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The purpose of this paper is to present an improved theoretical and numerical model for the
caculation of the temperature distribution in the amorphous magnetic materials such as:
ribbons, conventional wires and glass-covered microwires, passed by an electrical direct
current (d.c.) teking into account the d.c. Joule hesting effects (conduction, convection and
radiative heat losses and the structural changes appeared during the crystalli zation process of
the conventional amorphous wires). The process of sample hesting is accurately described
by this improved theoreticadl model. The calculated temperature values are experimentaly
verified through magnetic measurements using a fluxmeter method performed on amorphous
ribbons, conventional wires and respectively, glass-covered microwires with known Curie
temperature. The theoreticad results arein very good agreement with the experimental ones.
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1. Introduction

Joule hesting has proven to be a rather powerful tool to achieve fast structura and/or
compositiona changes in magnetic materials such as amorphous ribbons, conventional amorphous
wires and respectivey, amorphous glass-covered microwires (AGCM). Many comprehensive works
have been published in the early ‘90 (e.g. [1, 2, 3, 4]), indicating advantages and disadvantages of
this method. Anyway, the search for improved physical propertiesin metastable systems (such as the
ones examined in this paper) is still going on, so that any real improvement or new approach is still
useful and of great interest.

Magnetic materials prepared by rapid quenching from the melt as wires or ribbons present a
special interest for basic research and for technological applications [5]. It is well known [6] that
thermd treatments can improve and stabilize the physicad properties of amorphous materials
produced by rapid solidification techniques. Theoretica and experimenta results suggest that some
other properties rdated to the structure of the material may be controlled and favorably modified by
application of a suitable therma treatment [7].

Direct current (d.c.) Joule heating techniques have aways been of great hdp in the
researches on thermal annealing of the magnetic amorphous materials. These techniques alow us to
observe the structural transformations that occur in the material by effect of the trestment itself. This
annealing method is based on the thermal effect of the dectrica d.c. which passes through an
amorphous sample [8]. One of the difficult problems concerning these treatments is to know the
value of temperature corresponding to a given annealing eecdricd d.c., that passes through the
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sample. The use of d. c. Joule heating, in order to change the sampl€'s properties, implies the
knowledge of the sampl €’ s temperature as a function of theapplied d.c. 1(A).

The aim of this paper is to present an improved theoretical modd for the calculation of the
temperature distribution in an amorphous sampl e passed by an dectrical d.c. and to compare our
theoretical results with the experimental data. We will determine the temperature in both steady and
transient states, considering that the energy devel oped by Joule effect is consumed for the increase
of theinternd energy of the sample (in the transgent stat€) and for the compensation of the radiation
and convection heat losses (in the steady state). We have explicitly taken into account the presence
of convective dissipation. This is an improvement with respect to older models because the
convection cannot be completdy ruled out by vacuum techniques.

As it is very wel known, an eectrical resistivity variation leads to a variation of the
developed Joule power, and, subsequently, to a corresponding variation in the temperature
distribution. For this reason, we must consider at least a linear dependence of the resistivity on
temperature. In the amorphous maerias, dectrical resistivity aways exhibits reversible and
irreversible changes on heating; even low-temperature annealing may lead to some change upon
coming back to room temperature. Moreover, Joule heating is specificaly exploited to induce
structural changes (including relaxation of the amorphous phase or nanocrystallizetion, when
applicable). These changes may give rise to resistivity changes much higher than the simple linear
temperature dependence. Nevertheless, we emphasize that in the present theoretica mode, for
ribbons and glass-covered microwires we have not considered the changes which can appear in the
eectrical resistivity as a result of the sample's crystallization. The effect of these changes becomes
significant only for those vaues of the direct current that lead to temperatures over the
crystallization ones, namdy to temperatures higher than those used for heat trestments in order to
improve the magnetic properties of the amorphous materials. However, for Joule-heated amorphous
Fe,.B.S,. wires we have dso analyzed the crystallization mechanism in the non-isothermal
process in terms of the kinetics transformations for the solid-state phase transformations. More
precisdly, in this case we have developed a numerical mode within the context of the classical
theory of phase evolution applied to conventional amorphous wires to simulate the kinetics of
nucl eation during the non-isothermal crystallization process.

2. Steady state and transient temperature distribution in
d. c. Joule-heated amorphous materials

In this section we ca culate the temporal and radia distribution of the temperature, in the
transient and steady states for the amorphous stages of the samples (that means, for those values of
the eectrical d.c. that lead to the temperatures situated below the one corresponding to the onset of
the crystallization process). The linear dependence of the dectrical resistivity on the temperature
was &l so taken into account.

To determine the temperature distribution in the amorphous samples annealed by Joule
effect, we will use the Fourier heat conduction equation [9] with the corresponding boundary
conditions.

Let’s consider an amorphous sample (a ribbon, a conventional wire or an AGCM), placed
in "vacuum” a a pressure less than 1 Pa, passed by an dectrica d.c.. We associate a Cartesian
system of coordinates (X, y, z) totheribbon, having the Oz — axis along the ribbon’'s length, Ox —
axis dong the ribbon’s width and Oy — axis aong the ribbon’s thickness. For wires (with- and
without glass insulation) we associate a cylindrical system of coordinates (r, 8, z) to the sample
having the Oz — axis along the wire's axis and we assume that the heat loss by Thomson effect is
negligible (the ends of the samples are thermally isolated). The cylindricad metallic core of the
amorphous glass-covered microwire has the radius R, and the glass insulation has the thickness
R, - R, where R, isthetotal microwire's radius (metal + glass).

The heat developed in the unit volume by Joul e effect has the form

W = pj*(s0) = p{1+ a[T(sc, - T,] } j*(s0). (1)

where p = p(sc, t) is the resistivity at the temperature T(sc, t), being given by the well known
relation,
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p(sc, )= po{1+alT(se) - T} @

Here g is the thermal coefficient of the resistivity, t is the time during which the dectrical dc
passes through the sample, g, isthe resistivity at the room temperature T, and j(sc) is the current
density distribution in the sample. The “sc” variable in the above functions means “spatial
coordinates”: for the ribbon the “sc” variable shall be replaced by the both spatial coordinates X and
y, while for the wires (with- and without glass insulation) by the radial coordinate r . Also, in the
case of the amorphous glass-covered microwire, the considerations that we develop in this section
arevdid only for the metallic core of the microwire.

Concerning the variation of the current density j as a function of “sc”, we must point out
that, because of the small dimensions of the sample (the experimental samples have a cross-section
of (10™ +107°)m?*), the spatial variations of the ectrical fidd in the samples can be neglected.
Because of that, if we take a constant value for the current density, then, we will introduce a
maximum relative error on |, given by

5] =[1- B+ (@T")* ] '[oT +(1- B)dar], 3)

which, for the ribbon has the numerical value 0.012, whereas for the wires this numerical vaue is
0.0052. In the above equation B=T,/T", with T =T(0) . The significance of T(sc) is given as
follows, while 0T and da are, respectivedy, the reative errors on temperature and thermal
coefficient of the resistivity. Thus, taking into account (3), we may consider with a corresponding
levd of confidencethat j(sc)=j=1/S=const.

The heat generated in the sampleis afunction of “sc” and thetime t, for each value of the
dectrica d.c. | (A). Inthetransient state the conservation law of energy for the sample becomes

puc (dT/dt) =(p. - p)1°S?, @

where p,, isthe mass density, ¢ isthe specific heat and p, = o, (sC) isthe dectrica resigtivity in
steady state. The temperature field T(sc, t) can be obtained by integrating (4) and taking into
account (2). Theresultis

T(se, 1) =T, +[T. (%) - T, ][ 1-exp(-ap,! *ppc S 1) ] )

Here T, (sc) is the temperature of the sampl€? in steady state (at the therma equilibrium) and S is
the cross-section of the sample (for theribbonS =gl , g being the thickness of the ribbon and | —
its width; for the conventional wire S =7R?, R, being the radius of the wire, while for the
amorphous glass-covered microwire S = 77R? isthe cross-section of the microwire's metallic core).

Using the Fourier heat conduction equation [9] and the expressions corresponding to the
boundary conditions, |et’s calculate the equilibrium temperature, T, (sc) . In steady state (t — o),
the therma equilibrium between the sampl e and the environmental medium is achieved. In this case,
the heat generated by Joule effect is lost by convection and radiation processes.

2.1 The Temperature Distribution in d. c. Joule-heated amorphous ribbons

The Fourier heat conduction equation,

2:
0T (x y)+02Tw(>2<, VW ©)
0X oy k
with theinitial conditions,

?In the case of the glass-covered microwire thisis the metallic core s temperature.
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T.(X y,1=0) =T,, p(x vy, 1=0)=p, (7)

has the genera solution

T.(% y) =T, —a™+C(I)cosh(my) cos(x \/mz +ap, °’k*S? ) 8

In the equation (8), k is the theema conductivity and m=m(l) is a function of the
parameter | (A) (the intensity of the dectrica dc). For | =0, from (7) and (8) it follows that
m(0) =0. Now, using the relation (2) and the general solution (8) we are able to find the dectrical
resistivity in the steady state, o, (X, y):

2. (X, y) = p,C(1)a cosh(my) cos(x \/mz +ap,| 2k‘ls‘z) : 9

For | =0, fromtheinitial conditions (7) and (9) it results that
C(0)=Va. (20)
In order to determine the temperature distribution in the ribbon, we must consider the

corresponding boundary conditions. Thus, on the ribbon's surface, the energy conservation law can
be written as follows

VviV = Qconv + rad ? (11)

where V isthe volume of theribbon, Q

conv

isthe convective heat loss [9],

Qune = P[T. (% Y) ~T,] Ay 2R(7MT, (x, )™, for x=25, y=+2, (12)

and Q,, istheradiative heat loss [9],
Qua = OEA[ T (X y)~T*], for x=x4, y=+2. (13)

In the above two rdations A, =2L(l +g) is the area of the surface through which the
radiative and convective heat exchange takes place, L is the length of ribbon, o is the Stefan-
Boltzmann constant, R is the universa gas constant R=8.31 J/mol (K, p is the pressure
p = (101325/ 760) x102(N/m?) and M =29 is the air molecular weight. We consider tha the

ribbon is subjected to an dectrical d.c. Joule-heating treatment in vacuum at the pressure less than
1Pa. Aswe aready have stated, the thermal losses are attributabl e to both radiative and convective
contributions. The second one can not be neglected because the vacuum state, technologically
spesking, is not a perfect one Thus, we will consider that on the surface of the ribbon

(X:i';, y:i%), afraction s (0<s<1) fromtheradiative heat loss Q,,, represents the convective
hest loss, Q,

onv 1

Qconv = S(grad . (14)

In the most genera case, the s ratio depends on the annealing eectrica d.c., i.e. s=5(1).
It isvery difficult to find out theratio s(1) either experimentally or explicitly (analytically). For this
reason, the only way to determinethisratio is the numerical approach; in fact, asit will be shown we
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don't need to know s(1) explicitly, if we choose a proper handle of the boundary conditions. At the

therma equilibrium (in the steady state), the thermal energy deve oped in the unit volume by Joule
effect is consumed in order to compensate the radiative and convective heat losses. Using the

relations (11) and (14), for x=+%, y=+< we obtained the following conditions:
WV =(s+1Q,, , WV =(s'+1)Q,,. (15)

where, in agreement with (1), W, is given by W, =p_1%/S* . For the characteristics of the
amorphous ribbon given in Table 1 we have found the numerical values of C(l) for eight given
vaues of eectrica d.c, | 0[0.1+0.8]A. Using these values we have caculated the numerical
vauesof m=m(l) and s=9(I) (Table2). As one can observe, the higher the value of the e ectrical

d. ¢, the faster the equilibrium val ue of the temperature is reached. Besides, the higher the value of
thedectrical d.c., 1 (A), thesmaller the convective heat |oss becomes because, according to (14), for

increasing values of the dectrica d.c. | (A)thereisadecreasing of the s=95(l) coefficient.

Table 1. The characteristics of the amorphous sample.

Characteristic Signifi cance Vaueand
quantity measurement units
c the specific heat 530 J/kg K
£ the coefficient of the thermal emittance 0.43
k the thermal conductibility 30 W/mK
K, the thermal conductibility of the metallic core 30 W/mK
K, the thermal conductibility of the glassinsulation 1.177 W/ mK
Ou the mass density 7.2x10° kg/m?’
o the resistivity at the room temperature 1.24x10° Q/m
T, the room temperature 293K
L the length of the sample 250 mm
I the width of the ribbon 1mm
g the thickness of the ribbon 30 um
R, the radius of the conventional wire 60 1m
R the radius of the metallic core 9 um
R, the radius of the amorphous glass-covered 18 um
microwire

Table 2. The numerical calculated values of m(1), and s(1) for different values of electrica d.c. 1(A) .

No. I =1(A) m=m(l) s=5(I)
1 0.1 127.281 0.309
2 0.2 140.720 0.176
3 0.3 127.755 0.108
4 0.4 112.309 0.072
5 0.5 97.253 0.052
6 0.6 82.121 0.040
7 0.7 65.592 0.031
8 0.8 44.810 0.025
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The spatio-temporal distribution of the temperature T(X, vy, t) inthe Joule-heated ribbonsis

T(X Yy =T, +[Ci(l )oosh(my)cos(x Jm* +ap, 2k‘ls‘z)—a"l}[l—exp(—a',ool 2picS™ t)} (i =JT8) (20)

while the spatia distribution of thetemperature T_(X, y) inthe steady state (t — o) is

[T.(x, y)]. =T, —l/a+Ci(I)cosh(my)cos(x It +ap, 2/kSz), (i :ﬁ). (21)

As one observes from relation (20), the higher the va ue of the direct current, the faster the
equilibrium value of the temperature is reached. We have aso obtained the eectrical resistivity of
the ribbon in the transient state by taking into account the rlations (2) and (20),

p(x y, t)=p, +,00[C(I Ya cosh(my) cos(x\/m2 +ap, k'S ) —1}[1—exp(—apol 2plc's t)] .

2.2 Thetemperaturedistribution in d. c. Joule-heated amorphous conventional wires

In the steady state, the thermal equilibrium of a conventional wire is described by genera
solution of the Fourier heat conduction equation [9],

1df dL.(N) W _g (22)
r dr dr k
and theinitial conditions,
T(r, 1=0) =T,, p(r,1=0)=p, . (23)

The genera solution of the equation (22) is

T.(N=T,-a*+C()J, (r,/apol 2k-ls-z) (24)

where the integration “constant” C =C(l), is a function of the same parameter | (A) (the intensity
of the dectrical d.c.) while k is the thermal conductivity. For | =0, from (23) and (24) we ge&t
C(0)=1a.

After a straightforward cal culation, from (2) and (24) we find the dectricd resistivity in the
steady state, p, (r):

p.(r)=p,CHald, (r./apol ’k'S™ ) (25)

In the following, we consider the corresponding boundary conditions to determine the
temperature distribution in the conventional wire. Thus, the energy conservation law on the
microwire' s surface can be written as

VviV = Qconv + rad ? (26)

where V isthe volume of the sample, Q

conv

Qun = P[T. (N —T] A2R(ZMT, (1)) ", for r =R,, (27

is the convection heat loss [9]:



Temperature distribution in d. c. Joule-heated amorphous magnetic materials 939

and Q,,, istheradiative heat loss [9]

Qus = OEA[T (1) ~-T,'] for r =R,. 28)
In the abovetwo rdations A, =271RL isthe area of the surface through which theradiative

and convective heat exchange takes place. As in the ribbon’s case, on the surface of the microwire,
r =R,, besides the radiative thermal loss, Q,,, , afraction s (0<s<1) from this radiative heat |oss

represents the convedtive heat loss, Q_,,, ,
Qconv = SQrad " (29)

where s ratio can depend on the anneding d.c., i.e. s=95(I). Using relations (26) and (29) for
r =R,, we obtained the following conditions:

W,V =(s+1)Q WV =(1/s+1)Q, (30)

ad ! onv !

where, in agreement with (1), W, isgivenby W, = p,_1?/S?. Therdations (30) lead us to

l:,oOC(I)a'I ZJO(RO a',ool2k’1S’2)[205772R03(s+1)T+T04TM =T0—a’1+C(I)JO(R) apolzk’ls’z)(3l)

and

pCa? (272R)" 3, (R, apo|2|<*ls*2)=[c:(|)Jo(R0 apolzk’ls’z)—a’l} x
0 (32)
x(1+57) p\/ﬁ[nM [To—a’1+C(I)JO(RD apolzk’IS’zﬂ] :

For the characteristics of the amorphous conventional wire given by the Table 1 we find the
numerical values for C(1) and s(1) as numerica solutions of transcendent equations (31) and (32),

for ten given values of dectrical d.c., | 0[0.001+0.5] A ( Table 3).

Table 3. The numerical values of the C(1), and s(1) for different values of ectrical d.c. 1(A) .

No. I =1(A) C=C(l) s=5(1)
1 0.0010 5714.39 0.6230
2 0.0015 5714.52 0.6336
3 0.0020 5714.70 0.6491
4 0.0025 5714.92 0.6699
5 0.0030 5715.18 0.6968
6 0.0035 5715.48 0.7309
7 0.0040 5715.81 0.7737
8 0.0045 5716.15 0.8273
9 0.0050 5716.50 0.8949
10 0.0055 5716.85 0.9807

The radia and tempora digtribution of the temperature T(r, t) in the Joule-heated

conventional wires results by replacing the numericad values given in Table 3 in the generd
expression (5). Theresult is:
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T(r, t)=T, +[C,(I)J0(r ‘/apolzk‘ls‘z)—a*}{l—exp[—apolz(pMcSZ)_ltJ}, (i :m), (33)

while the radia distribution of the temperature T_(r) at the therma equilibrium (the steady state,

t - 00) is
[T.(] =T,~1/a+C, (I)Jo(r./apol 2|<-1S'2), (i=1109). (34)
From (2) and (5) we obtain the dedrical resistivity of the conventional wire in the transient
State,
p(r, t)=p, +pO[C(I )aJO(r«/apol ’k™'s™ ) —1}[1—exp(—apol 2pic's? t)]
2.3 Thetemperaturedistribution in d. ¢. Joule-heated amorphous glass-cover ed

microwires

Using the Fourier heat conduction equation,

li(r_‘”m(“)jﬂ:o, (35)
rdr dr k,

and the expressions corresponding to theinitial conditions,
T.(r, 1=0) =T, p(r, 1 =0)=p,, (36)

we obtain the radial temperature distribution T_(r) in the metallic core of the amorphous glass-
covered microwire, a the thermal equilibrium (steady state, t — o ):

T (=T,-a™ +C(I)J0(r«/apol zkglsf), (37)

where: J, are the zero-order Bessd functions, k; is the thermal conductivity of the metallic core
and C =C(l) istheintegration constant that is afunction of eectrical d.c. 1(A) . For | =0, from (36)

and (37) follows that C(0) =a ™. The dectrical resistivity in the steady state, o, (r) is given by the

relation,
£.(r) = C(Nad, ryfap, k'S 7). (39)

In order to determine the temperature distribution in the metallic core, the corresponding
boundary conditions must be considered.

2.3.1. Thetemperaturedistribution in the glassinsulation
In the steady state (t- o), the thermd equilibrium between the sample and the

environmental medium is achieved. In this case, the heat flux from the metallic core — generated by
Joule effect — is received by the glass insulation. Using the Fourier heat conduction equation [9] for

R <r<R,
li[r —dTg (r)J =0, (39)
rdr dr
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we shal calculate the equilibrium temperature of the glass insulation, T, (r) . The general solution of
equation (39) reads

T,(N=Alnr+A, (40)

where the integration “constants” A = A(l) and A, = A(1) are functions of the same parameter
I (A), their physical significance being given in the following subsection.

2.3.2 Boundary conditionsfor the metal-glassinterface

In order to determine the final expressions of the temperature T_(r) inthe metallic core (37)

and in the glass insulation (40), we must use the foll owing boundary conditions:
i) In the thermal steady state, the heat flux from the metallic core is received by the glass
insulation. This heat flux (from the metal-glass interface) must be continuous. So, for r =R we

must have

k,(dT, /dr) =k, (dT, /dr) , (41)

where k; and Kk, are the coefficients of therma conductivity of the amorphous metallic core and
glassinsulation, respectivdy;

ii) On the metal-glass interface (r = R ), the temperatures from the adjacent regions must be
equal,

Ta(R)=Ty(R). (42)

iii) In the steady state (t — o), on the outer surface of the microwire, the therma
equilibrium between the sample and the environmental medium is achieved by the radiative heat loss:

—(dTg/dr)‘ ] =Pl T4(R) -], (43)

r=

where P=0€2L/R, is the so-cdled microwire's loss parameter, L is the length of the sample
Using the boundary conditions given by (41), (42) and (43) we get the following expressions:

g RC(l )Jl(wapol z(klanf)'ljJapol (kPR) " = A, (44)

ALInR1+A2:TO—a'1+C(I)JO(R1JapOIz(klanf)_lj (45)

and
1/4

AINR + A, =TS -Ak(RP)* |, (46)

where J, are the first-order Bessd functions. From (44), (45) and (46) we obtain the C(I) ,
A =A(l) and A =A(l) asfollows:

The constant A = A (1) results as numerica solution of the foll owing transcendent equation
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AI[5]+ (s h(Ryeal TR :O—E‘[T;‘-i]%- (47)
R ) RIkas, 3,(Ryap, R a PR

For each given vaue of the annealing current | (A), one obtains a corresponding numerical
val ue of the“constant” A = A(l). Then, thenumerical valuesof C(l) simply results from

- -1

C(1)=-kS (RIkap,) " A| 4(Ran, AR | )

where A (dready known) must be introduced. At the same time, the constant A, results

immediately from (46). We observe that the parameter C(1) depends on dectrical d.c. | =1(A), the

materid constants: a, 0,, k., k, andthe sample sdimensions, R, R, and L. For different values

of the dectrical d.c | (A), the structural changes (metastable phase relaxations) take place in the

metallic region of the microwire. Due to this fact, the parameter C(1) is called the coefficient of

metastable phase relaxations and it explicitly contains the influences of the structura
transformati ons that occur in the material by effect of the heat trestment itsdf.

For the amorphous glass-covered microwire's characteristics given by the Table 1 we have
found the numerica values for C(I), A(l) and A(l) as numerical solutions of nonlinear
equations (46), (47) and (48), for deven given vadues of dectricd d.c. in the interva
| O[1+ 28] mA (Table 4). The higher the value of the direct current 1(A), the higher C(1), A(l)

and A(l) are

Table 4. The numerical values of the C=C(1), A =A(l) and A, =A(l) for different vaues
of dectrica dc 1 (A) .

No. | I(mA) | C(I) A=A0) | A=A
1 1 5772.63 - 0.001 58.3385
2 5 5845.17 - 0.018 130.681
3 7 5869.32 - 0.035 154.632
4 9 5890.25 - 0.058 175.293
5 14 5934.20 - 0.140 218.287
6 17.8 5962.61 - 0.229 245.668
7 21 5984.30 - 0.320 266.308
8 23 5997.06 - 0.383 278.309
9 25 6009.28 - 0.454 289.715
10 27 6021.05 - 0.530 300.588
11 28 6026.78 -0.571 305.841

Introducing the numerical values of C(1), A(l) and A,(1) inthe general reations (37), (5)
and (40) we have obtai ned:

i) The spatial temperature distribution T_(r) in the steady dtate (t —» «), at the thermal
equilibrium in the microwire' s metalic core,

T (r)=T,-a+C(1)J, (r«/apol 25 ); (49)

ii) The spatio-temporal distribution of the temperature, T _(r,t) , in the Joule-heated

amorphous glass-covered microwires, in the temperature region situated beow the one
corresponding to the onset of the crystallization process:
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T.(r, t)=T, +[C(I)J0(rlsl‘1«/apok1'1) —a'l} [1—exp(—apol 2pc's? t)]; (50)

iii) The temperature distribution T (r) in the steady state (t - « ) a the thermal
equilibrium in the microwire' s glass insulation,

T, () =A0)Inr +A(l), (51)

the transient temperature in the microwire' s glass insul aion being not rel evant.

On the basis of the established rdations (49), (50) and (51) with the numerical values of
C(l), A(l) and A,(1) we have calculated the temporal evolution and radial distribution of the
temperature at different vaues of the direct current that passes through an amorphous glass-covered
microwire which has the composition Fe,, .S, .B,; and the above mentioned characteristics. Taking
into account the rdations (2) and (5), we have obtained the dectrica resistivity of the amorphous
glass-covered microwire's metallic corein the transient state,

P(r, 1) =Pt P [C(l )aJo (r \/apol 2k—1S—2 ) —1}[1—exp(—apol 2'0’\—/'10—13—2 t):| :

3. Thermal behavior and crystallization kinetics analysis of the
amorphous conventional wires

In this section, our purposeis to analyze the crystallization mechanism in the non-isothermal
process in terms of the kinetics transformations for the solid-state phase transformations in Joule-
hested amorphous Fe,, .B..S,. wires. We present a numerical model which is able to describe the
kinetics of non-isothermal crystalization process. In generd, the transition from the amorphous
phase to the crystalline phase is a complicated process. The crystallization process of the amorphous
wires consists of two steps. nucleation and crystal growth. The nucleation can be described as a
process in which molecul es come into contact, orient and interact to form highly ordered structures,
called nuclei. According to their environment, the crystals grow more or less regularly and exhibit
different growth morphologies. Nucleation and crystal growth are not mutually exclusive: nucleation
may take place while crystals grow on existing nuclei [10]. The most common approach used to
describe the crystdlization kinetics is the Johnson-Mehl-Avrami (JMA) mode, in which the relative
crysalinity varies as afunction of time, x = x(t) . A very useful tool to understand and predict these
phenomena is the numerical analysis method. In the following, we deveop a numerical mode
within the context of the classical theory of phase evolution applied to amorphous conventiona
wires to simulate the kinetics of nucleation during the non-isotherma crystallization process. The
aim of this study is to analyze the thermal behavior of the Joule-heated amorphous wires in such
conditions. More precisdy, we present a numerica mode for the temporal evolution of the sample's
temperature and for volume fraction crystalized with time X(t) , assuming that the crystal growth
and Avrami crystallization rate constant have an Arrhenius type temperature dependence K = K[T].
We also consider that the nucleation frequency K, is constant. The Avrami mode [10] can be aso
used to and yze the non-isothermal crystallization process. In our modd, the energy released during
the crystdlization process appears to be a function of temperature, rather than time, as in the case of
isothermal crystallization, because the non-isotherma crystallization process may be considered to
be composed of a great number of infinitesimally small isotherma crystallization steps. The
cryddlization rate parameter can be described by the exponential rdation (Arrhenius
form) K[T] =K, exp(—nQ/kT), where Q is the growth or diffusion activation energy, T is the
absolute temperature and k is the Boltzmann constant. The activation energy Q is strongly
dependent on the type of nucleation in the crystallization process.
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From the direct experimental observations, it is known that the crystallization processin the
Joule -heated amorphous wires is an exothermal one. In this case, the energy devel oped by the Joule
effect is consumed in the crystallization process to increase the interna energy of the sample and to
compensate the radiative heat losses. The increase of the applied d.c. | (A) givesriseto an increase

in the dectrica resistivity and subsequently leads to the increase of internal energy. The fina
temperature of the sample results from the balance between the applied dectricd power and
dissipation effects in the fully crystallized sample. For a more accurate picture of the process, in our
model, we consider the following working hypotheses:

- the structure dependent parameterslike p,, and ¢ are constant;

- the coefficient of thetherma emittance, €, is constant during the hesting treatment;

- the results obtained in the subsection 2.2, show that for different values of the applied d.c., the
temperature of the sample is approximately constant in the whole cross-section of the conventional
wire. For this reason in the following, we will neglect the conduction heat loss and we assume that
the temperature in the sampl €' s cross-section is constant.

In order to analyze the thermal behavior and crystallization process of the amorphous wires,
we introduce a new time scale, whose zero is coincident with the onset of the crystallization process,
a the steady-state temperature value of the heated amorphous sample, T(r,1)=T,,(1)=T, . The
crystallization process of the sample starts from t =0, when an additional amount of energy per unit
time is homogeneously released to the sample. The crystallization power density, W, (expressed in

W/m’) is given by the expression

W, (t) = AH , [dx(t)/dt], (52)

where 4H, is the amount of the total density of crystallization hest effectively contributing to the

extra heating of the amorphous wire and reative crystallinity x(t) represents the solution of the
JMA'’s eguation [11]. At the initial moment, t =0, the transformed volume fraction is x(0) =0,
while at the equilibrium of the crystallinity phase, t — o, X(t — ) =1. The rate of transformation
dx(t)/dt will be obtained in the following.

During the crystallization process of the sample, the energetic balance between the
crystallization power density (52), the heat devel oped in the unit volume of the wire by Joule effect,

W =p(t)I?/S* , and the radiative heat loss can be represented by the expression
Py c[dT @)/ dt] =W, () + p(t)1 2/ S* - P[T“(t) —Tﬂ , Where

P() = Panorpn X)) + Py (O [1— X(V)] (53)
isthe dectrica resistivity of the amorphous wire during the crystalization process. In thisreation,
Paroret 1) = Lo { 1% T [TO) =Ty, ]} (54)

represents the dectrical resistivity of the amorphous phase, o
coefficient of this resistivity while

, is the corresponding thermal

amorpl

Perys®) = Pom{1+ A, [TO) =T, ]} (55)

represents the electrical resistivity of the crystalline phase, where a,. is the corresponding thermal

coefficient.
Thus, at the initiadl moment, t =0, the electrical resigtivity is p(t =0) = 0,4, (t =0) = o, ,
i.e, the sample as awholeisin the amorphous state, while at the equilibrium of the crystalline phase,
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t »co , the electrica resistivity is given by p(t — ) =0, (t) (the sample is completely
crystalized). Introducing the relations (54) and (55) in (53), we obtain the dectrica resistivity o(t)
of the amorphous wire during the crystallization process

PO) = Lon{ 1+ A [TO) =Ty T} + Lo (Carerpn = Terye) [T O =T, ] X(O) . (56)

In the case of Joule heating, an increase of eectrical resistivity implies a corresponding
increase of the Joule power and subsequently a rapid increase of the wire' s temperature. The kinetics
of this process may be studied in order to precisdy control the structural transformations of the
amorphous wire during the crystdlization process. The rate of transformation in the non-isothermal
crystalization process [10], is given by therelation

dx(t)/dt=n[1 - x(t)][-InL-x®]]"" K, exp(-Q/KT). (57)

In the non-isothermal crystallization process of the sample, energetic balance between the
crystalization power density (52), the heat developed in the unit volume by Joule effect in the
sample, and radiative heat loss is given by

Puc[dT () dt] = AH n[1- x@®)][-In[21-x()]] ™" KE" exp(-Q/KT) -

58
=P[TH0) =T ]+ ol 215+ o[ 1X(0) + s [[T(O) =T, ] 12/ %, (59)

where y=a,

amorph - acrys .

We consider the relations (57) and (58) as a differential equations system with the unknown
guantities T(t) and x(t). Using the Runge-Kutta method for the differential eguations system

(Runge2D) in a Mathematica subroutine, we compute the solutions T(t) and x(t) with the initia
conditions T(t=0) =T,, and x(t =0) =0, for the temporal evolution of the temperature and volume

fraction crystalized with time in the non-isothermal crystalization kinetics analysis. Passing
through the sample the same value of the dectrical d.c.,| =0.3 A, from the rdations (33) and (34),

we obtain the equilibrium temperature of the amorphous phase at the initial moment T,, =387.9 °C.

T("C)
550

520 |
490 |
160 |

130 |

400

20 40 t(s)

370

Fig. 1. Thetempora evolution of the temperature T(t) in the non-isothermal crystallization
process.
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By best fit to experimental data we consider the particular values for the adjustable
parameters (the kinetic exponent n=3.6 and 4H =5.8[10°J/m®). In our numerical analysis we
will consider that in the non-isothermal crystalization process, the growth of diffusion activation
energy is Q = 224 eV. Fig. 1 presents the numerical solution T(t) of the differentid equations
system (57) and (58), i.e. the temperature of the sampleT (t) for the applied electrical dc | =0.3A.
We observe that the entire non-isothermal crystallization process predicted by this modd is ranging
from T,, =387.9°C to T =480 °C.

The numerical analysis gives for the temperature of the amorphous wire two rdative
maximum values, corresponding to successive stages of crystdlization as follows: the first stage

corresponds to the temperature 550 “C and the second oneto 539 “C . This behavior isin very good
agreement with the experimental results obtained by differential scanning calorimetry (DSC) and
presented in Fig. 2. This figure shows the dependence of the heat flow as a function of temperature

(in °C) for an conventional Fe, B, S, wire. The DSC curve exhibits the two sharp pesks at
T,=551°C and T,=543°C. From Fig. 1 we deduce that the crystalization process in the
considered amorphous wire, for a value of dectrical dc | =0.3 A starts at about T,, =387.9 °C

when om = 1.32 x 10° Q/m.

Our model present a complee and synthetic description of the crystallization phenomena
that occur in amorphous Fe;75B1sSizs wires. The thermo-numerical simulation gives a very good
prediction, the obtained results being in very good agreement with the experimental measurements.

48 -

a2t

36 +

conventional wire-FeSiB

30+

Heat Flow

241

18

12

1 1 1 1 ]
300 400 500 600 700 800

Temperature (°C)

Fig. 2. The crystallization temperature from DSC.

4. Experimental results

Using the proposed theoretical model we can calculate the maximum values reached by the
temperature in the samples for different vaues of the applied d.c. The utilization of d.c. Joule-
heating technique in order to change the magnetic and € ectric samples properties implies to know
the temperature in the sampl es as a function of the agpplied d.c. vdue. Some experiments were made
in order to measure the temperature in the samples by using a set of thermocouples or by using the
infrared emission, but these procedures are complicated and — that is most important — can introduce
huge experimentd errors. We have experimentally verified the cal culated values of the temperature
in the samples for different values of the dectrical d. c.. To this purpose we have measured (by a
fluxmeter method) the magnetization value as a function of eectrical d.c. that passes through the
samples. The experimental set up is described in [8] and it consists of an evacuated sealed tubein
which the samples are placed. This tube is introduced into a pick-up coil and then the whole
ensemble is introduced into a magnetizing coil that produces a maximum measuring field of
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300 A/m. The voltage induced in the pick-up coil is integrated and amplified, being proportional
with the samples’ magnetization. The increase of the direct current that passes through the samples
is generated by a programmable power supply which has a small enough increasing rate. By
increasing the value of the dectrical d.c. that passes through the samples, the magnetization
decreases until it vanishes. The value of the éectrical d. c. at which the magnetization becomes zero
corresponds to the Curie temperature of the samples. For calibration we have used an amorphous
Fe,.BS, sample having L =1 mm. The calculated val ues are close enough to the experimentally
estimated ones. Thus:

i) Intheribbon's case, for an dectrical d. c. valueof | =0.5 A we have found
T® =67562K, T*=674K;
ii) Inthe microwire's case, for ad.c. value of | =0.07 A we have obtained
T =367.62K, T*=365K,while
iii) In the glass-covered microwire's case, for ad.c. vaue of | =0.025 A we have found
TA =58743K, T =58K.

The small differences (the relative error on T is dT®° =0.24 % for the ribbon and
glass-covered microwire and ST % =0.71 % for the microwire) could be attributed to the variation
of the material’s therma constants, as well as to the effect of the structural changes which can
appear in the heated samples, even at these temperatures. It is ascertained that the theoretical results
are in very good agreement with the experiment. The process of sample hegting is accuratdy
described by this improved theoretical modd, in which the thermal losses of radiative and
convection nature have also been taken into account.

5. Results and discussions

Figs. 3, 4 and 5 present the temporal evolution of the temperature for the different values of
the d.c. | (A), for the three types of amorphous samples, namely: the ribbon, the conventional wire
and, respectively, the glass-covered microwire. In these figures we observe an increase of
temperature with the time during which the eectrical d.c. passes through the samples, until it
reaches the maximum equilibrium value. The higher the value of the direct current, the faster the
maximum value of the temperatureis reached.

T(K)
4 T=08A
BOO # I=074
o I=06A
Too |
B I=05A4
600 [ o I=044
s00 |
400

t(s)

| 0 100 150 200 b1 300

Fig. 3. The temporal evolution of the temperature T (t) in the center of the ribbon.
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Figs. 6, 7 and 8 illustrate the time dependence of the dectrica resistivity for the different
values of the applied dc in the same three cases, hamely: the ribbon, the conventional wire and the
glass-covered microwire We observe that the eectrical resistivity increases by increasing the value
of the direct current. The shape of these curves is dmost similar to that given in Figs. 3, 4 and 5
because we have considered alinear dependence of the samples’ dectrical resistivity on temperature.

Fig. 9 illustrates the tempera-ture distribution at the therma equilibrium in the amorphous
glass-covered microwire's cross-section for avalue of the direct current of | =17.8 mA.

T(K)
450
L - L | L |
425 - I=007 A
400 = I=008 A
— 1=009 A
375
350
s t(s)

293 P 200 400 600 800 1000 1200 1400

Fig. 4. The temporal evolution of the temperature T (t) in center of the conventional wire.

As this figure shows, the temperature difference between the center of microwire’s metallic
core and its glass insulation is very small (0.004 "C), and between its center and its outer glass

surface is of 0.0163 °C. Thus, we can consider that the temperature is practicaly constant in the
metallic core's craoss section, in this way, the Joule effect annealing ensuring a uniform heating of
sample. We observe an important decrease of the equilibrium temperature T, (r) in the microwire's

glassinsulation (R, <r <R,) dueto theradiative heat | osses.

Fig. 10 shows the two theoretical curves that present the rel ationship between the annealing
current | and temperature at the point r =1 #m in the metdlic region of the amorphous glass-
covered microwire Thereare small differences between these theoretical curves: the dotted line was
obtained according to the theoretical model developed in [12], without considering the linear
dependence of resistivity on temperature, but considering — by best fit to experimental data — the
influence of the metastable phase relaxations through the coefficient R(1), while the simple lineis
obtai ned by cons dering the theoretical results of improved theoretical model.
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Fig. 5. The temporal evolution of the temperature T (t) Fig. 6. The tempord evolution of the electrical

resistivity in center of the AGCM. center of the ribbon.
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Fig. 9. The temperature distribution at thethermal ~ Fig. 10 The temperature as function of annealing current
equilibrium in the microwire' s cross-section at thepoint r =1 #/m inthe microwire s metallic core.

foravdueofthed.c. | = 17.8 mA. The correlaion between thetwo theoreticd modelsis shown.

6. Conclusions

The above discussed improved theoretical mode presents the thermd behavior of the
amorphous magnetic materials (ribbons, conventional wires and glass-covered microwires) passed
by an dectrical d.c., taking into account the d.c. Joule heating effects (conduction, radiative and
convection heat losses) and the structural changes appeared during the crystallizati on process.

As it is very wdl known, an eectrical resigtivity variation leads to a variation of the
developed Joule power, and, subsequently, to a corresponding variaion in the temperature
distribution. For this reason, it is necessary to consider at least alinear dependence of the resistivity
on temperature. Also, the therma convective losses can not be neglected, whatever is the quality of
the vacuum.

In the amorphous state of the above magnetic materials we have determined the temporal
distributions of the temperature (Figs. 3, 4, 5) and tempord distributions of the eectrical resistivity
(Figs. 6, 7, 8). These results are very useful in order to improve the mechanical, magnetic and
dectrical properties of these amorphous magnetic materials.

For the ribbon, by analyzing the spatial distribution of the temperature at the thermal
equilibrium (21), we have found that for different values of the dedrical d.c., the equilibrium
temperature is approximately constant in its thickness, but varies significantly in its width. This
behavior can be explained by the numerical evaluations of the radiative and convection heat |osses.
The cd culated values of the temperature for different vaues of the dectrica d.c. are very close to
those found by magnetic measurements of the Curie temperature.
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For the conventiona wire, the theoretical and experimental considerations are separatdy
referring to the two different situations, namely:

1. for the amorphous state, when the temperature values are bel ow the onset temperature of
crystallization;
2. for the transition from the amorphous to the crystalline state, when both phases appear.

In the amorphous state, using the rdation (34), we have analyzed the temperature
distribution at the therma equilibrium in the wire's cross-section for a value of the dectrical d.c.
I =0.1A. It results that the temperature difference between the center of the wire and its surface is
very small. Thus, it can be considered that the temperature is constant in the wire's cross section, the
Joul e heating ensuring in this way a uniform annealing of the wire.

Concerning the temperature domain situated above the temperature corresponding to the
onset of the crystallization process, we have andyzed the thermal behavior and we have studied the
crystallization phenomenon for the non-isotherma process (on the basis of the IMA equation). We
have determined the temporal evol ution of the temperature and the crystalized volume fraction as a
function of time. In the non-isothermal crystallization process we have considered the Avrami
crystallization rate parameter K[T] to have an Arrhenius type temperature dependence, while the

nucleation frequency K, was considered to be constant. The numerical analysis based on the Runge-

Kuttarlike method of 4-order for a system of two differentid equations implemented in the
specidized Mathematica 4.0 software alowed for getting the graphical dependencies for the
temperature and eectrical resistivity as a function of time. Thus, from DSC analysis (Fig. 2), we
observe the two crystdlization stages (two peaks) in the annealing of the conventiona wire. The
graphical representations in Figs. 1 and 2 clearly exhibit these crystallization stages of amorphous
conventional wires in the non-isothermal crystallization process. Numericall results obtained for the
Joule-heating trestment are in very good agreement with the experimental data obtained from DSC
measuring method.

For the glass-covered microwire, we have found that, in comparison with the model
proposed in [12], where the agreement with the experiment is ensured by best fit of the parameter
R(1), in the proposed theoretical modd this agreement is provided by the sef-consistency of the

mode!.

References

[1] P. T. Squire, D. Atkinson, M. R. J. Gibbs, S. Atalay, J. Magn. Magn. Mater. 132, 10 (1994).
[2] M. Vézquez, C. GOimez-Polo, D. X. Chen, A. Hernando, IEEE Trans. Magn. 30, 907 (1994).
[3] P. Allia, M. Baricco, M. Knobd, P. Tiberto, F. Vinai, Mat. Sci. Eng. A179/A180, 361 (1994).
[4] P. Allia, M. Baricco, P. Tibeto, F. Vinai, Phys. Rev. B 6, 3118 (1993).

[5] P. Allia, M. Baricco, P. Tiberto, F. Vinai, Rev. Sci. Instr. 64, 1053 (1993).

[6] C. Moron, C. Aroc, M.C. Sanchez, E. Lopez and P. Sanchez, |EEE Trans. Magn. 30, 53 (1994).

[7] M. Knobd, P. Allia, C.Gomez-Polo, H. Chiriac, M. Vézquez, J.Phys. D: Appl.Phys.

28, 2398 (1995).

[8] H. Chiriac, |. Astefanoad, Phys. Stat. Sol. A 153, 183 (1996).

[9] P. J. Schneider, Conduction Hesat Transfer, Addison Wesley Publishing Company Inc., 1955.
[10] J. W. Chrigtian, The theory of Transformationsin Metals and Alloys, Pergamon, Oxford, 1975.
[11] R. W. Cahn (editor), Physical Metallurgy, North-Holland Publishing Company, Amsterdam-

New-Y ork-Oxford, 1970, pp. 516.
[12] H. Chiriac, M. Knobe T.A. Ovéri, Mat. Sci. For. 302-303 (1999).



