − .                               (57) 

 

 In the non-isothermal crystallization process of the sample, energetic balance between the 
crystallization power density (52), the heat developed in the unit volume by Joule effect in the 
sample, and radiative heat loss is given by 

 

[ ] [ ][ ] ( )
[ ]

( 1) / 1/
0

4 4 2 2 2 2
0 0

( ) / 1 ( ) ln[1 ( )] exp /

        ( ) / ( ) ( ) / ,

n n n
M eff

M m m crys M

c dT t dt H n x t x t K Q kT

P T t T I S x t T t T I S

−= − − − − −

� � � �− − + + + −� �� �

ρ ∆

ρ ρ γ α
                     (58) 

 

where amorph crysγ α α= − .  

We consider the relations (57) and (58) as a differential equations system with the unknown 
quantities ( )T t  and x(t). Using the Runge-Kutta method for the differential equations system 
(Runge2D) in a Mathematica subroutine, we compute the solutions ( )T t  and ( )x t  with the initial 

conditions ( 0) MT t T= =  and ( 0) 0x t = = , for the temporal evolution of the temperature and volume 
fraction crystallized with time in the non-isothermal crystall ization kinetics analysis. Passing 
through the sample the same value of the electrical d.c., 0.3 I A= , from the relations (33) and (34), 
we obtain the equilibrium temperature of the amorphous phase at the initial moment 387.9 MT C= � .  

 
 

 
 

Fig. 1. The temporal evolution of the temperature ( )T t  in the non-isothermal crystallization  
                                                                    process. 



I. A�tef�noaei, D. Radu, H. Chiriac 

 
 

946 

By best fit to experimental data we consider the particular values for the adjustable 
parameters (the kinetic exponent 3.6n =  and 8 35.8 10 /effH J m∆ = ⋅ ). In our numerical analysis we 

will consider that in the non-isothermal crystallization process, the growth of diffusion activation 
energy is Q = 2.24 eV. Fig. 1 presents the numerical solution ( )T t  of the di fferential equations 
system (57) and (58), i.e. the temperature of the sample ( )T t  for the applied electrical dc 0.3 I A= . 
We observe that the entire non-isothermal crystallization process predicted by this model is ranging 
from 387.9 MT C= �

 to 480 T C= � . 
 The numerical analysis gives for the temperature of the amorphous wire two relative 
maximum values, corresponding to successive stages of crystallization as follows: the first stage 
corresponds to the temperature 550 C�  and the second one to 539 C� . This behavior is in very good 
agreement with the experimental results obtained by differential scanning calorimetry (DSC) and 
presented in Fig. 2. This figure shows the dependence of the heat flow as a function of temperature 
(in C� ) for an conventional 77.5 15 7.5Fe B Si  wire. The DSC curve exhibits the two sharp peaks at 

1 551 T C= �  and 2 543 T C= � .  From Fig. 1 we deduce that the crystall ization process in the 

considered amorphous wire, for a value of electrical dc 0.3 I A=  starts at about 387.9 MT C= �  

when  ρ0m = 1.32 × 10-6 Ω⋅m. 
 Our model present a complete and synthetic description of the crystallization phenomena 
that occur in amorphous Fe77.5B15Si7.5 wires. The thermo-numerical simulation gives a very good 
prediction, the obtained results being in very good agreement with the experimental measurements. 
 

 
Fig. 2. The crystallization temperature from DSC. 

 
 
 4. Experimental results 

 
 Using the proposed theoretical model we can calculate the maximum values reached by the 
temperature in the samples for different values of the applied d.c. The utilization of d.c. Joule-
heating technique in order to change the magnetic and electric samples’  properties implies to know 
the temperature in the samples as a function of the applied d.c. value. Some experiments were made 
in order to measure the temperature in the samples by using a set of thermocouples or by using the 
infrared emission, but these procedures are complicated and – that is most important – can introduce 
huge experimental errors. We have experimentally verified the calculated values of the temperature 
in the samples for di fferent values of the electrical d. c.. To this purpose we have measured (by a 
fluxmeter method) the magnetization value as a function of electrical d.c. that passes through the 
samples. The experimental set up is described in [8] and it consists of an evacuated sealed tube in 
which the samples are placed. This tube is introduced into a pick-up coil and then the whole 
ensemble is introduced into a magnetizing coil that produces a maximum measuring field of 
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300 /A m . The voltage induced in the pick-up coil is integrated and amplified, being proportional 
with the samples’  magnetization. The increase of the direct current that passes through the samples 
is generated by a programmable power supply which has a small enough increasing rate. By 
increasing the value of the electrical d.c. that passes through the samples, the magnetization 
decreases until it vanishes. The value of the electrical d. c. at which the magnetization becomes zero 
corresponds to the Curie temperature of the samples. For calibration we have used an amorphous 

77.5 15 7.5Fe B Si  sample having 1 L mm= . The calculated values are close enough to the experimentall y 
estimated ones. Thus: 
 

i) In the ribbon’s case, for an electrical d. c.  value of 0.5 I A=  we have found 
exp675.62 ,        674 calcT K T K= = ; 

 ii) In the microwire’s case, for a d.c. value of 0.07 I A=  we have obtained 
exp367.62 ,    365 calcT K T K= = , while 

 iii) In the glass-covered microwire’s case, for a d.c. value of 0.025 I A=  we have found  
calc exp587.43 ,        586 m mT K T K= = . 

 The small differences (the relative error on calcT  is 0.24 %calcTδ =  for the ribbon and 
glass-covered microwire and 0.71 %calcTδ =  for the microwire) could be attributed to the variation 
of the material’s thermal constants, as well as to the effect of the structural changes which can 
appear in the heated samples, even at these temperatures. It is ascertained that the theoretical results 
are in very good agreement with the experiment. The process of sample heating is accurately 
described by this improved theoretical model, in which the thermal losses of radiative and 
convection nature have also been taken into account. 
 
 
 5. Results and discussions 

 
 Figs. 3, 4 and 5 present the temporal evolution of the temperature for the different values of 
the d.c. ( )I A , for the three types of amorphous samples, namely: the ribbon, the conventional wire 
and, respectively, the glass-covered microwire. In these figures we observe an increase of 
temperature with the time during which the electrical d.c. passes through the samples, until it 
reaches the maximum equilibrium value. The higher the value of the direct current, the faster the 
maximum value of the temperature is reached. 
 

 
 

Fig. 3. The temporal evolution of the temperature ( )T t in the center of the ribbon. 
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 Figs. 6, 7 and 8 il lustrate the time dependence of the electrical resistivity for the different 
values of the applied dc in the same three cases, namely: the ribbon, the conventional wire and the 
glass-covered microwire.We observe that the electrical resistivity increases by increasing the value 
of the direct current. The shape of these curves is almost similar to that given in Figs. 3, 4 and 5 
because we have considered a l inear dependence of the samples’  electrical resistivity on temperature. 
 Fig. 9 illustrates the tempera-ture distribution at the thermal equilibrium in the amorphous 
glass-covered microwire’s cross-section for a value of the direct current of 17.8 I mA= . 
 

 
 

Fig. 4. The temporal evolution of the temperature ( )T t in center of the conventional wire. 

 
 
 As this figure shows, the temperature di fference between the center of microwire’s metallic 
core and its glass insulation is very small ( 0.004 C� ), and between its center and its outer glass 
surface is of 0.0163 C� . Thus, we can consider that the temperature is practically constant in the 
metallic core’s cross section, in this way, the Joule effect annealing ensuring a uniform heating of 
sample. We observe an important decrease of the equilibrium temperature ( )gT r  in the microwire’s 

glass insulation ( 1 2R r R< < ) due to the radiative heat losses. 
 Fig. 10 shows the two theoretical curves that present the relationship between the annealing 
current I  and temperature at the point 1 r mµ=  in the metallic region of the amorphous glass-
covered microwire. There are small differences between these theoretical curves: the dotted line was 
obtained according to the theoretical model developed in [12], without considering the linear 
dependence of resistivity on temperature, but considering – by best fit to experimental data – the 
influence of the metastable phase relaxations through the coefficient ( )R I , while the simple line is 
obtained by considering the theoretical results of improved theoretical model. 
 

 
 
Fig. 5. The temporal evolution of the temperature ( )T t              Fig. 6. The temporal evolution of the electrical    
           resistivity in center of the AGCM.                                                          center of the ribbon.  
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Fig. 7. The time evolution of the electrical resistivity in    Fig. 8. The time evolution of the electrical resistivity  
            the center of the conventional wire.                                                             for AGCM.                       
   

 
 
 
Fig. 9. The temperature distribution at the thermal      Fig. 10 The temperature as function of annealing current 
   equilibrium in the microwire’ s cross-section            at the point 1 r mµ=  in the  microwire’ s  metallic  core. 

         for a value of the d. c. 17.8 I mA= .                       The correlation between the two theoretical models is shown. 

   
 

 6. Conclusions 
 
 The above discussed improved theoretical model presents the thermal behavior of the 
amorphous magnetic materials (ribbons, conventional wires and glass-covered microwires) passed 
by an electrical d.c., taking into account the d.c. Joule heating effects (conduction, radiative and 
convection heat losses) and the structural changes appeared during the crystallization process. 
 As it is very well known, an electrical resistivity variation leads to a variation of the 
developed Joule power, and, subsequently, to a corresponding variation in the temperature 
distribution. For this reason, it is necessary to consider at least a linear dependence of the resistivity 
on temperature. Also, the thermal convective losses can not be neglected, whatever is the quality of 
the vacuum.  

In the amorphous state of the above magnetic materials we have determined the temporal 
distributions of the temperature (Figs. 3, 4, 5) and temporal distributions of the electrical resistivity 
(Figs. 6, 7, 8). These results are very useful in order to improve the mechanical, magnetic and 
electrical properties of these amorphous magnetic materials. 

For the ribbon, by analyzing the spatial distribution of the temperature at the thermal 
equil ibrium (21), we have found that for different values of the electrical d.c., the equilibrium 
temperature is approximately constant in its thickness, but varies significantly in its width. This 
behavior can be explained by the numerical evaluations of the radiative and convection heat losses. 
The calculated values of the temperature for different values of the electrical d.c. are very close to 
those found by magnetic measurements of the Curie temperature. 
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 For the conventional wire, the theoretical and experimental considerations are separately 
referring to the two different situations, namely: 
1. for the amorphous state, when the temperature values are below the onset temperature of   
    crystallization; 
2. for the transition from the amorphous to the crystalline state, when both phases appear. 

In the amorphous state, using the relation (34), we have analyzed the temperature 
distribution at the thermal equilibrium in the wire’s cross-section for a value of the electrical d.c. 

0.1 I A= . It results that the temperature difference between the center of the wire and its surface is 
very small. Thus, it can be considered that the temperature is constant in the wire’s cross section, the 
Joule heating ensuring in this way a uniform annealing of the wire.  

 Concerning the temperature domain situated above the temperature corresponding to the 
onset of the crystallization process, we have analyzed the thermal behavior and we have studied the 
crystallization phenomenon for the non-isothermal process (on the basis of the JMA equation). We 
have determined the temporal evolution of the temperature and the crystallized volume fraction as a 
function of time. In the non-isothermal crystallization process we have considered the Avrami 
crystallization rate parameter [ ]K T  to have an Arrhenius type temperature dependence, while the 

nucleation frequency 0K  was considered to be constant. The numerical analysis based on the Runge-
Kutta-like method of 4-order for a system of two differential equations implemented in the 
specialized Mathematica 4.0 software allowed for getting the graphical dependencies for the 
temperature and electrical resistivity as a function of time. Thus, from DSC analysis (Fig. 2), we 
observe the two crystallization stages (two peaks) in the annealing of the conventional wire. The 
graphical representations in Figs. 1 and 2 clearly exhibit these crystallization stages of amorphous 
conventional wires in the non-isothermal crystall ization process. Numericall results obtained for the 
Joule-heating treatment are in very good agreement with the experimental data obtained from DSC 
measuring method. 
 For the glass-covered microwire, we have found that, in comparison with the model 
proposed in [12], where the agreement with the experiment is ensured by best fit of the parameter 

( )R I , in the proposed theoretical model this agreement is provided by the self-consistency of the 
model. 
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