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Monte Carlo (MC) methods have become an important tool in biophysics, structural 
molecular biology and rational drug design. They are used to predict quantities that either 
cannot be measured directly or when accurate experimental data are difficult to obtain. They 
are also helpful for the interpretation of experimental results since in a simulation the system 
of interest can be studied in detail on the molecular level. 
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 1. Introduction 
 
 A central problem for molecular simulations is the sampling of conformational degree of 
freedom. The two most widely used methods for atomic-level modeling of fluids are the Monte 
Carlo (MC) methods and the molecular dynamics (MD). Both procedures could use the same 
molecular models, classical force fields for the potential energy terms, and the implementation of 
boundary conditions. The principal differences are the methods of sampling the configuration space 
available to the system. The conventional form of molecular dynamics represents a realization of 
Boltzmann's approach to statistical mechanics, whereas the Monte Carlo method is rooted on the 
Gibbs' formulation of the problem. MC serves as a very robust algorithm and can be applied to more 
types of models and potential functions. The advantages of the MD methods are the efficiency 
[1,2,3] of searching in the phase space for high density systems and the built-in parallellizable 
nature. However, in some situations and by means of optimization of algorithms the MC methods 
could be still more efficient [3].  
 The Monte Carlo method was developed by von Neumann, Ulam, and Metropolis at the end 
of the Second World War to study the diffusion of neutrons in fissionable material. The name, which 
derives from the famous Monaco casino, emphasizes the importance of randomness, or chance, in 
the method and was coined by Metropolis in 1947 in the title of a paper describing the early work at 
Los Alamos [4].  
 It was when the MANIAC computer in Los Angels became operational in March 1952, 
Metropolis was interested in having as broad a spectrum of problems as possible tried on the new 
machine, in order to evaluate its logical structure and to demonstrate the capabilities of the machine. 
Solving the classical statistical mechanical N-body problem via Monte Carlo technique was one of 
the first problems, done by Metropolis, in collaboration with the Tellers and the Rosenbluths, and 
led to the development of what is now known as the Metropolis Monte Carlo method [5].  
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 2. Importance of the sampling technique  
 
 Monte Carlo (MC) methods refer, in a very general sense, to any simulation of an arbitrary 
system which uses a computer algorithm explicitly dependent on a series of (pseudo)random 
numbers [6]. MC is particularly important in statistical physics, where systems have a large number 
of degrees of freedom and quantities of interest, such as thermal averages, cannot be computed 
exactly. 
 Consider the integral of interest:  
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 A naive way to calculate the above integral using the Monte Carlo approach would be the 
following quadrature formula:  
 

( )2 1

1

trialN

i
itrial

x x
I f

N
ξ

=

−≈ �                   (2) 

 
where 

iξ is the i-th chosen random number from a uniform distribution at the interval [ ]1 2,x x .  

 Importance sampling techniques choose random numbers from a distribution ( )xρ , which 

allows the function evaluation to be concentrated in the regions of space that make important 
contribution to the integral.  
 If we rewrite the above integral as:  
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where ( )xρ is an arbitrary positive weight function, then the integral I could be evaluated as the 

expectation value of ( ) ( )/f x xρ with the probability density function ( )xρ .  

 Such a reformulation makes it possible to speed up the efficiency of the sampling.  
 

 
 

Fig. 1. Transformation of integrand in the importance sampling technique. The solid line and 
dotted l ine in (a) represent the original integrand f(x) and weighting function ρ (x), 
respectively.  The  solid  line  in  (b)  represents  the  transformed  integrand  f(x) / ρ (x). The  
                         dashed lines in both parts represent the average values. 
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 If we choose a ρ (x), which behaves approximately as f (x) does (i.e., ρ (x) is large where              
f (x) is large and small where f (x)is small), then the integrand in eq.(3.), f(x) / ρ (x), can be made very 
smooth, see Fig. 1 with a consequent reduction in the standard deviation of the Monte Carlo 
estimate:  
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where iζ  is the i-th chosen random number according to the probability distribution function ( )xρ . 

This is a result from the central limit theorem, and the values of σ and 'σ defined above are the 
deviation of the integral of the function f from that of the Monte Carlo evaluation. 

 Common integrals we will encounter in statistical mechanics are as follows: 
 

( ) ( )3 3 , ,N NA d pd q Aρ= � p q p q                  (6) 

 
where ( ) ( )1 2 3 1 2 3, , ,..., , , ,...,N Np p p q q q=p q , is the phase point in the 6N-dimensional phase space 

and the choice of ( ),ρ p q depends on the ensemble of interest. For the microcanonical ensemble, the 

( ),ρ p q is:  

 

( ) ( )( ), ,ρ δ ε= −p q p qH                           (7) 

 

where ε  is the total energy of the system, and for the canonical ensemble, the ( ),ρ p q reads:  

 

( ) ( ),, e βρ −= p qp q H                         (8) 

 
 For the isobaric-isothermal ensemble, the ( ),ρ p q reads:  

 

( ) ( )( ),, e βρ − += p qp q H PV                        (9) 

 

 3. Markovian chain and the master equation 
  
 It is clear now that we should generate a stochastic process which is distributed according to 
the desired distribution ( ),ρ p q in order to calculate integrals like eq.(6).  

 For simplicity we discuss the stochastic process with discrete time step. Suppose that the 
probability density function at time ( ) ( ), ; ,tρ ρ=p q p q , where 0 , 0,1,2...t t tτ τ= + ∆ = . Then we have 

the following “master equation”  for a Markovian stochastic process:  
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where ( )P m n→ is the probability that the system (“random walker” ) will make a transition from 

state m to state n. We aim at reaching the desired distribution, ( ),ρ p q , for the ensemble of interest 

after long enough time, i.e.,  
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 In this l imit we have:  
 

( ) ( ) ( ) ( ), ,P m n d d P n m d dρ ρ→ = →� �m m m m n n n np q p q p q p q                     (12) 

 
 A sufficient but not necessary “detailed balancing”  condition (also called “microscopic 
reversibility” ) could satisfy above equation with great simplicity:  
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 4. Metropolis algorithm  
 
 Usually the transition probability ( )P m n→ consists of two parts:  

 
( ) ( ) ( )P m n T m n A m n→ = → →                                  (15) 

 
where ( )T m n→ is the probability of making a trial from state m to state n, and ( )A m n→ is the 

probability of accepting that step. If state n can be reached from state m in a single step, then  
 

( ) ( )T m n T n m→ = →                              (16) 

 
so that the equil ibrium distribution of the random walkers satisfies  
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 It is easy to prove that the following choice for ( )A m n→ which was first proposed by 

Metropolis et al. [5]  
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satisfies the above stochastic equation.  
 In the canonical ensemble, we have:  
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where ( ) ( ), ,E∆ = −n n m mp q p qH H .  

It should be noted that eq.(19) is not the only solution for the stochastic equation eq.(18).  
 In systems containing large potential energy barriers, the Monte Carlo methods may not be 
able to search the whole configuration space, leading to the so-called quasi-ergodicity. This can be 
avoided by jumping over the barriers by coupling the conventional Metropolis sampling to the 
Boltzmann distribution generated by another random walker at higher temperature [7]. On the other 
hand, if kinetic mechanisms or continuous dynamics are still of interest, the efficient moves based 
on the informations of the local properties of potential functions, e.g., forces, torques and Hessian 
matrices, have been proposed in the force bias methods [8, 9], smart Monte Carlo [10], or energy 
biased method [11].  
 In a MC simulation a segment of a molecule moves stochastically through random moves of 
a small number of monomers at a time. In general MC serves as a very robust algorithm with well-
defined ensembles. Unfortunately the MC methods suffers from two disadvantages. First, it is very 
difficult to implement an efficient algorithm in parallel computer architectures. Second, in dense 
systems, the motions are mostly reduced to cooperative fluctuations. However, the MC method has 
been very successful and will remain very important at low and moderate densities.  
 
 
 5. Monte Carlo methods of simulating polymer systems 
 
 In the simple sampling algorithm the polymer chains are each time grown from scratch. This 
is a good method for Random Walks (but Random Walks are trivial anyway). For Self Avoiding 
Walks this would mean that each time a self-intersection occurs the chain should be grown anew 
from the beginning. All the effort put in growing the chain is lost. For large N the probability that a 
walk is grown without sel f-intersection is very low. Most of the attempts to grow a Self Avoiding 
Walks fail. This is why simple sampling is ineffective for large N. This problem can be partially 
remedied by choosing at each step only from the unoccupied lattice sites. However, this introduces a 
bias which should be compensated for. This is done by giving a weight to the conformation. If si is 
the number of unoccupied neighbors (i.e. the number of possible steps) at step i the conformation 
should be weighted by:  
 

i
i

w s= ∏          (20) 

 
 This method is also known as the Rosenbluth method [12]. A drawback of the method is that 
one spends a lot of time generating conformations which have a low weight.  
 It is desirable if one could generate conformations with the correct probability so no 
reweighting is necessary. This is called “ Importance sampling”  [13]: one avoids to sample 
conformations which have a low weight.  
 The Metropolis method [5] is a frequently used method to achieve importance sampling. It 
consists of repeatedly trying to change the conformation a little bit (moving a few atoms or so) and 
then deciding whether to accept the new conformation or to retain the previous one. Such a 
prospective change in the conformation is called a “move”. The acceptance criterion should be 



A. Bu� u 
 
 

1568 

chosen in such a way that the conformations are sampled with the desired probability (usually the 
Boltzmann distribution).  
 The method of generating a new conformation (on the basis of the previous one) is 
stochastic and should satisfy “detailed balance” : the probability of generating state j when in state i  
should be the same as the probability of generating state i when in state j. Furthermore ‘ergodicity’  is 
required: one should be able to reach each microscopic state by one or more of these sampling steps. 
 If the sampling procedure satisfies detailed balance and ergodicity the conformations are 
sampled with uniform probability. A popular acceptance criterion for achieving Boltzmann statistics 
is [13]: 
 

P(accept) = min(1, exp(− � � E))     (21) 
 

where  
 

� E = E(new) − E(previous)                    (22) 
 
 A convenient way to implement this in a computer program is: 
1. compute the change in energy � E 
2. if � E < 0 accept the new conformation always. 
3. if � E > 0 compute a random number r from a uniform distribution on 
the interval [0, 1) and compare it to exp(− � � E). If r <  exp(− � � E) 
accept the new conformation. Otherwise retain the previous conformation. 
 It is essential that, when a move is rejected, the previous conformation is taken into account 
once more in the statistics (for instance in the averages of physical quantities). Not doing so would 
result in biased statistics and incorrect ensemble averages.  
 Note that a move which leads to excluded volume overlap should be handled as if � E = � 
and should always be rejected. 
 The Metropolis procedure described above generates a sequence of conformations, some 
identical to the previous one, some slightly altered. Ensemble averages can be calculated simply by 
averaging over the generated conformations. No weights are needed.  
 One of the drawbacks of the method is that subsequent conformations are very much alike or 
identical (if the move was rejected). It takes a number of steps to obtain a conformation which is 
uncorrelated. This number is called the “correlation time” [14]. Something similar happens when 
one starts a simulation with an initial conformation that is designed by hand (for example a 
completely stretched chain). Usually such a conformation is artificial and a number of steps is 
needed to reach a conformation that is uncorrelated to the initial conformation. This is called 
“equilibration". The conformations that were generated during equilibration should not be included 
in the statistics; they must be discarded. 
 

           
Fig. 2.  Monte Carlo moves: kink jump and                                    Fig. 3. Monte Carlo moves: end move. 
                    crankshaft moves. 



Exploring phase spaces of biomolecules with Monte Carlo methods 
 
 

1569

 There is a lot of freedom in choosing the Monte Carlo moves, provided they satisfy detailed 
balance and ergodicity. This freedom of choice should be used to optimize the efficiency of the 
sampling: the phase space (the space of microscopic states) should be traversed as fast as possible. 
 We will now give a few examples of the Monte Carlo algorithms used in polymer 
simulation. 
 For polymers on a simple cubic lattice several Monte Carlo moves have been suggested. The 
kink jump and crankshaft moves are il lustrated in Fig. 2. The kink jump is a single atom move while 
the crankshaft move moves two atoms at a time. For a linear polymer also moves that reposition a 
loose end should be included in the sampling algorithm (Fig. 3). The combination of kink jumps, 
crankshaft moves and end moves is called the Verdier Stockmayer algorithm. 
 

 
 

Fig. 4.  Monte Carlo moves: reptation move. 
 
 

 A reptation move [15] consists of removing a monomer from one chain end and randomly 
adding a monomer to the other end. (Fig. 4). It is also called the “slithering snake”  move for obvious 
reasons. The growth direction can be chosen anew at every attempted step, but it can be shown that 
it is also correct to let the polymer grow consistently in one direction reversing the growth direction 
only when a move is rejected. 
 Another more involved lattice model for polymers is the Bond Fluctuation Model [16]. 
Monomers occupy a square of 4 lattice sites in 2 dimensions or a cube of 8 sites in 3 dimensions. 
There is a set of allowed bond vectors between the monomers. This set has been carefull y chosen 
such that no crossing bonds will form during the simulation (provided that there were no crossing 
bonds in the initial conformation). Only one type of Monte Carlo move is used: the chosen monomer 
is moved by one lattice constant. The advantage of the Bond Fluctuation Model is that the chains 
have more flexibil ity: the number of allowed bond lengths and bond angles is larger than the simple 
cubic lattice model where only bonds of length 1 and bond angles of 90� and 180� are allowed. The 
Bond Fluctuation Model can be viewed as an intermediate between lattice models and off-lattice 
models. 
 

 
 

Fig. 5. Trapped conformation. 
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 There are a number of off-lattice models that are used in polymer simulations.The models 
that will  be described below are again coarse grained models.  
 In the ‘bead and spring’  model spherical beads represent the monomers. They are not 
allowed to overlap (excluded volume interaction). The beads are connected by springs: there is a 
quadratic or FENE potential between bonded monomers. A Monte Carlo move consists of randomly 
choosing a monomer and moving it in some convenient way that satisfies detailed balance.  
 In the ‘ freely jointed’  model [17] the length of the bonds is held fixed. This can be achieved 
by starting in a conformation with the correct bond lengths and using Monte Carlo moves that do not 
change the bond lengths. The ‘ tangent spheres’  model consists of impenetrable spheres for 
monomers and fixed bond lengths which are chosen such that the bonded beads touch one another. 
 
 
 6. Molecular Monte Carlo  
 
 Monte Carlo simulations of molecules are performed in a similar manner to those of atomic 
systems. However, there are different degrees of freedom to consider and so additional Monte Carlo 
moves are required. For rigid molecules it is necessary to consider orientational as well as 
translational degrees of freedom. These are usually combined into a single trial move consisting of a 
centre of mass translation and a rotation around the centre-of-mass. A translational move is 
performed by randomly displacing the centre of mass of the molecule. An orientational move is then 
performed by randomly changing the orientation of the molecule. In order to perform rotational 
moves, it is necessary to have a set of coordinates to describe the molecular orientation. One such set 
are the Euler angles [18]. These are described in terms of a sequence of rotations of a set of 
Cartesian axes about the origin. The first is through an angle φ about the zaxis. This is followed by 

a rotation ofθ  about the new xaxis and then a final rotation of ψ  about the new zaxis. The change 
in orientation can then be achieved through random changes in these angles. For flexible molecules, 
changes to the internal coordinates occur along side translational and rotational moves. Again we 
need a set of coordinates to describe the molecular conformations. This is commonly done in terms 
of internal coordinates, the bond lengths, bond angles, and dihedral angles in each molecule. As for 
rigid molecules, these are usually combined into a single trial move. A Monte Carlo move for a 
flexible molecule could then consist of a centre of mass displacement, and rotation of the molecule 
about its centre of mass, and then a change in an internal dihedral angle, bond angle and bond 
length. 
 
 
 7. Hybrid methods  
 
 It is tempting to combine the nice features of both Monte Carlo method and molecular 
dynamics methods to reach higher efficiency for searching in the phase space. A hybrid Monte Carlo 
method was proposed [19] in the field of quantum chromodynamics which contains fermion degree 
of freedom, and was later applied to condensed-matter systems [20, 21, 22]. However, this algorithm 
does not reach higher efficiency although it was claimed to be more robust.  
 For the lipid bilayer simulation, a new equilibration procedure for the atomic level 
simulation was proposed recently by Chiu et al. [23], which is also a hybrid algorithm with 
configurational bias Monte Carlo moves searching in the configuration space.  
 
 
 8. Conclusion 
 
 The importance of the simulation Monte Carlo methods in the field of structural molecular 
biology, as well as the peculiarities of di fferent procedures are pointed out. 
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