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Inverse optical problems are of major importance for many scientific and engineering 
projects. To name a few, solutions of nonlinear equations are needed for the determination of 
optical performance of stable or light sensitive thin fi lms. In this communication we briefly 
describe an analytical method for finding the roots of a set of nonlinear equations by 
transformation of the equation system into a multivariant polynomial form. The main 
advantage of the method is that all possible solutions are found without any initial guess of 
the unknown parameters. The inverse optical problem of determination of complex 
refractive index and physical thickness of a thin film from spectrophotometric experimental 
data is discussed. 

 
 (Received April 12, 2005; accepted May 26, 2005) 
 

Keywords: Inverse optical problems, Optical constants 
 
 
1. Introduction 

 
 The mathematical solutions of inverse problems in modern optics consist in determination of 

the roots of a system of nonlinear equations [1,2]. Powerful methods for numeric solutions are 
developed [1], but they are strongly dependent on the choice of the initial guess of the unknown 
parameters. Besides, they have the inconvenience of having multiple solutions, related to local 
minima in the solution process, or – even worse – lack of solutions. These problems are well known 
and they make very difficult the choice of the optimal (by some criteria) scientific or engineering 
solution.  
  In this communication we propose an exact analytical method for inverse problem so lutions 
that renders possible, for a certain class of optical problems, the determination of the global minima 
in the parameter space. A similar method is tried and successfully implemented for the exact 
simultaneous correction of several aberrations in the optical system design [3]. Here, an example is 
given that will il lustrate the potentialities of the method. It is related to the determination of the 
complex refractive index (ñ) and physical thickness (d) of very thin films, stable or with 
photoinduced changes. 

 
 

2. Transformation of the system of nonlinear equations and  
      successive elimination of the unknowns: 

 
 Let us consider a system of q nonlinear equations with q unknown parameters  

xj (j = 1,…,q). In order to find the exact solutions of the system we transform each equation in a 
mixed polynomial as follows: 

                                                
* Corresponding author: bhristov@optics.bas.bg 



B. Hristov, P. Gushterova, P. Sharlandjiev 

 
 

1434 

( ) ( ) ( ) ( ) 0,...,,...,...,...,,..., 2021
1

12112 =++++ −
− qq

l
ql

l
ql xxaxxxaxxxaxxxa ; 

( ) ( ) ( ) ( ) 0,...,,...,...,...,,..., 2021
1

12112 =++++ −
− qq

m
qm

m
qm xxbxxxbxxxbxxxb ; 

( ) ( ) ( ) ( ) 0,...,,...,...,...,,..., 2021
1

12112 =++++ −
− qq

n
qn

n
qn xxcxxxcxxxcxxxc ; (2.1) 

……………………………….………………………………………….. 

( ) ( ) ( ) ( ) 0,...,,...,...,...,,..., 2021
1

12112 =++++ −
− qq

p
qp

p
qp xxgxxxgxxxgxxxg . 

 
 The coefficients {a, b, c,…,g}  are functions of all unknown variables but x1. The coefficients 
l, m, n,…,p are equal to the highest power of the parameter x1 and correspond to the highest index of 
al, bm, cn,…,gp.  

 The elimination of one of the unknown parameters is based on a modified approach 
developed by Viete [4]. The idea is to transform the system of q nonlinear equation in a system of (q 
- 1) equations. We make use of the resultant (or eliminant) determinants of the first equation 
together with the rest of the system equations. For the firs two equation of (2.1) having coefficients 
al and bm the eliminant determinant Dab is [5]: 
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Dab has (l  + m) columns and (m + l) rows. The number of rows, constructed with the ‘a’  coefficients 
is equal to m and the number of rows with ‘b’  coefficients is equal to l. We present the Dab 
determinant as a polynomial of powers of x2: 
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where s is the highest power of x2, and 0,...,DDs  are functions of all unknown variables but x1 and 

x2 . 
  Thus the system of q equations with q unknowns (2.1) is substituted with a system of (q - 1) 
equations with (q - 1) unknowns. 
 

Dab = 0; Dac = 0;…; Dag = 0.                                                 (2.3) 
 
By analogy with the elimination of x1 we lower the number of equations to (q - 2) with  
(q - 2) unknowns, etc till we obtain one polynomial with one unknown xq. If we find all the roots of 
this polynomial equation, we can find all possible solutions of the initial system (2.1). 
 
 

 3.  Determination of (ñ, d) of very thin films 
 

 The method described above is applied to solve the system of three equations (3.1) that 
relate the optical response of a very thin fi lm (the film front side reflectance (R), the film back side 
reflectance (R′) and the transmittance (T)) with the unknown quantities - the physical thickness, the 
real (ε1) and imaginary (ε2) part of complex permitivitty (ε = ε1 – iε2) of the film. Utilizing the 
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nanothickness of the film we develop the trigonometric functions in thin film characteristic matrix 

elements to the third order in terms of ñd/λ ( �ñ = , λ is the wavelength) and derive approximated 
expression for R, R′ and T. Forming the expressions (1 + R)/T, (1 - R)/T, (1 - R′)/T, which are 
simpler then those for R, R′, T, we obtain the following system: 
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where ω = 2π/λ is the wave number, ns is a refractive index of the substrate. 

We perform algebraic transformations and substitutions in the system (3.1) to make easier 
the application of the method. First we introduce a new variable: dV ω=  and the constants: 

T
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+= . After this we subtract the third equation of 

(3.1) from the second one and obtain the equation:  
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−+−= , then we substitute (3.2) in the second equation of (3.1) and derive 

the equation:  
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where M = (Lns

2 – p1 +3ns)/L.  
 Thus the initial system (3.1) is converted into set of three polynomials: 

 
 0011 =+ aa ε ;           (3.4a) 

 0021 =+ bbε ;           (3.4b) 

 0021
2
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where a1 = V2, a0 = -3 - MV2, b1 = V3, b0 = -L, c2 = 3V2, c1 = 2nsV

3(1 - ε1) + 6Vns,  
c0 = 3V2ε1

2 - 3V2ε1(1 + ns
2) + 3V2ns

2 + 3(ns
2 + 1) – p3. 

  The method of excluding the unknown quantities is applied to solve the system (3.4). First 
we exclude ε2, using equations (3.4b) and (3.4c). The eliminant determinant bcD  of the equations 

(3.4b) and (3.4c) is: 
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Solving Dbc = 0, we obtain a polynomial for ε1: 
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 e2ε1
2 + e1ε1 + e0 = 0,             (3.5) 

 
where e2 = 3V6, e1 = -V4[2Lns + 3V2(1+ns

2)]  and e0 = 3ns
2V6 + V4[3(ns

2 + 1) + 2Lns – p3]  + 6LnsV
2 

+3L2. 
 The second step is to exclude ε1. With the purpose of this, (3.5) is used together with 
equations (3.4a). The eliminant determinant aeD  of the equations (3.5) and (3.4a) is: 
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Solving 0=aeD , we derive a polynomial of third degree for U = V2 = (ωd)2: 

 
 f3U

3 + f2U
2 + f1U + f0 = 0,                (3.6) 

 
where f3 = 3(ns

2 – M)(1 –M), f2 = -p3 – 6(ns
2 + 1) + 2(-MLns + Lns + 9M), f1 = 27 and f0 = 3L2. In 

fact this is polynomial for d. Now we can find all roots of the polynomial (3.6) for U and all roots of 
d. When d is substituted in (3.4b) and (3.4a) ε2 and ε1 are obtained, respectively. As a verification of 
the accuracy of the obtained solutions, we substitute each triad (ε1, ε2, d) in the equations (3.1) and 
obtain results quite close to computer epsilon (zero). 
  To illustrate the application of the described method, we made realistic numeric simulation 
of spectrophotometric measurements of nano-film, deposited on transparent substrate, in the 450 – 
1500 nm spectral range. A film with values of ε1 and ε2 typical for amorphous semiconductors (As-
S, As-Se, Ge-Se, etc.) and thickness of 15 nm is considered. A semi-infinite substrate with εs very 
closed to the values of BK7 glass is assumed. The spectral dependence of model ε1(λ), ε2(λ) and 
εs(λ) are presented in Fig. 1.  
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 Fig. 1. Spectral dependence of model ε1(λ)(� ), ε2(λ)(---) and εs(λ)(…). 
 
 

 For the needs of the inverse problem, we first evaluate at each wavelength (R, Ŕ , T) by the 
help of procedure reported in [6], and then we calculated (ε1, ε2, d), using the above described 
procedure.  

 The polynomial (3.6), which is cubic for U, has three real roots for each wavelength – two 
positive and one negative. The thickness d has 4 real and 2 complex roots, but only 2 positive roots 
have physical meaning. The dispersions of those roots (d1 and d2) are presented in Fig. 2. 
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Fig. 2. Spectral dependence of the two real roots: d1 (� ) and d2 (---) of the polynomial (3.6). 

 
 

With d1 and d2 we solve the equation (3.4a) for ε1 and equation (3.4b) for ε2.  
As a measure of the accuracy of the solutions we use the relative uncertainties: 
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where (ε1, ε2, d) are the model complex refractive index parameters and thickness and  
(ε1

*, ε2
*, d*) are the estimated values. The results on spectral dependence of ∆ε1/ε1, ∆ε2/ε2 and ∆d/d 

for (ε1, ε2), calculated with two real values d1 and d2, are presented in Fig. 3a and 3b, respectively. 
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 The (ε1

*, ε2
*) calculated with d2, are closer to the model values: the maximum value of ∆ε1/ε1 

is ∼5%, of ∆ε2/ε2 is ∼ -1% and of ∆d/d is ∼1%. The values of ε1
* calculated with d1 are negative and 

that is why the dispersion of ∆ε1/ε1 is not presented in Fig. 3a. We have to point out that the 
relatively high values of (∆ε1/ε1, ∆ε2/ε2, ∆d/d) are not because of inaccuracies in the inverse optical 
problem solutions but is due to the fact that equations (3.1) are approximate. 
 The absolute differences ∆T = T – Tcal, ∆R = R - Rcal and ∆R′ = R′ - R′cal (where Tcal is the 
transmittance, Rcal is front side reflectance and is R′cal back side reflectance, calculated with the help 
of the triad (ε1

*, ε2
*, d2

*) and exact matrix elements) can be also used as a measure for accuracy of 
the solutions. The results are presented in Fig. 4. ∆T has maximum value 1%, ∆R - 1.2% and ∆R′ - 
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1.4%. The aim of the future work is to decrease these differences, by developing the system (3.1), 
using the expansion of the matrix elements up to fourth order in terms of ñd/λ. 
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 Fig. 4. Spectral dependence of ∆T(), ∆R(---) and ∆R′(…), where Tcal, Rcal and R′cal are  
                                                   calculated, using (ε1

*, ε2
*, d2

*). 
 
 
 

 4.   Conclusion 
 
  We have presented an exact method for finding the solutions of a nonlinear system of 
equations of polynomial type. An example illustrates the potentialities of the method. The 
determination of the optical constants of a thin film with thickness of 15 nm shows that the different 
roots of the nonlinear system can be separated and the root with physical significance easily located.  
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