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We present several dynamical properties of l iquid Li, Rb, and Cs near their melting points. 
They have been evaluated within the framework of the mode-coupling theory, using a self-
consistent scheme that uses as input data only the static structure functions and the 
interatomic pair potantials of the simple l iquid metals. In this work we have used the 
interatomic pair potential which is derived from second order perturbation theory with 
Fiolhais electron-ion pseudopotential. We carried out theoretical results to compute single-
particle and collective time-dependent properties of l iquid metals, and thereby to calculate 
their self diffusion constants. We have discussed our results in comparison with both 
experiment and molecular dynamics simulation. 
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1. Introduction 
 

Together with rare-gas fluids, molten alkali metals have always been considered as 
paradigms of the behaviour shown by the so called ‘simple l iquids’  [1,2]. In the last decades, the 
appearance of new accurate data for the time-dependent properties of these systems has led to a 
renewed interest and to the possibil ity of more stringent tests for our understanding of the dynamics 
of the liquid state. On the experimental side, neutron-scattering experiments have been performed in 
liquid lithium [3,4], liquid rubidium [5] and liquid caesium [6]. A neutral consequence of all this 
activity has been the appearance of the several simulations [7-9] and theoretical [10-12] studies near 
the melting points. 

From a purely theoretical point of view, one can take advantage of the progress achieved in 
the 1980’s in the development of non-phenomenological approaches for liquid-state dynamics [13]. 
An important result in this respect has been the recognition [14] of two different kinds of processes 
ruling the decay channel determined by correlations, namely a fast decay channel determined by 
‘binary’  collisional events and an additional long-lasting mechanism. They have associated with 
correlated collisions and due to the couplings of the dynamical variable of interest with the slow 
‘modes’  present in the fluid. It is so-called mode-coupling decay channels. A simplified version of 
these theories has recentl y been developed, with quite satisfactory results for the leading transport 
properties such as diffusion and shear viscosity coefficients as well as for several aspects of the 
single-particle dynamics near the melting point [15]. It was quite important to notice that the decay 
of several time-dependent properties could be explained by the interplay of two different dynamical 
processes. The first one, which leads to a rapid initial decay is due to the effects of fast uncorrelated 
short range interactions (collisional effects) which can be broadly identified with binary collisions. 
The second processes which usuall y leads to a long-time tail can be attributed to the non-linear 
couplings of the dynamic property of interest with slowly varying collective variables (modes) as for 
instance density fluctuations, currents etc., and it is referred to as a mode-coupling processes. 

Within the mode-coupling theory both single particle and collective dynamical magnitudes 
are closely interwoven. Therefore, corresponding analytical expressions should be solved sel f-
consistently. In fact, we are not aware of any self-consistent calculations performed either within the 
mode-coupling theory or a simpli fied version thereof. For example, the intermediate scattering 
function has been evaluated either from the viscoeleastic model [16], or from molecular dynamic 

                                                
∗ Corresponding author: dseyfe@yahoo.co.uk 



S. Dalgic� , M. Colakogullari, S. S. Dalgic 

 
 

1994 

(MD) simulations [17]. Theoretical calculations, using the variational modified hypernetted chain 
(VMHNC) theory of l iquids [18-21], as well as MD simulations have shown that a good description 
all the equilibrium properties of some liquid metals can be obtained by using an interatomic pair 
potentials.  

This paper is organized as follows. In Section 2, we describe the theory used for the 
calculation of the dynamic properties of the systems. We propose a new self-consistent scheme for 
describing the self-diffusion process. Single-particle dynamical properties such as the velocity 
autocorrelation functions and the self-intermediate scattering functions are discussed in the same 
section. In Section 3, we present the results obtained when this theory is applied to simple l iquid 
metals at thermodynamic conditions near the melting points. Finally, Section 4 summarizes the main 
results of the work along with a few concluding remarks. 
 
 

2. Theory 
 

The transport coefficients of interest in the dynamics of dense fluids can be obtained via 
Green-Kubo relations where the coefficient is given as the time integral of a corresponding time 
correlation function [22,23]. Their Green-Kubo integrand is velocity autocorrelation function. The 
self-diffusion coefficient of a one component liquid can be expressed by an Einstein expression 
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where with defined the normalized velocity autocorrelation function and Bk  is the Boltzmann 
constant, T denotes the temperature and m the mass of the particles. These two functions are related 
to each other by 
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The memory function of the normalized velocity autocorrelation function, ( )tK , is defined by the 
following Volterra-type equation, 
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where the dot means time derivative of the normalized velocity autocorrelation function. 
 The memory function may be split into two contributions [13,14], 
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which represent two distinct dynamical regimes in the atomic dynamic of a liquid. The first term 
comprises all the fast decay channels. It is supposed to represent the effect of a binary collision 
between a tagged particle and another one from its environment whereas the second term, the mode-
coupling contribution, incorporates the contribution from the collective processes associated with 
multiple collisions. 

At very short times the memory function is well described by ( )tK B  only; moreover both 

( )tK  and ( )tK B  have the same initial value ( )2
0Ω  and initial time decay ( )Dτ  
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where 0Ω  is the Einstein frequency which, as shown in equation (6), can be written in terms of the 

interatomic pair potential, ( )rφ , and the pair distribution function, ( )rg , of the liquid with number 

density ρ. The second time derivative of ( )tK  at 0=t  is given by 
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where φ′  denotes the derivates of the potential with respect to its argument. The contribution to Dτ  
arising from the three-body distribution function can be computed rather accurately by using the 
superposition approximation. 

As the detailed features of the binary dynamics of systems with continuous potentials are 
rather poorly known, we resort to a semi-phenomenological approximation by writing [16] 
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which besides of incorporating to correct short time behaviour, also allows the computation of 
( )tK B  from the static structural function only. 

The inclusion of a slowly decaying time tail in memory function is known to be an essential 
ingredient for the correct description of the dynamics of a tagged particle in a fluid [24]. In principle, 
coupling to several modes, should be considered such as density-density coupling, density-
longitudinal current coupling and density transversal current coupling but for the 
density/temperature range considered in this work the most important contribution arises from 
density-density coupling. Restricting the mode-coupling component to the density-density coupling 
term [25] 
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Here c(k) denotes the direct correlation function of the liquid. F(k,t) and Fs(k,t) are the intermediate 
scattering function and its self part, whereas FB(k,t) FsB(k,t) denote the binary part of F(k,t) and 
Fs(k,t) respectively. 

The binary part of the self intermediate scattering function as its value for free particles and 
its self part are given by 
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where ( ) ( )t,kFt,kF 0Bs = . It was shown that this new equation leads to very small changes in the ( )tK  

of liquid Rb as compared with the previous one [14,25]. The final expression for the mode-coupling 
part of the memory function of the normalized velocity autocorrelation function then becomes 
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As already mentioned, Ballucani et.al. [15] have calculated the dynamical properties of liquid alkali 
metals by using, basically the same coupling term as given in equation (13). For liquid l ithium near 
melting we have recently obtained an overall good agreement when comparing the results of the 

viscoelastic model with MD simulations [26]. Finally, in the case of ( )t,kFs  we have used the 
gaussian approximation 
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which gives correct results for both small and large wavevectors and it also gives the correct time 
behaviour. 

We propose here self-consistent calculation of the memory function itself, by using the 
following procedure. We start with some estimation for the mode-coupling component of the 
memory function, for instance, KMC(t) = 0. using the known values of KB(t) and equation (5) a total 
memory function is obtained which, when taken to equation (4), gives a normalized velocity 
autocorrelation function and through equation (3) leads to the mean square displacement. Now, by 
using the gaussian approximation for Fs(k,t) and the viscoelastic model for F(k,t), the evaluation of 
the integral given in equation (13) leads to a new estimate for the mode-coupling component of the 
memory function. Finally, this loop is iterated until self-consistency is achieved between the initial 
and final total memory function, K(t). 
 
 

3. Results and discussion 
 

We have applied the theoretical formalism to study the dynamic properties of l iquid Li, Rb 
and Cs near their melting points. The input data required by the theory are both the interatomic pair 
potential and its derivatives as well as the liquid static structural properties. We have used the 
interatomic pair potential which is derived from second-order perturbation theory with individual 
version of Fiolhais electron-ion pseudopotantial [27]. When it is used in conjunction with VMHNC 
theory of l iquids has proved to be highly accurate for the calculation of the liquid static structure and 
the thermodynamic properties. In Table 1, we give the input data which has been used to determine 
the parameters for the interatomic pair potential, densities and temperatures. The potential 
parameters are taken from Ref.[27]. 

We have applied the iterative scheme described at above. We found that a number of (5-8) 
iterations are enough to achieve self-consistency in the memory function. The results are shown in 
Fig.1a where we have plotted the theoretical total memory functions for liquid Li, Rb and Cs. In the 
same figure, inset shows the first minima and maxima of normalized memory functions. The initial 
time decay values, τD, are 0.0326 ps, 0.234 ps, 0.324 ps for Li, Rb and Cs respectively. The binary 
part dominates the behaviour of K(t) for t ≤ 2τD  for longer times the mode-coupling part completely 
determines the shape of K(t). The theoretical results do not correctly reproduce long-lasting tail for 
longer times. In order to explain this fact, we have analyzed which wavevoctors are really relevant in 
the integral appearing in equation (10). 

 
Table 1. The input parameters for the potential. 

 
 

Metals ρ(atoms/Å3) α R T(K) 
Li 0.04440 4.113 0.342 463 
Rb 0.01040 3.197 0.760 313 
Cs 0.00833 3.138 0.848 303 

 
The normalized velocity autocorrelation functions obtained from theoretical K(t) are shown 

in Fig.1b where we have calculated total  Z(t) for liquid Li, Rb and Cs. Also in this figure inset shows 
the first minima of normalized velocity autocorrelation functions. In this systems the initial decay of 
Z(t) is very well reproduced, since its initial value Z(0)=1. Both the second frequency moment due 

to 
2
0Ω  and the fourth frequency moment due to 

2
0Ω  and Dτ  are implicitly imposed by taking 

expression (9) for the binary component of K(t). The position of the subsequent maxima and minima 

of Z(t) are also well reproduced, although for Dt τ≥ 2 , the amplitude of oscillations is 
overestimated.  
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       Fig. 1a. Normalized memory functions for                         Fig. 1b. Normalized velocity autocorrelation 
                        Li, Rb and Cs.                                                                 functions for Li, Rb and Cs. 
 
 
          The results obtained for the self-diffusion coefficients D are shown in Table 2 for the three 
systems in this work as compared experimental and molecular dynamic results. The theoretical 
results show good agreement with the experimental results for Rb, Cs but a little different for Li.  

 
Table 2. Diffusion coefficients. 

 
 

Metals D (Å 2/ps) Dexp (Å
 2/ps) DMD (Å

 2/ps) 
Li 0.59 0.64± 0.04 a 0.69± 0.02 a 

Rb 0.25 0.27± 0.04 b 0.36± 0.02 b 

Cs 0.22 0.22 b 
0.24± 0.01 b 

 

         a Ref. [9], b Ref. [10] 
 

The intermediate scattering functions obtained within this formalism are shown in Fig.2 
along with MD data and viscoelastic results for liquid Li. It is observed that F(k,t) exhibits an 
oscillatory behaviour for small k, which persists until around 3k2k p≈ . The kp is the position of the 
main peak of the static structure factor which is about 1.5 A-1 for both Rb and Cs and is about 2.5 A-1 
for Li. The amplitude of oscillations of F(k,t) is stronger for the smaller k values and the oscillations 
take place around a globall y decaying positive tail. The viscoelastic data do show an oscillatory 
behaviour for small k with the frequency of the oscillations rather well reproduced, but they are out 
of phase with the MD ones for the smaller k values and the oscillations occur basically zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Intermediate scattering functions  at several  k values for l iquid Li. Continuous lines:    
                present results; triangles: viscoelastic results [8]; circle: MD results [8]. 
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For the three larger values of k shown in Fig.3 the agreement is on a quantitative level, 
whereas for k=0.60 A-1 we find that Rb data are well reproduced, whereas the Cs data do show 
oscillations around decaying tail of roughly  the correct amplitude and with the correct phase. But 
they are too weak compared with the MD ones. For even smaller values of k, the smallest allowed 
by the simulation boxes the oscillations of the theoretical F(k,t) in fact become also out of phase 
with the MD ones, both in Rb and in Cs, in contrast to the case of Li [8].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Intermediate scattering functions at several  k  values  for l iquid Rb and Cs  (shifted 
upwards one  unit).  Continuous  lines:  present   results; triangles:  viscoelastic  results  [10];   
                                                  circle: MD results [10]. 

 
 

In this work, both K(t) and F(k,t) areobtained within a self-consistent scheme, whereas sel f-
intermediate scattering, Fs(k,t) is computed within the Gaussian approximation by using VACF 
deduced from self-consistent process. Now by Fourier transforming F(k,t) we get S(k,ω) is obtained. 
The dynamic structure factors are shown in Fig.4 together with calculation results and experimental 
ones which are obtained Ref.[28] for Rb and Ref.[6] for Cs. Comparing first, in smaller k values, 
dynamic structure factors are out of phase with experimental data whereas near the first peak of 
static structure factor the our viscoelastic results are in a good agreement with experimental ones for 
liquid Rb and Cs. In Fig.4 we show the viscoelastic dynamic structure factor obtained from for four 
wave vectors with experimental inelastic x-ray  scattering (IXS)  data.  Comparing  second   
viscoelastic  results   were  obtained  using   neutral pseudo atom seen in F(k,t). But translated into 
the frequency domain; for example, the too small amplitude of the oscillations in the case of Cs is 
seen a too diffuse side peak in S(k,ω). It can be observed that the overall shape of S(k,ω) is 
qualitatively reproduced by the theoretical approach, in contrast experimental data, which is 
correctly the peak positions but fails to describe the overall ω dependence of the dynamic structure 
factor. The behaviour of S(k,ω) is of course a consequence of the time dependence of the 
intermediate scattering functions. 

 
 

0.0 1.5 3.0

0

1

2

F
(k

,t)
/F

(k
,t=

0)

0.0 1.5 3.0

0

1

2

0 3 6
0

1

2

0 1 2

t (ps)
0

1

2

k=0.60 Å -1 k=1.01 Å -1 

k=1.50 Å -1 k=2.25 Å -1 

F(
k,

t)
/F

(k
,t 

= 
0)

 

t(ps) 



Calculations of atomic dynamics in simple liquid metals 
 
 

1999 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Dynamic structural factors at several k values for liquid Rb and Cs (shifted upwards 
0.008, 0.01, 2, 0.1ps from left to right).Continuous lines: present results; stars: experimental  
                                                                   data. 
 
 
4. Conclusion  
 
In this paper we have evaluated several dynamic properties of l iquid Li, Rb and Cs near the 

melting points. We have used that derived from second-order perturbation theory with individual 
version of Fiolhais electron-ion pseudopotantial. We have found the dynamics of the motion of 
single particles, as represented by the velocity autocorrelation function, its memory function, the 
self-diffusion coefficient and the self dynamic structure factor as well as collective properties such 
as intermediate structure factors and the dynamic structure factors.  

The mode-coupling part, for which we have only considered the density-density coupling 
term, introduces the slow relaxation mechanisms in a correct semiquantitave way. In the case of the 
collective dynamics, there is a region, for small k, where the theory, although correct qualitatively, 
has some failure to reproduce quantitatively our results. This region is somewhat wider for Cs than 
for Rb, and both are wider than it was for Li. The main difference with liquid Li near melting is their 
density, which is sensibly smaller (almost 5 times less in Cs), so it is interesting to observe if the 
approximations involved in the theory still remain valid for these conditions. 

On the theoretical side, we have shown that a simplified mode-coupling approach is able to 
reproduce rather well several features of single-particle motion, including both the ordinary and k-
dependent di ffusion coefficient. The overall quality of the agreement is good, supporting the idea 
that even in simple liquid metals we may adopt the type of effective potential successfully tested in 
the heavier alkali metals.  
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The theory treats in a different way the sel f-intermediate scattering function, on one hand, 
and the velocity autocorrelation function and the intermediate on the other, since the mode-coupling 
effects are included for the latter but not for the first. 
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