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DETERMINATION OF OPTICAL CONSTANTSOF VERY THIN FILMS: AN
EXACT ANALYTICAL APPROACH
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Inverse optical problems are of maor importance for many scientific and engineering
projects. To name a few, solutions of nonlinear equations are needed for the determination of
optical performance of stable or light sensitive thin films. In this communication we briefly
describe an anaytical method for finding the roots of a set of nonlinear eguations by
transformation of the equation system into a multivariant polynomia form. The main
advantage of the method is that &l possible solutions are found without any initial guess of
the unknown parameters. The inverse optical problem of determination of complex
refractive index and physical thickness of athin film from spectrophotometric experi menta
datais discussed.
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1. Introduction

The mathematical solutions of inverse problems in modern optics consist in determination of
the roots of a system of nonlinear equations [1,2]. Powerful methods for numeric solutions are
developed [1], but they are strongly dependent on the choice of the initial guess of the unknown
parameters. Besides, they have the inconvenience of having multiple solutions, related to local
minimain the sol ution process, or — even worse — lack of solutions. These problems are well known
and they make very difficult the choice of the optimal (by some criteria) scientific or engineering
solution.

In this communi cation we propose an exact ana ytical method for inverse problem so lutions
that renders possible, for a certain class of optical problems, the determination of the global minima
in the parameter space A similar method is tried and successfully implemented for the exact
simultaneous correction of severa aberrations in the optical system design [3]. Here, an exampleis
given that will illustrate the potentiaities of the method. It is related to the determination of the
complex refractive index (f) and physical thickness (d) of very thin films, stable or with
photoinduced changes.

2. Transformation of the system of nonlinear equations and
successive elimination of the unknowns:

Let us consider a system of g nonlinear equations with g unknown parameters
% ( = 1,...,0). In order to find the exact solutions of the system we transform each equation in a
mixed polynomid as follows:
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a, (xz,...,xq)x{ +a,_1(x2,...,xq)x{‘1 +...+al(xz,...,xq)x+a0(x2,...,xq) =0;
bm(xz,...,xq)xlm + bm_l(xz,...,xq)x{”"1 +..+ bl(xz,...,xq)x+b0(x2,..., )= 0;

cn(xz,...,xq)xl" +cn_1(x2,...,xq)x1"'1 +...+cl(x2,...,xq)x+co(x2,...,xq

The coefficients{a, b, c,...,g} arefunctions of all unknown variables but x;. The coefficients
I, m, n,...,pare equd to the highest power of the parameter x; and correspond to the highest index of
a, bm, Cny..,Gp-

The dimination of one of the unknown parameters is based on a modified approach
developed by Viete [4]. Theideais to transform the system of g nonlinear equation in a system of (g
- 1) equations. We make use of the resultant (or diminant) determinants of the first equation
together with the rest of the system equations. For the firs two equation of (2.1) having coefficients
a and by, the diminant determinant Dy, is [5]:

a &, . . . a O0 . . .0
O a4 a4, .. . a 000 O
o . . .0 a a;, . . . &
D, = . 2.2
® b, b, . .. b 0 . . .0 @2
0 b, b b, 0 0 0 O
o . . . 0Db, b, . . . Db

D has (I + m) columns and (m + 1) rows. The number of rows, constructed withthe ‘a’ coefficients
is equal to m and the number of rows with ‘b’ coefficients is equal to . We present the D,y
determinant as a polynomia of powers of x,:

D, = Ds(xs,...,xq)xj + Ds_l(xs,...,xq)xj‘1 +..+ Dl(xs,...,xq)x2 + Do(xg,...,xq), (2.2a)

where s is the highest power of x,, and D.,...,D, are functions of al unknown variables but x, and
Xo .

Thus the system of g equati ons with g unknowns (2.1) is substituted with a system of (q - 1)
equations with (g - 1) unknowns.

Dapy = 0; Dac = 0;...; Dyg= 0. (2.3)

By analogy with the dimination of x; we lower the number of equations to (q - 2) with
(g - 2) unknowns, etc till we obtain one polynomial with one unknown x,. If we find al the roots of
this polynomial equation, we can find al possible solutions of theinitia system (2.1).

3. Determination of (i, d) of very thin films

The method described above is applied to solve the system of three equations (3.1) that
relate the optica response of a very thin film (the film front side reflectance (R), the film back side
reflectance (R”) and the transmittance (T)) with the unknown quantities - the physical thickness, the
rea (&) and imaginary (&) part of complex permitivitty (€ = & — i&) of the film. Utilizing the
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nanothickness of the film we develop the trigonometric functions in thin film characteristic matrix

eements to the third order in terms of Ad/A (A = Je , A is the wave ength) and derive approxi mated
expression for R, R”and T. Forming the expressions (1 + R)/T, (1 - R)/T, (1 - R)/T, which are
simpler then those for R, R’, T, we obtain the following system:

1+ R _ (N5~ Nep8)@0°d® | [(1-8)(ns” ~ &) +£5°]aPd?  2aniepng +(ng” +1) |

T 3ng 2ng 2ng
1-R Z- d3  ade, +
_ (&ns” — £p8)w™d” | adey +ng 3.1)
T 3ng ng
1-R - 3
—- (&2 52§1)a)3d +adey +1,

where w= 277 isthe wave number, ngis arefractiveindex of the substrate.
We perform agebraic transformations and substitutions in the system (3.1) to make easier
the application of the method. First we introduce a new variable V =ad and the constants:
— — R +
= w py = @ p3 = w After this we subtract the third equation of

(3.1) from the second one and obtain the equation:

Ve—L =0, 32

where L=3(n5_1)+2pz_ Py

, then we substitute (3.2) in the second eguation of (3.1) and derive
the equation:
VZg -V?M -3=0, (3.3)

where M = (Ln — py +3ny)/L.
Thustheinitia system (3.1) is converted into set of three polynomials:

& +89 =0; (3.49)
by + by =0; (3.40)
C2€§ +C&r +¢y =0, (3.40)

where & = V2 a8 = -3 - MV? by = V2 by = -L, ¢; = 34 ¢ = 2nV3(1 - &) + 6Vn,
Co = 3V2&?-3Vg(1+ nd) + 3Vnd + 3(n + 1) —p3.

The method of excluding the unknown quantities is applied to solve the system (3.4). First
we exclude &, using equations (3.4b) and (3.4c). The diminant determinant D, of the equations

(3.4b) and (3.40) is:

b by O
Dpc=| 0 bl bO

2 G &

Solving Dy, = 0, we obtain a polynomial for &:
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e&°+ eg+e=0, (3.5

wheree, = 3V, g = -V[2Ln + 3VA(1+nd)] and & = 3n2Ve + V[3(nS + 1) + 2Lns —pg] + 6LNV?
+3L%

The second step isto exclude &. With the purpose of this, (3.5) is used together with
equations (3.4a). The diminant determinant D, of the equations (3.5) and (3.43) is:

& a O
Dae=|0 & ag|-
& 6 &

Solving D,, = 0, we derive apolynomial of third degree for U = V2= (ad)*

fUs + LU+ fU+ fo= 0, (3.6)

wheref; = 3(nZ — M)(1 M), f, = -ps —6(n + 1) + 2(-MLns + Lng + 9M), f, = 27 and f, = 3L2 In
fact thisis polynomial for d. Now we can find al roots of the polynomial (3.6) for U and all roots of
d. When d is substituted in (3.4b) and (3.48) & and & are obtained, respectively. As a verification of
the accuracy of the obtained solutions, we substitute each triad (&, &, d) in the equations (3.1) and
obtai n results quite close to computer epsilon (zero).

To illustrate the application of the described method, we made realistic numeric s mulation
of spectrophotometric measurements of nano-film, deposited on transparent substrate, in the 450 —
1500 nm spectral range. A film with values of & and &, typical for amorphous semiconductors (As-
S, As-Se, Ge-Se, etc.) and thickness of 15 nmis considered. A semi-infinite substrate with & very
closed to the values of BK7 glass is assumed. The spectrd dependence of modd &(1), &(A) and
&) arepresented in Fig. 1.
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Fig. 1. Spectral dependence of model &(A)(—), &(A)(---) and &(A)(...).

For the needs of the inverse problem, we first evaluate at each waveength (R, R’, T) by the
help of procedure reported in [6], and then we calculated (&, &, d), using the above described
procedure.

The polynomid (3.6), which is cubic for U, has three real roots for each waveength — two
positive and one negative. The thickness d has 4 real and 2 complex roots, but only 2 positive roots
have physical meaning. The dispersions of those roots (d; and d,) are presented in Fig. 2.
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Fig. 2. Spectra dependence of the two real roots: d; (—) and d, (---) of the polynomia (3.6).

With d; and d, we solvethe equation (3.4a) for & and equation (3.4b) for &.
As a measure of the accuracy of the solutions we use the re ative uncertainties:

Ag _&A)-*(A). D& _&(A)-£*(4) . Ad _d(4)-d* (1)
& &1(A) - £2(A) "od d(A)

where (&, &, d) ae the model complex refractive index parameters and thickness and
(&', &, d) are the estimated values. The results on spectral dependence of A&/ &, A&l & and Ad/d
for (&, &), calculated with two real values d; and d,, are presented in Fig. 3aand 3b, respectively.
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Fig. 3a Spectral dependence of Ad,/dy(---) Fig. 3b. Spectral dependence of Ad,/d,(---),
and A€2/€2(D ) A€1/€1(D ) and A&‘z/&‘z(.. )

The(&', &) calculated with ds, are closer to the model values: the maximum vaue of A&/&
is [B%, of 4&/& is 0-1% and of Ad/d is [1%. The values of & calculated with d, are negative and
that is why the dispersion of 4&/g is not presented in Fig. 3a. We have to point out that the
reativdy high values of (4&/&, A&l &, Ad/d) are not because of inaccuracies in the inverse optical
problem sol utions but is due to the fact that equations (3.1) are approximate.

The absolute differences AT = T — Tea, AR = R- Ry and 4R’ = R’- Ry (Where Ty is the
transmittance, R.y is front side reflectance and is Ry back side reflectance, calculated with the help
of thetriad (&, &, db) and exact matrix € ements) can be also used as a measure for accuracy of
the solutions. The results are presented in Fig. 4. AT has maximum va ue 1%, 4R - 1.2% and 4R’ -
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1.4%. The am of the future work is to decrease these differences, by developing the system (3.1),
using the expansion of the matrix e ements up to fourth order in terms of fid/A.

1,0

0,5

0.0 e

AT, AR, AR' (%)
\

0,5}

-1,0 [

_1’5 [ 1 1 1 1 1
0.4 0,6 0.8 1,0 1.2 14 16

A (um)

Fig. 4. Spectra dependence of AT(00 ), 4AR(---) and 4AR{...), where Ty, Ra and R are
caculated, usng (&, &, d).

4. Conclusion

We have presented an exact method for finding the solutions of a nonlinear system of
equations of polynomial type. An example illustrates the potentiaities of the method. The
determinati on of the optical constants of athin film with thickness of 15 nm shows that the different
roots of the nonlinear system can be separated and the root with physical significance easily | ocated.
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