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Calculation of the optical quantities generally requires a large amount of computational time 
by using different theories, approximations and assumptions. In this study, a single, simple, 
new and an accurate computer aided design (CAD) model is successfully developed in 
strained quantum-well (QW) laser diodes in order to obtain the critical quantities and their 
dependences on wavelength and injection currents. These critical quantities are the modal 
gain difference, the induced refractive index di fference, and the linewidth enhancement 
factor (Alpha parameter). The model is based on multilayer perceptron network (MLP) 
which is among the most important artificial neural network (ANN) architectures. Both the 
training and the test results are in very good agreement with previously designed InGaAsP 
strained QW laser diode results for long wavelength communication systems. The method is 
very useful for time saving purposes after finding the most suitable network configuration 
and can be easily used in the CAD design of optical communication systems. 
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I. Introduction 
 

While the applications of semiconductor laser diodes are continuously increasing in terms of 
complexity and sophistication, the CAD of these systems are vitally important for the prediction of 
the over all system response during the design phase. So many efforts are being made for the 
characterization of semiconductor materials as well as laser structures. One of these techniques 
named as ampli fied spontaneous emission (ASE) which has a long history of interest [1,2]. The ASE 
introduces noise through the system which degrades the system performance in optical 
communication systems. However the ASE spectrum of a semiconductor laser diode biased below 
threshold provides crucial information about some of the most important parameters which affect the 
performance of the whole system. These are the optical gain spectrum [3], refractive index change 
with injection current [4], and the linewidth enhancement factor [5].  
 In terms of the laser materials, one of the characteristic quantities is the optical gain which is 
undoubtedly among the most important parameters in semiconductor laser diodes. The optical gain 
contains significant information about the operating characteristics of the device and it is defined as 
the fractional increase in photons per unit length [6]. The optical gain at energy E is determined from 
spontaneous emission spectra [7]: 
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where 0g  is a term related to spontaneous emission rate including the affect of thickness and 

number of wells, FE∆  is the quasi-fermi level separation. 
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This is called the material gain, though it is the modal gain ( ggM Γ= , Γ  is the optical 
confinement factor), which is obtained after some lengthy mathematical calculations. For an 
expanding rate of applications, an understanding of the gain spectra is very important in order to 
develop a model with predictive capability for the gain spectra of a certain diode laser structure. 
There are di fferent methods proposed in literature to obtain the optical gain spectra [3] that provides 
different advantages and disadvantages in terms of the theoretical and experimental side. On the 
other hand, the improvements are stil l continuing in order to look for more accurate theoretical gain 
models and/or reliable gain measurement techniques.  

The second quantity is the refractive index change with injection current which is required 
for the characterization of semiconductor laser diodes. It is closely related to the gain, and strongly 
affects the intra-cavity field distribution. The change in the refractive index is related to the gain 
spectrum through a Kramers-Kronig transformation. The induced change in the effective refractive 
index as a function of carrier density due to interband transitions can be written as [8]: 
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where Γ  is the optical confinement factor , zL  is the well width, 0m  is the electron resting mass, 

k is the crystal wave vector, nmM is the momentum matrix elements between the thn  conduction 

band and thm  valance subbands, nmE is the transition energy between the thn  conduction band and 

thm  valance subbands, )( v
m

c
n ff  is the Fermi occupation probability for electrons in the thn ( thm ) 

conduction (valance) subband, γ  is the Lorentzian half-l inewidth.  
There are sophisticated theories of the carrier induced refractive index change in QW lasers 

for valance band mixing and nonparabolicity of the conduction bands [9], many particle effects [10], 
and taking in to account of all possible optical transitions [11]. Similar to optical gain spectra, the 
calculation of the refractive index change requires many calculations. In addition to that, the 
measurement of it is also difficult.  

The last quantity is the linewidth enhancement factor (α  parameter, LEF) which is one of 
the key parameters for semiconductor laser diodes under both high-speed direct modulation and CW 

operation. Since the spectral linewidth is proportional to )1( 2α+spn  where spn is the spontaneous 

emission rate, LEF has to be reduced in order to obtain a narrow spectral linewidth. A large value of 
LEF is detrimental since it increases the signal dispersion, mode chirping, and fi lamentation effects. 
On the other hand, high α  parameter is useful in the generation of strongly chirped ultra-short 
optical pulses. It is the ratio of the derivatives with respect to carrier concentration of the real and 
imaginary parts of the complex dielectric function. In terms of the measurable quantities, it is 
proportional to the ratio of the changes in the refractive index and modal gain due to injection 
current, which is expressed as [12]: 
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where NgM ∂∂ /  is the differential gain and Nn ∂∂ / is the incremental change in the effective index  
due to carrier injection. 

The calculation procedure of this parameter involves different approximations, assumptions 
and estimations which are pointed out in [13]. The difficulty is also known to measure the α  
parameter as it significantly varies with the operating wavelength, carrier density and other factors. 
The detailed estimation methods for α  parameter are also given in [14]. 
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Learning and generalisation ability, fast real-time operation and ease of implementation 
features make ANNs popular in recent years. ANNs are multipurpose computational methodologies 
with solid theoretical support and strong potential to be effective in any discipline. In these years, 
CAD approaches based on ANNs are introduced for optical quantities [13,15] for the purpose of 
modelling, simulation, and optimization. Therefore reliable, fast and accurate ANN models are 
developed in this way which can be used to speed up the optical designs. In this study, the 
theoretical and the experimental data [16] that are obtained from ASE spectroscopy for InGaAsP 
strained QW laser diode is used to develop a CAD model in order to find the modal gain difference, 
induced effective index difference, and the linewidth enhancement factor. The inputs of the CAD 
model are the wavelength and injection current respectively.  
 
 

2. Development of the artificial neural network model 
 
 ANNs are new information-processing and computing technique inspired by biological 
neuron processing [17]. ANNs gather their knowledge by detecting the patterns and relationships in 
data and train through experience. An ANN is formed from many interconnected identical elements 
which are called artificial neurons or processing elements. These processing elements are connected 
each other with weights which constitute the ANN structure and are organised in layers. The power 
of ANN comes from the weight connection in a network. Each processing element has weighted 
inputs, summation function, activation function and output. The behaviour of an ANN is determined 
by the activation functions of its processing elements, by the learning rule, and by the architecture 
itself. The weights of the connections between the processing elements are adjusted during the 
training process to achieve the desired input/output of the network. During training, the connections 
between the units are optimised until the error in predictions is minimised and the network reaches 
the specified level of accuracy. When the training process is completed, the unused information is 
inputted to the network for the evaluation of the test results. ANN represents a promising modelling 
technique, especially for data sets having non-linear relationships that are frequently encountered in 
engineering. In terms of model specification, artificial neural networks require no knowledge of the 
data source but, since they often contain many weights that must be estimated, they require large 
training sets. In addition, ANNs can combine and incorporate both literature-based and experimental 
data to solve problems.  

There are many types of ANN architectures [18] for various applications in the literature. 
Radial basis function networks and MLPs are the examples of feed forward networks which are 
capable of mimicking each other. MLPs [18] are the simplest and most commonly used ANN 
architectures which is shown in Fig. 1. In this paper, MLPs are used for the computation of modal 
gain difference, effective refractive index di fference and the linewidth enhancement factor (alpha 
parameter) when the inputs are wavelength and injection current respectively. As shown in the 
figure, a MLP consists of three layers: an input layer, an output layer and one or more hidden layers 
with previously defined number of neurons. The neurons in the input layer only act as buffers for 

distributing the input signals ix  to neurons in the hidden layer. Each neuron j  in the hidden layer 

sums up its input signals ix , after weighting them with the strengths of the respective connections 

jiw from the input layer and computes its output jy  as a function f of the sum, namely 

 �
= )( ijij xwfy                                                            (4) 

 
where f is one of the activation functions used in ANN architectures. 
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Fig. 1. General form of multilayer perceptrons.  
 

 
The hidden layers allow modelling of complicated input/output relationships between 

multiple inputs and outputs by combining nonlinear activation functions. Inputs are connected to the 
first hidden layer by one set of weights and finally the last hidden layer is connected to the output 
layer by different set of weights. Training is completed successfully by optimising these weights to 
achieve the desired response with the use of a learning (optimisation) algorithm. A learning 
algorithm gives )(tw ji∆  in the weight of a connection between neurons i  and j  at time t . The 

weights are then updated according to the following formula: 
 

)1()()1( +∆+=+ twtwtw jijiji                                                     (5) 

 
The proposed CAD modelling technique involves an ANN to calculate the output quantities 

modal gain difference; MdANNg , effective refractive index difference; edANNnδ , and the linewidth 

enhancement factor; ANNα (ANN outputs) when the injection current and wavelength values are 

given as inputs. Training the ANN with the use of different learning algorithms to calculate the 

Mdg , ednδ , and α  involves presenting it with different sets of input values and the corresponding 

measured values of MdMEg , edMEnδ , and MEα . Differences between the target outputs 

( MdMEg , edMEnδ , MEα ) and the actual outputs of the ANN ( MdANNg , edANNnδ , ANNα ) are evaluated by 

the learning algorithms to adapt the weights using equations (4) and (5). There are many learning 
algorithms available in literature [18]. After several trials with different learning algorithms and with 
different network configurations in order to obtain a better performance with simpler structure, it is 
found that the most suitable network configuration is 2 × 49 × 5 × 3 with the Levenberg-Marquardt 
(LM) algorithm [19] which has a quadratic speed of convergence. This means that the number of 
neurons is 49 for the first hidden layer and 5 for the second hidden layer, respectively. The input and 
output layers have the linear activation function and the hidden layers have the hyperbolic tangent 
sigmoid activation function. The number of epoch is 300 for training. Before training, the input and 
the output data tuples are normalised between 0.0 and 1.0 in order to ensure the learning 
performance since the normalization is an essential step to improve the training process of ANNs. 
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After completing the training process successfully for all the critical optical quantities mentioned 
above in a single ANN model for injection currents 6 and 10 ma., test process is carried out for            
8 ma. for the same critical quantities which is an indication of the generalization abil ity of the ANN 
model. The CAD model based on ANN in order to find the three critical quantities is shown in           
Fig. 2.  

 
Fig. 2. Single ANN model for the computation of the critical quantities of InGaAsP strained 

QW laser diode.  
 
       

The experimental data belongs to a buried heterostructure laser diode grown on an InP 
substrate which is designed for applications in long wavelength 1.55 � m. communication systems. 
The active region consists of five strained InGaAsP QWs with InGaAsP barriers. For other details of 
the device and the experimental values including experimental conditions, the reader can refer to 
[16]. 
 
 

3. Results and conclusions 
 

This study presents a new methodology for the CAD modelling of an optical device 
characteristics based on ANNs that can be used successfully and beneficially for the accurate 
determination of critical optical quantities. The developed ANN model is trained and tested with the 
LM learning algorithm which shows the best training and test results among other learning 
algorithms used in the analysis. In order to validate the accuracy of the model proposed in this paper, 
the ANN model results for MdANNg , edANNnδ , and ANNα  are compared with the theoretical and 

experimental results ( MdMEg , edMEnδ , MEα ) reported in [16]. The mean square errors (mse) obtained 

from the CAD model is shown in table 1. It is clearly seen from the table that all of the optical 
quantities are in very good agreement with the measured values. In addition to that, the test mse 
errors between measured values and the model are much better than the mse errors between the 
measured values and the theoretical calculations. The results from the single proposed model support 
the validity of the CAD model even with the limited data set. The comparison of the results between 
measured, theoretical, and ANN model for each optical quantity for di fferent injection currents are 
shown in Figs. 3, 4, and 5 respectively. The symbols are the experimental, solid curves are the 
theoretical, and dotted lines are the ANN results for each of these figures.                   

 
Table 1. The errors obtained from the single model for the whole optical quantities 

 

 MSE ERRORS 

OPTICAL 
QUANTITIES Training Error 

Test Error       
(measured-theory) 

Test Error 
(measured-ANN) 

Modal Gain 
Difference 3.07 exp (-31) 0.361 0.063 

Effective Refrac. 
Index Difference 1.07 exp (-30) 0.220 0.047 

Alpha Parameter 2.69 exp (-31) 0.539 0.068 
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Even if the training time takes a few minutes after finding the most suitable configuration, 
the test process takes only a few microseconds to determine the values of the modal gain di fference, 
effective refractive index difference, and the linewidth enhancement factor. It also needs to be 
clarified once more that better and more robust results can be obtained from ANN models if more 
data set values are supplied for training. The developed model demonstrates the versatili ty, 
robustness, and computational efficiency of the ANN based models. The classical calculation 
techniques require tremendous computational efforts by using complicated mathematics with the 
addition of and strong background knowledge. On the other hand, the proposed method is simple, 
inexpensive, very fast and accurate having very good agreement with the experimental results. It 
also does not require neither complicated mathematics nor strong background knowledge. At the 
same time It can be used for different engineering applications and purposes. 
 

 
 

Fig. 3. Comparison of the modal gain difference results obtained from ANN model, theory 
and measurements.  

 

 
 

Fig. 4. Comparison of the effective refractive index results obtained from ANN model, 
theory and measurements.  

Symbols are experimental, solid curves are theoretical, dotted lines are ANN model results. 
6 and 10 ma. current levels are the training results. 
8 ma. is the test result. 

Symbols are experimental, solid curves are theoretical, dotted lines are ANN model results. 
6 and 10 ma. current levels are the training results. 
8 ma. is the test result. 
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Fig. 5. Comparison of the linewidth enhancement factor results obtained from ANN model, 
theory and measurements. 

 
 

3. Conclusion 
 
The proposed ANN model is capable of calculating the characteristic quantities of InGaAsP 

strained QW laser diode accurately under consideration. This kind of similar models can be 
developed for other optoelectronic devices, too, in order to be included in the CAD design of these 
systems. 
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